Skip to main content
Log in

BoGH13ASus from Bacteroides ovatus represents a novel α-amylase used for  Bacteroides starch breakdown in the human gut

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Members of the Bacteroidetes phylum in the human colon deploy an extensive number of proteins to capture and degrade polysaccharides. Operons devoted to glycan breakdown and uptake are termed polysaccharide utilization loci or PUL. The starch utilization system (Sus) is one such PUL and was initially described in Bacteroides thetaiotaomicron (Bt). BtSus is highly conserved across many species, except for its extracellular α-amylase, SusG. In this work, we show that the Bacteroides ovatus (Bo) extracellular α-amylase, BoGH13ASus, is distinguished from SusG in its evolutionary origin and its domain architecture and by being the most prevalent form in Bacteroidetes Sus. BoGH13ASus is the founding member of both a novel subfamily in the glycoside hydrolase family 13, GH13_47, and a novel carbohydrate-binding module, CBM98. The BoGH13ASus CBM98–CBM48–GH13_47 architecture differs from the CBM58 embedded within the GH13_36 of SusG. These domains adopt a distinct spatial orientation and invoke a different association with the outer membrane. The BoCBM98 binding site is required for Bo growth on polysaccharides and optimal enzymatic degradation thereof. Finally, the BoGH13ASus structure features bound Ca2+ and Mn2+ ions, the latter of which is novel for an α-amylase. Little is known about the impact of Mn2+ on gut bacterial function, much less on polysaccharide consumption, but Mn2+ addition to Bt expressing BoGH13ASus specifically enhances growth on starch. Further understanding of bacterial starch degradation signatures will enable more tailored prebiotic and pharmaceutical approaches that increase starch flux to the gut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

BoGH13ASus native, maltoheptaose and acarbose-bound structures were deposited with the RCSB Protein Data Bank, with PDB IDs of: 8DGE, 8DL1 and 8DL2, respectively. All plasmids, proteins, bacterial strains and other reagents generated in this study will be made freely available to any researcher wishing to use them for non-commercial purposes.

Abbreviations

AP:

Potato amylopectin

Bo:

Bacteroides ovatus

Bt:

Bacteroides thetaiotaomicron

CBM:

Carbohydrate-binding module

G2:

Maltose

G3:

Maltotriose

G4:

Maltotetraose

G5:

Maltopentaose

G6:

Maltohexaose

G7:

Maltoheptaose

GH:

Glycoside hydrolase

Glc:

Glucose

PS:

Potato starch

PUL:

Polysaccharide utilization loci

Sus:

Starch utilization system

References

  1. Reyes A, Semenkovich NP, Whiteson K, Rohwer F, Gordon JI (2012) Going viral: next generation sequencing applied to human gut phage populations. Nat Rev Microbiol 10:607–617. https://doi.org/10.1038/nrmicro2853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kapitan M, Niemiec MJ, Steimle A, Frick JS, Jacobsen ID (2019) Fungi as part of the microbiota and interactions with intestinal bacteria. Curr Top Microbiol Immunol 422:265–301. https://doi.org/10.1007/82_2018_117

    Article  CAS  PubMed  Google Scholar 

  3. Moissl-Eichinger C, Pausan M, Taffner J, Berg G, Bang C, Schmitz RA (2018) Archaea are interactive components of complex microbiomes. Trends Microbiol 26:70–85. https://doi.org/10.1016/j.tim.2017.07.004

    Article  CAS  PubMed  Google Scholar 

  4. Nayfach S, Shi ZJ, Seshadri R, Pollard KS, Kyrpides NC (2019) New insights from uncultivated genomes of the global human gut microbiome. Nature 568:505–510. https://doi.org/10.1038/s41586-019-1058-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wilson AS, Koller KR, Ramaboli MC, Nesengani LT, Ocvirk S, Chen C, Flanagan CA, Sapp FR, Merritt ZT, Bhatti F, Thomas TK, O’Keefe SJD (2020) Diet and the human gut microbiome: an international review. Dig Dis Sci 65:723–740. https://doi.org/10.1007/s10620-020-06112-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hansson GC (2020) Mucins and the microbiome. Annu Rev Biochem 89:769–793. https://doi.org/10.1146/annurev-biochem-011520-105053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Koh A, DeVadder F, Kovatcheva-Datchary P, Bäckhed F (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165:1332–1345. https://doi.org/10.1016/j.cell.2016.05.041

    Article  CAS  PubMed  Google Scholar 

  8. Makki K, Deehan EC, Walter J, Bäckhed F (2018) The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23:705–715. https://doi.org/10.1016/j.chom.2018.05.012

    Article  CAS  PubMed  Google Scholar 

  9. McNeil NI (1984) The contribution of the large intestine to energy supplies in man. Am J Clin Nutr 39:338–342. https://doi.org/10.1093/ajcn/39.2.338

    Article  CAS  PubMed  Google Scholar 

  10. Cockburn DW, Koropatkin NM (2016) Polysaccharide degradation by the intestinal microbiota and its influence on human health and disease. J Mol Biol 428:3230–3252. https://doi.org/10.1016/j.jmb.2016.06.021

    Article  CAS  PubMed  Google Scholar 

  11. Martens EC, Lowe EC, Chiang H, Pudlo NA, Wu M, McNulty NP, Abbott DW, Henrissat B, Gilbert HJ, Bolam DN, Gordon JI (2011) Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol 9:e1001221. https://doi.org/10.1371/journal.pbio.1001221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Martens EC, Chiang HC, Gordon JI (2008) Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4:447–457. https://doi.org/10.1016/j.chom.2008.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McNulty NP, Wu M, Erickson AR, Pan C, Erickson BK, Martens EC, Pudlo NA, Muegge BD, Henrissat B, Hettich RL, Gordon JI (2013) Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol 11:e1001637. https://doi.org/10.1371/journal.pbio.1001637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brown HA, Koropatkin NM (2021) Host glycan utilization within the Bacteroidetes Sus-like paradigm. Glycobiology 31:697–706. https://doi.org/10.1093/glycob/cwaa054

