Skip to main content

Advertisement

Log in

Microbiota-assisted therapy for systemic inflammatory arthritis: advances and mechanistic insights

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Research on the influence of gut microbiota on systemic inflammatory arthritis has exploded in the past decade. Gut microbiota changes may be a crucial regulatory component in systemic inflammatory arthritis. As a result of advancements in the field, microbiota-assisted therapy has evolved, but this discipline is still in its infancy. Consequently, we review the limitations of current systemic inflammatory arthritis treatment, analyze the connection between the microbiota and arthritis, and summarize the research progress of microbiota regulating systemic inflammatory arthritis and the further development aspects of microbiota-assisted therapy. Finally, the partial mechanisms of microbiota-assisted therapy of systemic inflammatory arthritis are being discussed. In general, this review summarizes the current progress, challenges, and prospects of microbiota-assisted therapy for systemic inflammatory arthritis and points out the direction for the development of microbiota-assisted therapy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14:e1002533. https://doi.org/10.1371/journal.pbio.1002533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bäckhed F, Ley RE, Sonnenburg JL et al (2005) Host-bacterial mutualism in the human intestine. Science 307:1915. https://doi.org/10.1126/science.1104816

    Article  CAS  PubMed  Google Scholar 

  3. Hildebrand F, Gossmann TI, Frioux C et al (2021) Dispersal strategies shape persistence and evolution of human gut bacteria. Cell Host Microbe 29:1167–1176

    Article  CAS  Google Scholar 

  4. Chen L, Wang D, Garmaeva S et al (2021) The long-term genetic stability and individual specificity of the human gut microbiome. Cell 184:2302-2315.e2312. https://doi.org/10.1016/j.cell.2021.03.024

    Article  CAS  PubMed  Google Scholar 

  5. Wu Y, Jiao N, Zhu R et al (2021) Identification of microbial markers across populations in early detection of colorectal cancer. Nat Commun 12:3063. https://doi.org/10.1038/s41467-021-23265-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alavi S, Mitchell JD, Cho JY et al (2020) Interpersonal gut microbiome variation drives susceptibility and resistance to cholera infection. Cell 181:1533-1546.e1513. https://doi.org/10.1016/j.cell.2020.05.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miyoshi J, Miyoshi S, Delmont TO et al (2021) Early-life microbial restitution reduces colitis risk promoted by antibiotic-induced gut dysbiosis in IL-10-/- mice. Gastroenterology. https://doi.org/10.1053/j.gastro.2021.05.054

    Article  PubMed  PubMed Central  Google Scholar 

  8. Selma-Royo M, Calatayud Arroyo M, García-Mantrana I et al (2020) Perinatal environment shapes microbiota colonization and infant growth: impact on host response and intestinal function. Microbiome 8:167. https://doi.org/10.1186/s40168-020-00940-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Proctor LM, Creasy HH, Fettweis JM et al (2019) The integrative human microbiome project. Nature 569:641–648. https://doi.org/10.1038/s41586-019-1238-8

    Article  CAS  Google Scholar 

  10. Harkins CP, Kong HH, Segre JA (2020) Manipulating the human microbiome to manage disease. JAMA 323:303–304. https://doi.org/10.1001/jama.2019.19602

    Article  PubMed  Google Scholar 

  11. Clemente JC, Manasson J, Scher JU (2018) The role of the gut microbiome in systemic inflammatory disease. BMJ 360:j5145. https://doi.org/10.1136/bmj.j5145

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rosser EC, Piper CJM, Matei DE et al (2020) Microbiota-derived metabolites suppress arthritis by amplifying Aryl-hydrocarbon receptor activation in regulatory B cells. Cell Metab 31:837-851.e810. https://doi.org/10.1016/j.cmet.2020.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wen C, Zheng Z, Shao T et al (2017) Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis. Genome Biol 18:142. https://doi.org/10.1186/s13059-017-1271-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gracey E, Vereecke L, McGovern D et al (2020) Revisiting the gut–joint axis: links between gut inflammation and spondyloarthritis. Nat Rev Rheumatol 16:415–433. https://doi.org/10.1038/s41584-020-0454-9

