Skip to main content
Log in

The Riesz Basis Property of an Indefinite Sturm–Liouville Problem with Non-Separated Boundary Conditions

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We consider a regular indefinite Sturm–Liouville eigenvalue problem −f′′ + q f = λ r f on [a, b] subject to general self-adjoint boundary conditions and with a weight function r which changes its sign at finitely many, so-called turning points. We give sufficient and in some cases necessary and sufficient conditions for the Riesz basis property of this eigenvalue problem. In the case of separated boundary conditions we extend the class of weight functions r for which the Riesz basis property can be completely characterized in terms of the local behavior of r in a neighborhood of the turning points. We identify a class of non-separated boundary conditions for which, in addition to the local behavior of r in a neighborhood of the turning points, local conditions on r near the boundary are needed for the Riesz basis property. As an application, it is shown that the Riesz basis property for the periodic boundary conditions is closely related to a regular HELP-type inequality without boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abasheeva N.L., Pyatkov S.G.: Counterexamples in indefinite Sturm–Liouville problems. Siberian Adv. Math. 7(4), 1–8 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Beals R.: Indefinite Sturm–Liouville problems and half range completeness. J. Differ. Equ. 56, 391–407 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bennewitz C.: A general revision of the Hardy–Littlewood–Polya–Everitt (HELP) inequality. Proc. Roy. Soc. Edinburgh A 97, 9–20 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bennewitz C.: The HELP inequality in the regular case. Int. Schriftenreihe Numer. Math. 80, 337–346 (1987)

    MathSciNet  Google Scholar 

  5. Binding P., Ćurgus B.: A counterexample in Sturm–Liouville completeness theory. Proc. Roy. Soc. Edinburgh A 134, 244–248 (2004)

    Article  Google Scholar 

  6. Binding P., Ćurgus B.: Riesz bases of root vectors of indefinite Sturm–Liouville problems with eigenparameter dependent boundary conditions, I. Oper. Theory: Adv. Appl. 163, 75–95 (2006)

    Google Scholar 

  7. Binding P., Ćurgus B.: Riesz bases of root vectors of indefinite Sturm–Liouville problems with eigenparameter dependent boundary conditions, II. Integr. Equ. Oper. Theor. 63, 473–499 (2009)

    Article  MATH  Google Scholar 

  8. Binding P., Fleige A.: Conditions for an indefinite Sturm–Liouville Riesz basis property. Oper. Theor. Adv. Appl. 198, 87–95 (2009)

    MathSciNet  Google Scholar 

  9. Binding P., Fleige A.: A review of a Riesz basis property for indefinite Sturm–Liouville problems. Oper. Matrices 5, 735–755 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bingham N.H., Goldie C.M., Teugels J.T.: Regular Variation. Cambridge University Press, Cambridge (1987)

    Book  MATH  Google Scholar 

  11. Buldygin V.V., Klesov O.I., Steinebach J.S.: On some properties of asymptotic quasi-inverse functions. Theor. Probab. Math. Stat. 77, 15–30 (2008)

    Article  MathSciNet  Google Scholar 

  12. Ćurgus B.: On the regularity of the critical point infinity of definitizable operators. Integr. Equ. Oper. Theor. 8, 462–488 (1985)

    Article  MATH  Google Scholar 

  13. Ćurgus B., Langer H.: A Krein space approach to symmetric ordinary differential operators with an indefinite weight function. J. Differ. Equ. 79, 31–61 (1989)

    Article  MATH  Google Scholar 

  14. Ćurgus B., Najman B.: A Krein space approach to elliptic eigenvalue problems with indefinite weights. Differ. Integr. Equ. 7, 1241–1252 (1994)

    MATH  Google Scholar 

  15. Evans W. D., Everitt W. N.: A return to the Hardy–Littlewood integral inequality. Proc. Roy. Soc. Lond. A 380, 447–486 (1982)

    Article  MATH  Google Scholar 

  16. Evans W. D., Everitt W. N.: HELP inequalities for limit-circle and regular problems. Proc. Roy. Soc. Lond. A 432, 367–390 (1991)