    Article  CAS  PubMed  Google Scholar 

  15. McKee LS, La Rosa SL, Westereng B, Eijsink VG, Pope PB, Larsbrink J (2021) Polysaccharide degradation by the Bacteroidetes: mechanisms and nomenclature. Environ Microbiol Rep 13:559–581. https://doi.org/10.1111/1758-2229.12980

    Article  CAS  PubMed  Google Scholar 

  16. Martens EC, Koropatkin NM, Smith TJ, Gordon JI (2009) Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J Biol Chem 284:24673–24677. https://doi.org/10.1074/jbc.R109.022848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Grondin JM, Tamura K, Déjean G, Abbott DW, Brumer H (2017) Polysaccharide utilization loci: fueling microbial communities. J Bacteriol 199:e00860-e916. https://doi.org/10.1128/JB.00860-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cho KH, Salyers AA (2001) Biochemical analysis of interactions between outer membrane proteins that contribute to starch utilization by Bacteroides thetaiotaomicron. J Bacteriol 183:7224–7230. https://doi.org/10.1128/JB.183.24.7224-7230.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. D’Elia JN, Salyers AA (1996) Contribution of a neopullulanase, a pullulanase, and an α-glucosidase to growth of Bacteroides thetaiotaomicron on starch. J Bacteriol 178:7173–7179. https://doi.org/10.1128/jb.178.24.7173-7179.1996

    Article  PubMed  PubMed Central  Google Scholar 

  20. Foley MH, Cockburn DW, Koropatkin NM (2016) The Sus operon: a model system for starch uptake by the human gut Bacteroidetes. Cell Mol Life Sci. 73:2603–2617. https://doi.org/10.1007/s00018-016-2242-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reeves AR, Wang GR, Salyers AA (1997) Characterization of four outer membrane proteins that play a role in utilization of starch by Bacteroides thetaiotaomicron. J Bacteriol 179:643–649. https://doi.org/10.1128/jb.179.3.643-649.1997a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shipman JA, Cho KH, Siegel HA, Salyers AA (1999) Physiological characterization of SusG, an outer membrane protein essential for starch utilization by Bacteroides thetaiotaomicron. J Bacteriol 181:7206–7211. https://doi.org/10.1128/JB.181.23.7206-7211.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Koropatkin NM, Smith TJ (2010) SusG: a unique cell-membrane-associated α-amylase from a prominent human gut symbiont targets complex starch molecules. Structure 18:200–215. https://doi.org/10.1016/j.str.2009.12.010

    Article  CAS  PubMed  Google Scholar 

  24. Cameron EA, Kwiatkowski KJ, Lee BH, Hamaker BR, Koropatkin NM, Martens EC (2014) Multifunctional nutrient-binding proteins adapt human symbiotic bacteria for glycan competition in the gut by separately promoting enhanced sensing and catalysis. MBio 5:e01441-e1514. https://doi.org/10.1128/mBio.01441-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Foley MH, Martens EC, Koropatkin NM (2018) SusE facilitates starch uptake independent of starch binding in B. thetaiotaomicron. Mol Microbiol 108:551–566. https://doi.org/10.1111/mmi.13949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tuson HH, Foley MH, Koropatkin NM, Biteen JS (2018) The starch utilization system assembles around stationary starch-binding proteins. Biophys J 14:242–250. https://doi.org/10.1016/j.bpj.2017.12.015

    Article  CAS  Google Scholar 

  27. Karunatilaka KS, Cameron EA, Martens EC, Koropatkin NM, Biteen JS (2014) Superresolution imaging captures carbohydrate utilization dynamics in human gut symbionts. MBio 5:e02172-14. https://doi.org/10.1128/mBio.02172-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Geffroy L, Brown HA, DeVeaux AL, Koropatkin NM, Biteen JS (2022) Single-molecule dynamics of surface lipoproteins in Bacteroides indicate similarities and cooperativity. Biophys J 121:4644–4655. https://doi.org/10.1016/j.bpj.2022.10.024

    Article  CAS  PubMed  Google Scholar 

  29. Drula E, Garron ML, Dogan S, Lombard V, Henrissat B, Terrapon N (2022) The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res 50:D571–D577. https://doi.org/10.1093/nar/gkab1045

    Article  CAS  PubMed  Google Scholar 

  30. Flint HJ, Whitehead TR, Martin JC, Gasparic A (1997) Interrupted catalytic domain structures in xylanases from two distantly related strains of Prevotella ruminicola. Biochem Biophys Acta 1337:161–165. https://doi.org/10.1016/s0167-4838(96)00213-0

    Article  CAS  PubMed  Google Scholar 

  31. Zhang M, Chekan JR, Dodd D, Hong PY, Radlinski L, Revindran V, Nair SK, Mackie RI, Cann I (2014) Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes. Proc Natl Acad Sci U S A 111:E3708–E3717. https://doi.org/10.1073/pnas.1406156111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Machovič M, Svensson B, MacGregor EA, Janeček Š (2005) A new clan of CBM families based on bioinformatics of starch-binding domains from families CBM20 and CBM21. FEBS J 272:5497–5513. https://doi.org/10.1111/j.1742-4658.2005.04942.x

    Article  CAS  PubMed  Google Scholar 

  33. Lapébie P, Lombard V, Drula E, Terrapon N, Henrissat B (2019) Bacteroidetes use thousands of enzyme combinations to break down glycans. Nat Commun 10:2043. https://doi.org/10.1038/s41467-019-10068-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. MacGregor EA, Janeček Š, Svensson B (2001) Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim Biophys Acta 1546:1–20. https://doi.org/10.1016/s0167-4838(00)00302-2