    Article  PubMed  Google Scholar 

  15. Fugger L, Jensen LT, Rossjohn J (2020) Challenges, progress, and prospects of developing therapies to treat autoimmune diseases. Cell 181:63–80. https://doi.org/10.1016/j.cell.2020.03.007

    Article  CAS  PubMed  Google Scholar 

  16. Teng F, Klinger CN, Felix KM et al (2016) Gut microbiota drive autoimmune arthritis by promoting differentiation and migration of Peyer’s patch T follicular helper cells. Immunity 44:875–888. https://doi.org/10.1016/j.immuni.2016.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tracy A, Buckley CD, Raza K (2017) Pre-symptomatic autoimmunity in rheumatoid arthritis: when does the disease start? Sem Immunopathol 39:423–435. https://doi.org/10.1007/s00281-017-0620-6

    Article  Google Scholar 

  18. Zaiss MM, Joyce Wu HJ, Mauro D et al (2021) The gut–joint axis in rheumatoid arthritis. Nat Rev Rheumatol 17:224–237. https://doi.org/10.1038/s41584-021-00585-3

    Article  PubMed  Google Scholar 

  19. Moentadj R, Wang Y, Bowerman K et al (2021) Streptococcus species enriched in the oral cavity of patients with RA are a source of peptidoglycan-polysaccharide polymers that can induce arthritis in mice. Ann Rheum Dis 80:573. https://doi.org/10.1136/annrheumdis-2020-219009

    Article  CAS  PubMed  Google Scholar 

  20. Behl T, Mehta K, Sehgal A et al (2021) Exploring the role of polyphenols in rheumatoid arthritis. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2021.1924613

    Article  PubMed  Google Scholar 

  21. Stables MJ, Newson J, Ayoub SS et al (2010) Priming innate immune responses to infection by cyclooxygenase inhibition kills antibiotic-susceptible and -resistant bacteria. Blood 116:2950–2959. https://doi.org/10.1182/blood-2010-05-284844

    Article  CAS  PubMed  Google Scholar 

  22. Mitchell JA, Warner TD (2006) COX isoforms in the cardiovascular system: understanding the activities of non-steroidal anti-inflammatory drugs. Nat Rev Drug Discov 5:75–86. https://doi.org/10.1038/nrd1929

    Article  CAS  PubMed  Google Scholar 

  23. Richy F, Bruyere O, Ethgen O et al (2004) Time dependent risk of gastrointestinal complications induced by non-steroidal anti-inflammatory drug use: a consensus statement using a meta-analytic approach. Ann Rheum Dis 63:759. https://doi.org/10.1136/ard.2003.015925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bjarnason I, Scarpignato C, Holmgren E et al (2018) Mechanisms of damage to the gastrointestinal tract from nonsteroidal anti-inflammatory drugs. Gastroenterology 154:500–514. https://doi.org/10.1053/j.gastro.2017.10.049

    Article  CAS  PubMed  Google Scholar 

  25. Schjerning A-M, McGettigan P, Gislason G (2020) Cardiovascular effects and safety of (non-aspirin) NSAIDs. Nat Rev Cardiol 17:574–584. https://doi.org/10.1038/s41569-020-0366-z

    Article  CAS  PubMed  Google Scholar 

  26. Chan FKL, Lanas A, Scheiman J et al (2010) Celecoxib versus omeprazole and diclofenac in patients with osteoarthritis and rheumatoid arthritis (CONDOR): a randomised trial. Lancet 376:173–179. https://doi.org/10.1016/S0140-6736(10)60673-3

    Article  CAS  PubMed  Google Scholar 

  27. van der Heide A, Jacobs JWG, Bijlsma JWJ et al (1996) The effectiveness of early treatment with “second-line” antirheumatic drugs. Ann Intern Med 124:699–707. https://doi.org/10.7326/0003-4819-124-8-199604150-00001

