Skip to main content
Log in

Identifying Derivations Through the Spectra of Their Values

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We consider the relationship between derivations d and g of a Banach algebra B that satisfy \({{\sigma}(g(x)) \subseteq {\sigma}(d(x))}\) for every \({x\in B}\) , where σ( . ) stands for the spectrum. It turns out that in some basic situations, say if B = B(X), the only possibilities are that g = d, g = 0, and, if d is an inner derivation implemented by an algebraic element of degree 2, also g = −d. The conclusions in more complex classes of algebras are not so simple, but are of a similar spirit. A rather definitive result is obtained for von Neumann algebras. In general C*-algebras we have to make some adjustments, in particular we restrict our attention to inner derivations implemented by selfadjoint elements. We also consider a related condition \({\|[b,x]\|\leq M\|[a,x]\|}\) for all selfadjoint elements x from a C*-algebra B, where \({a,b\in B}\) and a is normal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alaminos J., Brešar M., Extremera J., Villena A.R.: Maps preserving zero products. Studia Math. 193, 131–159 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aupetit B.: A primer on spectral theory. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  3. Bonsall F.F., Duncan J.: Complete normed algebras. Springer, Berlin (1973)

    MATH  Google Scholar 

  4. Boudi N., Mathieu M.: Commutators with finite spectrum. Ill. J. Math. 48, 687–699 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Boudi N., Šemrl P.: Derivations mapping into the socle, III. Studia Math. 197, 141–155 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brešar M., Mathieu M.: Derivations mapping into the radical, III. J. Funct. Anal. 133, 21–29 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brešar M., Šemrl P.: Derivations mapping into the socle. Math. Proc. Camb. Philos. Soc. 120, 339–346 (1996)

    Article  MATH  Google Scholar 

  8. Brešar M., Špenko Š.: Determining elements in Banach algebras through spectral properties. J. Math. Anal. Appl. 393, 144–150 (2012)

    Article  MATH  Google Scholar 

  9. Chebotar M.A., Ke W.-F., Lee P.-H.: On a Brešar-Šemrl conjecture and derivations of Banach algebras. Q. J. Math. 57, 469–478 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Conway J.B.: A course in functional analysis. Springer, New York (1990)

    MATH  Google Scholar 

  11. Fong C.K.: Range inclusion for normal derivations. Glasgow Math. J. 25, 255–262 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. Glimm J.: A Stone–Weierstrass theorem for C*-algebras. Ann. Math. 72, 216–244 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  13. Halpern H.: Irreducible module homomorphisms of a von Neumann algebra into its centre. Trans. Am. Math. Soc. 140, 195–221 (1969)

    Article  Google Scholar 

  14. Johnson E., Williams J.P.: The range of a normal derivation. Pac. J. Math. 58, 105–122 (1975)

    MathSciNet  MATH  Google Scholar 

  15. Kadison R.V., Ringrose J.R.: Fundamentals of the theory of operator algebras, vol. II. Academic press, London (1986)

    Google Scholar 

  16. Kaplansky, I.: Algebraic and analytic aspects of operator algebras. Regional Conference Series in Mathematics 1. Amer. Math. Soc. (1970)

  17. Kissin E., Shulman V.S.: On the range inclusion of normal derivations: variations on a theme by Johnson, Williams and Fong. Proc. Lond. Math. Soc. 83, 176–198 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lee T.-K.: Derivations on noncommutative Banach algebras. Studia Math. 167, 153–160 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Magajna B.: On the distance to finite-dimensional subspaces in operator algebras. J. Lond. Math. Soc. 47, 516–532 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pedersen G.K.: C*-algebras and their automorphism groups. Academic press Inc, London (1979)

    Google Scholar 

  21. Rickart C.E.: General theory of Banach algebras. D. Van Nostrand, Princeton (1960)

    MATH  Google Scholar 

  22. Turovskii, Yu.V., Shulman, V.S.: Conditions for the massiveness of the range of a derivation of a Banach algebra and of associated differential operators. Mat. Zametki 42, 305–314 (1987) [English transl., Math. Notes 42, 669–674 (1987)]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matej Brešar.

Additional information

Supported by ARRS Grant P1-0288.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brešar, M., Magajna, B. & Špenko, Š. Identifying Derivations Through the Spectra of Their Values. Integr. Equ. Oper. Theory 73, 395–411 (2012). https://doi.org/10.1007/s00020-012-1975-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-012-1975-7

Mathematics Subject Classification (2010)

Keywords

Navigation