    Article  CAS  PubMed  Google Scholar 

  35. Arnal G, Cockburn DW, Brumer H, Koropatkin NM (2018) Structural basis for the flexible recognition of α-glucan substrates by Bacteroides thetaiotaomicron SusG. Protein Sci 27:1093–1101. https://doi.org/10.1002/pro.3410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Davies GJ, Wilson KS, Henrissat B (1997) Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J. https://doi.org/10.1042/bj3210557

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gilbert RG, Wu AC, Sullivan MA, Sumarriva GE, Ersch N, Hasjim J (2013) Improving human health through understanding the complex structure of glucose polymers. Anal Bioanal Chem 405:8969–8980. https://doi.org/10.1007/s00216-013-7129-1

    Article  CAS  PubMed  Google Scholar 

  38. DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos

    Google Scholar 

  39. The PyMOL molecular graphics system, Version 2.5.2 Schrödinger, LLC

  40. Cockburn DW, Cerqueira FM, Bahr C, Koropatkin NM (2020) The structures of the GH13_36 amylases from Eubacterium rectale and Ruminococcus bromii reveal subsite architectures that favor maltose production. Amylase 4:24–44. https://doi.org/10.1515/amylase-2020-0003

    Article  Google Scholar 

  41. Kagawa M, Fujimoto Z, Momma M, Takase K, Mizuno H (2003) Crystal structure of Bacillus subtilis alpha-amylase in complex with acarbose. J Bacteriol 185:6981–6984. https://doi.org/10.1128/JB.185.23.6981-6984.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Abe A, Tonozuka T, Sakano Y, Kamitori S (2004) Complex structures of Thermoactinomyces vulgaris R-47 α-amylase 1 with malto-oligosaccharides demonstrate the role of domain N acting as a starch-binding domain. J Mol Biol 335:811–822. https://doi.org/10.1016/j.jmb.2003.10.078

    Article  CAS  PubMed  Google Scholar 

  43. Holm L, Sander C (1995) Dali: a network tool for protein structure comparison. Trends Biochem Sci 20:478–480. https://doi.org/10.1016/s0968-0004(00)89105-7

    Article  CAS  PubMed  Google Scholar 

  44. Chai KP, Othman NFB, Teh AH, Ho KL, Chan KG, Shamsir MS, Goh KM, Ng CL (2016) Crystal structure of Anoxybacillus α-amylase provides insights into maltose binding of a new glycosyl hydrolase subclass. Sci Rep 6:23126. https://doi.org/10.1038/srep23126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mok SC, Teh AH, Saito JA, Najimudin N, Alam M (2013) Crystal structure of a compact α-amylase from Geobacillus thermoleovorans. Enzyme Microb Technol 53:46–54. https://doi.org/10.1016/j.enzmictec.2013.03.009

    Article  CAS  PubMed  Google Scholar 

  46. Janeček Š, Kuchtová A, Petrovičová S (2015) A novel GH13 subfamily of α-amylases with a pair of tryptophans in the helix α3 of the catalytic TIM-barrel, the LPDlx signature in the conserved sequence region V and a conserved aromatic motif at the C-terminus. Biologia 70:1284–1294. https://doi.org/10.1515/biolog-2015-0165

    Article  CAS  Google Scholar 

  47. Armenteros JJA, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, von Heijne G, Nielsen H (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37:420–423. https://doi.org/10.1038/s41587-019-0036-z

    Article  CAS  Google Scholar 

  48. Valguarnera E, Scott NE, Azimzadeh P, Feldman MF (2018) Surface exposure and packing of lipoproteins into outer membrane vesicles are coupled processes in Bacteroides. mSphere. 3:e00559-e618. https://doi.org/10.1128/mSphere.00559-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Boel E, Brady L, Brzozowski AM, Derewenda Z, Dodson GG, Jensen VJ, Petersen SB, Swift H, Thim L, Woldike HF (1990) Calcium binding in alpha-amylases: an X-ray diffraction study at 2.1-Å resolution of two enzymes from Aspergillus. Biochemistry 29:6244–6249. https://doi.org/10.1021/bi00478a019

    Article  CAS  PubMed  Google Scholar 

  50. Kirberger M, Yang JJ (2013) Calcium-binding protein site types. In: Kretsinger RG, Uversky VN, Permyakov EA (eds) Encylcopedia of metalloproteins. Springer, New York, pp 511–521

    Chapter  Google Scholar 

  51. Khrustalev VV, Barkovsky EV, Khrustaleva TA (2016) Magnesium and manganese binding sites on proteins have the same predominant motif of secondary structure. J Theor Biol 395:174–185. https://doi.org/10.1016/j.jtbi.2016.02.006

    Article  CAS  PubMed  Google Scholar 

  52. Harding MM (2000) Geometry of metal-ligand interactions in proteins. Acta Crystallogr D Biol Crystallogr 57:401–411. https://doi.org/10.1107/s0907444900019168

    Article  Google Scholar 

  53. Gucwa M, Lenkiewicz J, Zheng H, Cymborowski M, Cooper DR, Murzyn K, Minor W (2022) CMM—an enhanced platform for interactive validation of metal binding sites. Protein Sci. https://doi.org/10.1002/pro.4525

    Article  Google Scholar 

  54. Nonaka T, Fujihashi M, Kita A, Hagihara H, Ozaki K, Ito S, Miki K (2003) Crystal structure of calcium-free alpha-amylase from Bacillus sp. Strain KSM-K38 (AmyK38) and its sodium ion binding sites. J Biol Chem 278:24818–24824. https://doi.org/10.1074/jbc.M212763200