    Article  PubMed  Google Scholar 

  28. Macfarlane E, Seibel MJ, Zhou H (2020) Arthritis and the role of endogenous glucocorticoids. Bone Res 8:33. https://doi.org/10.1038/s41413-020-00112-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. George MD, Baker JF, Winthrop K et al (2020) Risk for serious infection with low-dose glucocorticoids in patients with rheumatoid arthritis. Ann Intern Med 173:870–878. https://doi.org/10.7326/M20-1594

    Article  PubMed  PubMed Central  Google Scholar 

  30. Burmester GR, Buttgereit F, Bernasconi C et al (2020) Continuing versus tapering glucocorticoids after achievement of low disease activity or remission in rheumatoid arthritis (SEMIRA): a double-blind, multicentre, randomised controlled trial. Lancet 396:267–276. https://doi.org/10.1016/S0140-6736(20)30636-X

    Article  CAS  PubMed  Google Scholar 

  31. Hilliquin S, Hugues B, Mitrovic S et al (2018) Ability of disease-modifying antirheumatic drugs to prevent or delay rheumatoid arthritis onset: a systematic literature review and meta-analysis. Ann Rheum Dis 77:1099. https://doi.org/10.1136/annrheumdis-2017-212612

    Article  CAS  PubMed  Google Scholar 

  32. Verhoeven MMA, de Hair MJH, Tekstra J et al (2019) Initiating tocilizumab, with or without methotrexate, compared with starting methotrexate with prednisone within step-up treatment strategies in early rheumatoid arthritis: an indirect comparison of effectiveness and safety of the U-Act-Early and CAMERA-II treat-to-target trials. Ann Rheum Dis 78:1333. https://doi.org/10.1136/annrheumdis-2019-215304

    Article  CAS  PubMed  Google Scholar 

  33. Dorleijn DMJ, Luijsterburg PAJ, Reijman M et al (2018) Intramuscular glucocorticoid injection versus placebo injection in hip osteoarthritis: a 12-week blinded randomised controlled trial. Ann Rheum Dis 77:875. https://doi.org/10.1136/annrheumdis-2017-212628

    Article  CAS  PubMed  Google Scholar 

  34. Hardy RS, Raza K, Cooper MS (2020) Therapeutic glucocorticoids: mechanisms of actions in rheumatic diseases. Nat Rev Rheumatol 16:133–144. https://doi.org/10.1038/s41584-020-0371-y

    Article  PubMed  Google Scholar 

  35. Nabi H, Georgiadis S, Loft AG et al (2021) Comparative effectiveness of two adalimumab biosimilars in 1318 real-world patients with inflammatory rheumatic disease mandated to switch from originator adalimumab: nationwide observational study emulating a randomised clinical trial. Ann Rheum Dis. https://doi.org/10.1136/annrheumdis-2021-219951

    Article  PubMed  Google Scholar 

  36. Ikonomidis I, Lekakis JP, Nikolaou M et al (2008) Inhibition of interleukin-1 by anakinra improves vascular and left ventricular function in patients with rheumatoid arthritis. Circulation 117:2662–2669. https://doi.org/10.1161/CIRCULATIONAHA.107.731877

    Article  CAS  PubMed  Google Scholar 

  37. Pappas DA, St John G, Etzel CJ et al (2021) Comparative effectiveness of first-line tumour necrosis factor inhibitor versus non-tumour necrosis factor inhibitor biologics and targeted synthetic agents in patients with rheumatoid arthritis: results from a large US registry study. Ann Rheum Dis 80:96. https://doi.org/10.1136/annrheumdis-2020-217209

    Article  CAS  PubMed  Google Scholar 

  38. Baraliakos X, Gossec L, Pournara E et al (2021) Secukinumab in patients with psoriatic arthritis and axial manifestations: results from the double-blind, randomised, phase 3 MAXIMISE trial. Ann Rheum Dis 80:582. https://doi.org/10.1136/annrheumdis-2020-218808

    Article  CAS  PubMed  Google Scholar 

  39. Armstrong AW, Read C (2020) Pathophysiology, clinical presentation, and treatment of psoriasis: a review. JAMA 323:1945–1960. https://doi.org/10.1001/jama.2020.4006