    Article  MATH  Google Scholar 

  17. Everitt W. N.: On an extension to an integro-differential inequality of Hardy, Littlewood and Polya. Proc. Roy. Soc. Edinburgh A 69, 295–333 (1972)

    MATH  Google Scholar 

  18. Fleige A.: Spectral Theory of Indefinite Krein–Feller Differential Operators, Mathematical Research, vol. 98. Akademie Verlag, Berlin (1996)

  19. Fleige A.: A counterexample to completeness properties for indefinite Sturm–Liouville problems. Math. Nachr. 190, 123–128 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fleige A.: The Riesz basis property of an indefinite Sturm–Liouville problem with a non odd weight function. Integr. Equ. Oper. Theor. 60, 237–246 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Karabash I.M., Kostenko A.S., Malamud M.M.: The similarity problem for J-nonnegative Sturm–Liouville operators. J. Differ. Equ. 246, 964–997 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Karabash I.M., Malamud M.M.: Indefinite Sturm–Liouville operators (sgn x)(−d 2/dx 2 + q(x)) with finite–zone potentials. Oper. Matrices 1, 301–368 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kostenko A.: The similarity problem for indefinite Sturm–Liouville operators with periodic coefficients. Oper. Matrices 5, 705–722 (2011)

    MathSciNet  Google Scholar 

  24. Kostenko, A.: On a necessary aspect for the Riesz basis property for indefinite Sturm–Liouville problems. ArXiv:1204.2444

  25. Kostenko A.: The similarity problem for indefinite Sturm–Liouville operators and the HELP inequality. Adv. Math. 246, 368–413 (2013)

    Article  MathSciNet  Google Scholar 

  26. Krein, M.G.: The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications, II. Mat. Sb. (N.S.) 21(62),365–404 (1947, Russian)

  27. Langer, H.: Spectral functions of definitizable operators in Krein spaces. In: D. Butkovic, H. Kraljevic and S. Kurepa (eds.) Functional analysis. Conference held at Dubrovnik, Yugoslavia, November 2–14, 1981. Lecture Notes in Mathematics, vol. 948, pp. 1–46. Springer, Berlin (1982)

  28. Parfenov A.I.: On an embedding criterion for interpolation spaces and application to indefinite spectral problems. Siberian Math. J. 44(4), 638–644 (2003)

    Article  MathSciNet  Google Scholar 

  29. Parfenov A.I.: The Ćurgus condition in indefinite Sturm–Liouville problems. Siberian Adv. Math. 15(2), 68–103 (2005)

    MathSciNet  Google Scholar 

  30. Pyatkov S.G.: Some properties of eigenfunctions of linear pencils. Siberian Math. J. 30(4), 111–124 (1989)

    MathSciNet  Google Scholar 

  31. Pyatkov S.G.: Some properties of eigenfunctions and associated functions of indefinite Sturm–Liouville problems. In: Nonclassical Problems of Mathematical Physics. Novosibirsk. Sobolev Institute of Mathematics, pp. 240–251 (2005, Russian)

  32. Rogozin B.A.: A Tauberian theorem for increasing functions of dominated variation. Siberian Math. J. 43(2), 353–356 (2002)

    Article  MathSciNet  Google Scholar 

  33. Volkmer H.: Sturm–Liouville problems with indefinite weights and Everitt’s inequality. Proc. Roy. Soc. Edinburgh Sect. A 126, 1097–1112 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Weidmann, J.: Spectral Theory of Ordinary Differential Operators, Lecture Notes in Mathematics 1258, Springer, Berlin (1987)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey Kostenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ćurgus, B., Fleige, A. & Kostenko, A. The Riesz Basis Property of an Indefinite Sturm–Liouville Problem with Non-Separated Boundary Conditions. Integr. Equ. Oper. Theory 77, 533–557 (2013). https://doi.org/10.1007/s00020-013-2093-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-013-2093-x

Mathematics Subject Classification (2010)

Keywords

Navigation