    Article  CAS  PubMed  Google Scholar 

  55. Machius M, Declerck N, Huber R, Wiegand G (1998) Activation of Bacillus licheniformis alpha-amylase through a disorder–>order transition of the substrate-binding site mediated by a calcium–sodium–calcium metal triad. Structure 6:281–292. https://doi.org/10.1016/s0969-2126(98)00032-x

    Article  CAS  PubMed  Google Scholar 

  56. Linden A, Mayans O, Meyer-Klaucke W, Antranikian G, Wilmanns M (2003) Differential regulation of a hyperthermophilic α-amylase with a novel (Ca, Zn) two-metal center by zinc. J Biol Chem. https://doi.org/10.1074/jbc.M211339200

    Article  PubMed  Google Scholar 

  57. Kamitori S, Kondo S, Okuyama K, Yokota T, Shimura Y, Tonozuka T, Sakano Y (1999) Crystal structure of Thermoactinomyces vulgaris R-47 alpha-amylase II (TVAII) hydrolyzing cyclodextrins and pullulan at 2.6 Å resolution. J Mol Biol 287:907–921. https://doi.org/10.1006/jmbi.1999.2647

    Article  CAS  PubMed  Google Scholar 

  58. Kadziola A, Abe J, Svensson B, Haser R (1994) Crystal and molecular structure of barley alpha-amylase. J Mol Biol 239:104–121. https://doi.org/10.1006/jmbi.1994.1354

    Article  CAS  PubMed  Google Scholar 

  59. Hayashi M, Suzuki R, Colleoni C, Ball SG, Fujita N, Suzuki E (2017) Bound substrate in the structure of cyanobacterial branching enzyme supports a new mechanistic model. J Biol Chem 292:5465–5475. https://doi.org/10.1074/jbc.M116.755629

    Article  CAS  PubMed  Google Scholar 

  60. Tung JY, Chang MD, Chou WI, Liu YY, Yeh YH, Chang FY, Lin SC, Qiu ZL, Sun YJ (2008) Crystal structures of the starch-binding domain from Rhizopus oryzae glucoamylase reveal a polysaccharide-binding path. Biochem J 416:27–36. https://doi.org/10.1042/BJ20080580

    Article  CAS  PubMed  Google Scholar 

  61. Cockburn D, Nielsen MM, Christiansen C, Andersen JM, Rannes JB, Blennow A, Svensson B (2015) Surface binding sites in amylase have distinct roles in recognition of starch structure motifs and degradation. Int J Biol Macromol 75:338–345. https://doi.org/10.1016/j.ijbiomac.2015.01.054

    Article  CAS  PubMed  Google Scholar 

  62. Shallom D, Belakhov V, Solomon D, Shoham G, Baasov T, Shoham Y (2002) Detailed kinetic analysis and identification of the nucleophile in alpha-l-arabinofuranosidase from Geobacillus stearothermophilus T-6, a family 51 glycoside hydrolase. J Biol Chem 277:43667–43673. https://doi.org/10.1074/jbc.M208285200

    Article  CAS  PubMed  Google Scholar 

  63. Park KH, Kim TJ, Cheong TK, Kim JW, Oh BH, Svensson B (2000) Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the alpha-amylase family. Biochim Biophys Acta 1478:165–185. https://doi.org/10.1016/s0167-4838(00)00041-8

    Article  CAS  PubMed  Google Scholar 

  64. Kim TJ, Kim MJ, Kim BC, Kim JC, Cheong TK, Kim JW, Park KH (1999) Modes of action of acarbose hydrolysis and transglycosylation catalyzed by a thermostable maltogenic amylase, the gene for which was cloned from a Thermus strain. Appl Environ Microbiol 65:1644–1651. https://doi.org/10.1128/AEM.65.4.1644-1651.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Horváthová V, Janeček Š, Šturdík E (2001) Amylolytic enzymes: molecular aspects of their properties. Gen Physiol Biophys 20:7–32

    PubMed  Google Scholar 

  66. McIver LA, Preuss CV, Tripp J (2022) Acarbose. In: StatPearls. StatPearls Publishing, Treasure Island

  67. Ferey-Roux G, Perrier J, Forest E, Marchis-Mouren G, Puigserver A, Santimone M (1998) The human pancreatic alpha-amylase isoforms: isolation, structural studies and kinetics of inhibition by acarbose. Biochim Biophys Acta 1388:10–20. https://doi.org/10.1016/s0167-4838(98)00147-2

    Article  CAS  PubMed  Google Scholar 

  68. Lee BH, Eskandari R, Jones K, Reddy KR, Quezada-Calvillo R, Nichols BL, Rose DR, Hamaker BR, Pinto BM (2012) Modulation of starch digestion for slow glucose release through “toggling” of activities of mucosal alpha-glucosidases. J Biol Chem 287:31929–31938. https://doi.org/10.1074/jbc.M112.351858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li C, Begum A, Numao S, Park KH, Withers SG, Brayer GD (2005) Acarbose rearrangement mechanism implied by the kinetic and structural analysis of human pancreatic alpha-amylase in complex with analogues and their elongated counterparts. Biochemistry 44:3347–3357. https://doi.org/10.1021/bi048334e

    Article  CAS  PubMed  Google Scholar 

  70. Brzozowski AM, Davies GJ (1997) Structure of the Aspergillus oryzae alpha-amylase complexed with the inhibitor acarbose at 2.0 Å resolution. Biochemistry 36:10837–10845. https://doi.org/10.1021/bi970539i

    Article  CAS  PubMed  Google Scholar 

  71. Kadziola A, Søgaard M, Svensson B, Haser R (1998) Molecular structure of a barley alpha-amylase-inhibitor complex: implications for starch binding and catalysis. J Mol Biol 278:205–217. https://doi.org/10.1006/jmbi.1998.1683

    Article  CAS  PubMed  Google Scholar 

  72. Gilles C, Astier JP, Marchis-Mouren G, Cambillau C, Payan F (1996) Crystal structure of pig pancreatic alpha-amylase isoenzyme II, in complex with the carbohydrate inhibitor acarbose. Eur J Biochem 238:561–569. https://doi.org/10.1111/j.1432-1033.1996.0561z.x

    Article  CAS  PubMed  Google Scholar 

  73. Abbott DW, Boraston AB (2012) Quantitative approaches to the analysis of carbohydrate-binding module function. Methods Enzymol 510:211–231. https://doi.org/10.1016/B978-0-12-415931-0.00011-2

    Article  CAS  PubMed  Google Scholar 

  74. Cockburn D, Wilkens C, Svensson B (2017) Affinity electrophoresis for analysis of catalytic module-carbohydrate interactions. Methods Mol Biol 1588:119–127. https://doi.org/10.1007/978-1-4939-6899-2_9

    Article  CAS  PubMed  Google Scholar 

  75. Degnan PH, Barry NA, Mok KC, Taga ME, Goodman AL (2014) Human gut microbes use multiple transporters to distinguish vitamin B12 analogs and compete in the gut. Cell Host Microbe 15:47–57. https://doi.org/10.1016/j.chom.2013.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Luis AS, Briggs J, Zhang X, Farnell B, Ndeh D, Labourel A, Baslé A, Cartmell A, Terrapon N, Stott K, Lowe EC, McLean R, Shearer K, Schückel J, Venditto I, Ralet MC, Henrissat B, Martens EC, Mosimann SC, Abbott DW, Gilbert HJ (2018) Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nat Microbiol 3:210–219. https://doi.org/10.1038/s41564-017-0079-1

    Article  CAS  PubMed  Google Scholar 

  77. Bøger M, Hekelaar J, van Leeuwen SS, Dijkhuizen L, Lammerts van Bueren A (2019) Structural and functional characterization of a family GH53 beta-1,4-galactanase from Bacteroides thetaiotaomicron that facilitates degradation of prebiotic galactooligosaccharides. J Struct Biol 205:1–10. https://doi.org/10.1016/j.jsb.2018.12.002

    Article  CAS  PubMed  Google Scholar 

  78. Kehres DG, Maguire ME (2003) Emerging themes in manganese transport, biochemistry and pathogenesis in bacteria. FEMS Microbiol Rev 27:263–290. https://doi.org/10.1016/S0168-6445(03)00052-4

    Article  CAS  PubMed  Google Scholar 

  79. Terrapon N, Lombard V, Drula É, Lapébie P, Al-Masaudi S, Gilbert HJ, Henrissat B (2018) PULDB: the expanded database of polysaccharide utilization loci. Nucleic Acids Res 46:D677–D683. https://doi.org/10.1093/nar/gkx1022

    Article  CAS  PubMed  Google Scholar 

  80. Stam MR, Danchin EJG, Rancurel C, Coutinho PM, Henrissat B (2006) Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of alpha-amylase-related proteins. Protein Eng Des Sel 19:555–562. https://doi.org/10.1093/protein/gzl044

    Article  CAS  PubMed  Google Scholar 

  81. Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, Ben-Tal N (2016) ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res 44:W344–W350. https://doi.org/10.1093/nar/gkw408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Celniker G, Nimrod G, Ashkenazy H, Glaser F, Martz E, Mayrose I, Pupko T, Ben-Tal N (2013) ConSurf: using evolutionary data to raise testable hypotheses about protein function. Isr J Chem 53:199–206. https://doi.org/10.1002/ijch.201200096

    Article  CAS  Google Scholar 

  83. Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N (2010) ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 38:W529–W533. https://doi.org/10.1093/nar/gkq399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. de Jonge PA, von Meijenfeldt FAB, van Rooijen LE, Brouns SJJ, Dutilh BE (2019) Evolution of BACON domain tandem repeats in crAssphage and novel gut bacteriophage lineages. Viruses. https://doi.org/10.3390/v11121085

    Article  PubMed  PubMed Central  Google Scholar 

  85. Larsbrink J, Rogers TE, Hemsworth GR, McKee LS, Tauzin AS, Spadiut O, Klinter S, Pudlo NA, Urs K, Koropatkin NM, Creagh AL, Haynes CA, Kelly AG, Cederholm SN, Davies GJ, Martens EC, Brumer H (2014) A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature 506:498–502. https://doi.org/10.1038/nature12907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lasica AM, Ksiazek M, Madej M, Potempa J (2017) The type IX secretion system (T9SS): highlights and recent insights into its structure and function. Front Cell Infect Microbiol 7:215. https://doi.org/10.3389/fcimb.2017.00215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Joglekar P, Sonnenburg ED, Higginbottom SK, Earle KA, Morland C, Shapiro-Ward S, Bolam DN, Sonnenburg JL (2018) Genetic variation of the SusC/SusD homologs from a polysaccharide utilization locus underlies divergent fructan specificities and functional adaptation in Bacteroides thetaiotaomicron strains. mSphere. https://doi.org/10.1128/mSphereDirect.00185-18

    Article  PubMed  PubMed Central  Google Scholar 

  88. Déjean G, Tamura K, Cabrera A, Jain N, Pudlo NA, Pereira G, Viborg AH, Van Petegem F, Martens EC, Brumer H (2020) Synergy between cell surface glycosidases and glycan-binding proteins dictates the utilization of specific beta(1,3)-glucans by human gut Bacteroides. MBio. https://doi.org/10.1128/mBio.00095-20

    Article  PubMed  PubMed Central  Google Scholar 

  89. Tamura K, Déjean G, Van Petegem F, Brumer H (2021) Distinct protein architectures mediate species-specific beta-glucan binding and metabolism in the human gut microbiota. J Biol Chem 296:100415. https://doi.org/10.1016/j.jbc.2021.100415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tuncil YE, Xiao Y, Porter NT, Reuhs BL, Martens EC, Hamaker BR (2017) Reciprocal prioritization to dietary glycans by gut bacteria in a competitive environment promotes stable coexistence. MBio 8:e01068-e1117. https://doi.org/10.1128/mBio.01068-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Montanier C, Lammerts van Bueren A, Dumon C, Flint JE, Correia MA, Prates JA, Firbank SJ, Lewis RJ, Grondin GG, Ghinet MG, Gloster TM, Herve C, Knox JP, Talbot BG, Turkenburg JP, Kerovuo J, Brzezinski R, Fontes CMGA, Davies GJ, Boraston AB, Gilbert HJ (2009) Evidence that family 35 carbohydrate binding modules display conserved specificity but divergent function. Proc Natl Acad Sci U S A 106:3065–3070. https://doi.org/10.1073/pnas.0808972106

    Article  PubMed  PubMed Central  Google Scholar 

  92. Ezer A, Matalon E, Jindou S, Borovok I, Atamna N, Yu Z, Morrison M, Bayer EA, Lamed R (2008) Cell surface enzyme attachment is mediated by family 37 carbohydrate-binding modules, unique to Ruminococcus albus. J Bacteriol 190:8220–8222. https://doi.org/10.1128/JB.00609-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Møller MS, Henriksen A, Svensson B (2016) Structure and function of alpha-glucan debranching enzymes. Cell Mol Life Sci 73:2619–2641. https://doi.org/10.1007/s00018-016-2241-y

    Article  CAS  PubMed  Google Scholar 

  94. Feng L, Fawaz R, Hovde S, Gilbert L, Chiou J, Geiger JH (2015) Crystal structures of Escherichia coli branching enzyme in complex with linear oligosaccharides. Biochemistry 54:6207–6218. https://doi.org/10.1021/acs.biochem.5b00228

    Article  CAS  PubMed  Google Scholar 

  95. Janeček Š, Svensson B, MacGregor EA (2011) Structural and evolutionary aspects of two families of non-catalytic domains present in starch and glycogen binding proteins from microbes, plants and animals. Enzyme Microb Technol 49:429–440. https://doi.org/10.1016/j.enzmictec.2011.07.002

    Article  CAS  PubMed  Google Scholar 

  96. White JBR, Silale A, Feasey M, Heunis T, Zhu Y, Zheng H, Gajbhiye A, Firbank S, Baslé A, Trost M, Bolam DN, van den Berg B, Ranson NA (2023) Outer membrane utilisomes mediate glycan uptake in gut Bacteroidetes. Nature. 618:583–589. https://doi.org/10.1038/s41586-023-06146-w

    Article  CAS  Google Scholar 

  97. Thompson J, Hess S, Pikis A (2004) Genes malh and pagl of Clostridium acetobutylicum ATCC 824 encode NAD+- and Mn2+-dependent phospho-alpha-glucosidase(s). J Biol Chem 279:1553–1561. https://doi.org/10.1074/jbc.M310733200

    Article  CAS  PubMed  Google Scholar 

  98. Raasch C, Streit W, Schanzer J, Bibel M, Gosslar U, Liebl W (2000) Thermotoga maritima AglA, an extremely thermostable NAD+-, Mn2+-, and thiol-dependent alpha-glucosidase. Extremophiles 4:189–200. https://doi.org/10.1007/pl00010711

    Article  CAS  PubMed  Google Scholar 

  99. Nielsen FH (2012) Manganese, molybdenum, boron, chromium, and other trace elements. In: Erdman JW Jr, Macdonald IA, Zeisel SH (eds) Present knowledge in nutrition, 10th edn. Wiley-Blackwell, Ames, pp 586–607

    Chapter  Google Scholar 

  100. Guiberson ER, Good CJ, Wexler AG, Skaar EP, Spraggins JM, Caprioli RM (2022) Multimodal imaging mass spectrometry of murine gastrointestinal tract with retained luminal content. J Am Soc Mass Spectrom 33:1073–1076. https://doi.org/10.1021/jasms.1c00360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Davis CD, Zech L, Greger JL (1993) Manganese metabolism in rats: an improved methodology for assessing gut endogenous losses. Proc Soc Exp Biol Med 202:103–108. https://doi.org/10.3181/00379727-202-43518

    Article  CAS  PubMed  Google Scholar 

  102. Yu X, Han J, Li H, Zhang Y, Feng J (2018) The effect of enzymes on release of trace elements in feedstuffs based on in vitro digestion model for monogastric livestock. J Anim Sci Biotechnol 9:73. https://doi.org/10.1186/s40104-018-0289-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pajarillo EAB, Lee E, Kang DK (2021) Trace metals and animal health: interplay of the gut microbiota with iron, manganese, zinc, and copper. Anim Nutr 7:750–761. https://doi.org/10.1016/j.aninu.2021.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lopez CA, Skaar EP (2018) The impact of dietary transition metals on host-bacterial interactions. Cell Host Microbe 23:737–748. https://doi.org/10.1016/j.chom.2018.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Damo S, Chazin WJ, Skaar EP, Kehl-Fie TE (2012) Inhibition of bacterial superoxide defense: a new front in the struggle between host and pathogen. Virulence 3:325–328. https://doi.org/10.4161/viru.19635

    Article  PubMed  PubMed Central  Google Scholar 

  106. Diaz-Ochoa VE, Lam D, Lee CS, Klaus S, Behnsen J, Liu JZ, Chim N, Nuccio SP, Rathi SG, Mastroianni JR, Edwards RA, Jacobo CM, Cerasi M, Battistoni A, Ouellette AJ, Goulding CW, Chazin WJ, Skaar EP, Raffatellu M (2016) Salmonella mitigates oxidative stress and thrives in the inflamed gut by evading calprotectin-mediated manganese sequestration. Cell Host Microbe 19:814–825. https://doi.org/10.1016/j.chom.2016.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. DeMartino P, Cockburn DW (2020) Resistant starch: impact on the gut microbiome and health. Curr Opin Biotechnol 61:66–71. https://doi.org/10.1016/j.copbio.2019.10.008

    Article  CAS  PubMed  Google Scholar 

  108. Cerqueira FM, Photenhauer AL, Pollet RM, Brown HA, Koropatkin NM (2020) Starch digestion by gut bacteria: crowdsourcing for carbs. Trends Microbiol 28:95–108. https://doi.org/10.1016/j.tim.2019.09.004

    Article  CAS  PubMed  Google Scholar 

  109. Gu Y, Wang X, Li J, Zhang Y, Zhong H, Liu R, Zhang D, Feng Q, Xie X, Hong J, Ren H, Liu W, Ma J, Su Q, Zhang H, Yang J, Wang X, Zhao X, Gu W, Bi Y, Peng Y, Xu X, Xia H, Li F, Xu X, Yang H, Xu G, Madsen L, Kristiansen K, Ning G, Wang W (2017) Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment. Nat Commun 8:1785. https://doi.org/10.1038/s41467-017-01682-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pudlo NA, Urs K, Crawford R, Pirani A, Atherly T, Jimenez R, Terrapon N, Henrissat B, Peterson D, Ziemer C, Snitkin E, Martens EC (2022) Phenotypic and genomic diversification in complex carbohydrate-degrading human gut bacteria. mSystems. 7:e0094721. https://doi.org/10.1128/msystems.00947-21

    Article  PubMed  Google Scholar 

  111. Holdeman LV, Moore WEC (eds) (1977) Anaerobe laboratory manual, 4th edn. Virginia Polytechnic Institute and State University, Blacksburg

    Google Scholar 

  112. Koropatkin NM, Martens EC, Gordon JI, Smith TJ (2008) Starch catabolism by a prominent human gut symbiont is directed by the recognition of amylose helices. Structure 16:1105–1115. https://doi.org/10.1016/j.str.2008.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Winter G, Lobley CM, Prince SM (2013) Decision making in xia2. Acta Crystallogr D Biol Crystallogr 69:1260–1273. https://doi.org/10.1107/S0907444913015308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kabsch W (2010) XDS. Acta Crystallogr D Biol Crystallogr 66:125–132. https://doi.org/10.1107/S0907444909047337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Long F, Vagin AA, Young P, Murshudov GN (2008) BALBES: a molecular-replacement pipeline. Acta Crystallogr D Biol Crystallogr 64:125–132. https://doi.org/10.1107/S0907444907050172

    Article  CAS  PubMed  Google Scholar 

  116. Terwilliger TC, Grosse-Kunstleve RW, Afonine PV, Moriarty NW, Zwart PH, Hung LW, Read RJ, Adams PD (2008) Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr D Biol Crystallogr 64:61–69. https://doi.org/10.1107/S090744490705024X

    Article  CAS  PubMed  Google Scholar 

  117. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132. https://doi.org/10.1107/S0907444904019158

    Article  CAS  PubMed  Google Scholar 

  118. Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, Žídek A, Green T, Tunyasuvunakool K, Petersen S, Jumper J, Clancy E, Green R, Vora A, Lutfi M, Figurnov M, Cowie A, Hobbs N, Kohli P, Kleywegt G, Birney E, Hassabis D, Velankar S (2022) AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 50:D439–D444. https://doi.org/10.1093/nar/gkab1061

    Article  CAS  PubMed  Google Scholar 

  119. Zhai X, Wu K, Ji R, Zhao Y, Lu J, Yu Z, Xu X, Huang J (2022) Structure and function insight of the alpha-glucosidase QsGH13 from Qipengyuania seohaensis sp. Sw-135. Front Microbiol 13:849585. https://doi.org/10.3389/fmicb.2022.849585

    Article  PubMed  PubMed Central  Google Scholar 

  120. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486–501. https://doi.org/10.1107/S0907444910007493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67:355–367. https://doi.org/10.1107/S0907444911001314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Beilsten-Edmands J, Winter G, Gildea R, Parkhurst J, Waterman D, Evans G (2020) Scaling diffraction data in the DIALS software package: algorithms and new approaches for multi-crystal scaling. Acta Crystallogr D Struct Biol 76:385–399. https://doi.org/10.1107/S2059798320003198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674. https://doi.org/10.1107/S0021889807021206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Liebschner D, Afonine PV, Baker ML, Bunkoczi G, Chen VB, Croll TI, Hintze B, Hung LW, Jain S, McCoy AJ, Moriarty NW, Oeffner RD, Poon BK, Prisant MG, Read RJ, Richardson JS, Richardson DC, Sammito MD, Sobolev OV, Stockwell DH, Terwilliger TC, Urzhumtsev AG, Videau LL, Williams CJ, Adams PD (2019) Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol 75:861–877. https://doi.org/10.1107/S2059798319011471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221. https://doi.org/10.1107/S0907444909052925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Evans PR, Murshudov GN (2013) How good are my data and what is the resolution? Acta Crystallogr D Biol Crystallogr 69:1204–1214. https://doi.org/10.1107/S0907444913000061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Adams PD, Grosse-Kunstleve RW, Hung LW, Ioerger TR, McCoy AJ, Moriarty NW, Read RJ, Sacchettini JC, Sauter NK, Terwilliger TC (2002) PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58:1948–1954. https://doi.org/10.1107/s0907444902016657

    Article  PubMed  Google Scholar 

  128. Agirre J, Iglesias-Fernández J, Rovira C, Davies GJ, Wilson KS, Cowtan KD (2015) Privateer: software for the conformational validation of carbohydrate structures. Nat Struct Mol Biol 22:833–834. https://doi.org/10.1038/nsmb.3115

    Article  CAS  PubMed  Google Scholar 

  129. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  130. McKee LS (2017) Measuring enzyme kinetics of glycoside hydrolases using the 3,5-dinitrosalicylic acid assay. Methods Mol Biol 1588:27–36. https://doi.org/10.1007/978-1-4939-6899-2_3

    Article  CAS  PubMed  Google Scholar 

  131. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. https://doi.org/10.1038/msb.2011.75

    Article  PubMed  PubMed Central  Google Scholar 

  132. Madeira F, Pearce M, Tivey ARN, Basutkar P, Lee J, Edbali O, Madhusoodanan N, Kolesnikov A, Lopez R (2022) Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res 50:W276–W279. https://doi.org/10.1093/nar/gkac240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Cameron EA, Maynard MA, Smith CJ, Smith TJ, Koropatkin NM, Martens EC (2012) Multidomain carbohydrate-binding proteins involved in Bacteroides thetaiotaomicron starch metabolism. J Biol Chem 287:34614–34625. https://doi.org/10.1074/jbc.M112.397380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453. https://doi.org/10.1016/0022-2836(70)90057-4

    Article  CAS  PubMed  Google Scholar 

  135. DNASTAR, MegAlign Pro ®. Version 17.3.058. Madison, WI

  136. Lemoine F, Correia D, Lefort V, Doppelt-Azeroual O, Mareuil F, Cohen-Boulakia S, Gascuel O (2019) NGPhylogeny.fr: new generation phylogenetic services for non-specialists. Nucleic Acids Res 47:W260–W265. https://doi.org/10.1093/nar/gkz303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Criscuolo A, Gribaldo S (2010) BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol Biol 10:210. https://doi.org/10.1186/1471-2148-10-210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lefort V, Desper R, Gascuel O (2015) FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 32:2798–2800. https://doi.org/10.1093/molbev/msv150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Junier T, Zdobnov EM (2010) The Newick utilities: high-throughput phylogenetic tree processing in the unix shell. Bioinformatics 26:1669–1670. https://doi.org/10.1093/bioinformatics/btq243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Letunic I, Bork P (2021) Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49:W293–W296. https://doi.org/10.1093/nar/gkab301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sorimachi K, Le Gal-Coëffet MF, Williamson G, Archer DB, Williamson MP (1997) Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to beta-cyclodextrin. Structure 5:647–661. https://doi.org/10.1016/s0969-2126(97)00220-7

    Article  CAS  PubMed  Google Scholar 

  143. Møller MS, Abou Hachem M, Svensson B, Henriksen A (2012) Structure of the starch-debranching enzyme barley limit dextrinase reveals homology of the N-terminal domain to CBM21. Acta Crystallogr Sect F Struct Biol Cryst Commun 68:1008–1012. https://doi.org/10.1107/S1744309112031004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Marty MT, Baldwin AJ, Marklund EG, Hochberg GK, Benesch JL, Robinson CV (2015) Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal Chem 87:4370–4376. https://doi.org/10.1021/acs.analchem.5b00140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Mareček F, Janeček Š (2022) A novel subfamily GH13_46 of the α-amylase family GH13 represented by the cyclomaltodextrinase from Flavobacterium sp. No 92. Molecules 27:8735. https://doi.org/10.3390/molecules27248735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Koropatkin, Martens and Ruotolo laboratories for helpful feedback on this work.

Funding

This work was supported by the following National Institutes of Health (NIH) grants from the National Institute of General Medical Sciences (NIGMS): R01-GM118475 to N.M.K. and R01-GM095832 to B.T.R. H.A.B was supported by an NIH Ruth L. Kirschstein Postdoctoral National Research Service Award F32-AT011278 from the National Center for Complementary and Integrative Health. The QE UMHR work was supported by the University of Michigan Biosciences Initiative. Use of the Pilatus 3 1 M detector was provided by grant 1S10OD018090-01 from NIGMS at the NIH. Use of the LS-CAT Sector 21 was supported by the Michigan Economic Development Corporation and the Michigan Technology Tri-Corridor (grant no.: 085P1000817). N.T. and M.B. were supported by the Agence National de la Recherche [grant number ANR-20-CE20-0022].

Author information

Authors and Affiliations

Authors

Contributions

HAB cloned, expressed and purified protein constructs as well as performed crystallography experiments, X-ray data collection and structural model refinement, cloned and generated all variant Bt and Bo strains and performed bacterial growth experiments, TLC, ITC, Native PAGE, Western blot, enzyme kinetics, protein sequence analysis, and wrote and edited the original manuscript. ALD cloned, expressed and purified protein constructs, performed TLC and crystallography experiments and did structural model refinement, as well as collected ITC data. BRJ collected and analyzed native MS and ICP-MS data. ALP performed ITC experiments. MB performed bioinformatics analyses of CBM98 and GH13_47. REB assisted with ICP-MS data collection. ZW collected and processed X-ray data. BTR helped direct research and analyzed MS data. NT performed bioinformatics analyses of CBM98 and GH13_47, created the CBM98 family and GH13_47 subfamily within CAZy and analyzed their distribution in the private CAZy database. HAB, BLJ, MB and NT were responsible for data visualization. NMK helped design and direct research and wrote the original manuscript. All authors provided input on the manuscript.

Corresponding authors

Correspondence to Haley A. Brown or Nicole M. Koropatkin.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval and consent to participate.

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, H.A., DeVeaux, A.L., Juliano, B.R. et al. BoGH13ASus from Bacteroides ovatus represents a novel α-amylase used for  Bacteroides starch breakdown in the human gut. Cell. Mol. Life Sci. 80, 232 (2023). https://doi.org/10.1007/s00018-023-04812-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-023-04812-w

Keywords

Navigation