    Article  CAS  PubMed  Google Scholar 

  40. Hresko A, Lin T-C, Solomon DH (2018) Medical care costs associated with rheumatoid arthritis in the US: a systematic literature review and meta-analysis. Arthritis Care Res 70:1431–1438. https://doi.org/10.1002/acr.23512

    Article  Google Scholar 

  41. Kruglov A, Drutskaya M, Schlienz D et al (2020) Contrasting contributions of TNF from distinct cellular sources in arthritis. Ann Rheum Dis 79:1453. https://doi.org/10.1136/annrheumdis-2019-216068

    Article  CAS  PubMed  Google Scholar 

  42. Li Y, Zhang S-X, Yin X-F et al (2021) The gut microbiota and its relevance to peripheral lymphocyte subpopulations and cytokines in patients with rheumatoid arthritis. J Immunol Res. https://doi.org/10.1155/2021/6665563

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yin J, Sternes PR, Wang M et al (2020) Shotgun metagenomics reveals an enrichment of potentially cross-reactive bacterial epitopes in ankylosing spondylitis patients, as well as the effects of TNFi therapy upon microbiome composition. Ann Rheum Dis 79:132. https://doi.org/10.1136/annrheumdis-2019-215763

    Article  CAS  PubMed  Google Scholar 

  44. Shapiro J, Cohen NA, Shalev V et al (2019) Psoriatic patients have a distinct structural and functional fecal microbiota compared with controls. J Dermatol 46:595–603. https://doi.org/10.1111/1346-8138.14933

    Article  CAS  PubMed  Google Scholar 

  45. Kanaan SB, Sensoy O, Yan Z et al (2019) Immunogenicity of a rheumatoid arthritis protective sequence when acquired through microchimerism. Proc Natl Acad Sci 116:19600. https://doi.org/10.1073/pnas.1904779116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ye Z, Shen Y, Jin K et al (2021) Arachidonic acid-regulated calcium signaling in T cells from patients with rheumatoid arthritis promotes synovial inflammation. Nat Commun 12:907. https://doi.org/10.1038/s41467-021-21242-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Terao C, Brynedal B, Chen Z et al (2019) Distinct HLA associations with rheumatoid arthritis subsets defined by serological subphenotype. Am J Hum Genet 105:616–624. https://doi.org/10.1016/j.ajhg.2019.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Van Hoovels L, Jacobs J, Vander Cruyssen B et al (2018) Performance characteristics of rheumatoid factor and anti-cyclic citrullinated peptide antibody assays may impact ACR/EULAR classification of rheumatoid arthritis. Ann Rheum Dis 77:667. https://doi.org/10.1136/annrheumdis-2017-212365

    Article  CAS  PubMed  Google Scholar 

  49. Ishikawa Y, Ikari K, Hashimoto M et al (2019) Shared epitope defines distinct associations of cigarette smoking with levels of anticitrullinated protein antibody and rheumatoid factor. Ann Rheum Dis 78:1480. https://doi.org/10.1136/annrheumdis-2019-215463

    Article  CAS  PubMed  Google Scholar 

  50. Pujades-Rodriguez M, Morgan AW, Cubbon RM et al (2020) Dose-dependent oral glucocorticoid cardiovascular risks in people with immune-mediated inflammatory diseases: a population-based cohort study. PLoS Med 17:e1003432. https://doi.org/10.1371/journal.pmed.1003432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Asquith M, Sternes PR, Costello M-E et al (2019) HLA alleles associated with risk of ankylosing spondylitis and rheumatoid arthritis influence the gut microbiome. Arthr Rheumatol 71:1642–1650. https://doi.org/10.1002/art.40917

    Article  CAS  Google Scholar 

  52. Hanberg JS, Hsieh E, Akgün KM et al (2021) Incident rheumatoid arthritis in human immunodeficiency virus infection: epidemiology and treatment. Arthr Rheumatol. https://doi.org/10.1002/art.41802

    Article  Google Scholar 

  53. Kim D, Zeng MY, Núñez G (2017) The interplay between host immune cells and gut microbiota in chronic inflammatory diseases. Exp Mol Med 49:e339–e339. https://doi.org/10.1038/emm.2017.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li D, Feng Y, Tian M et al (2021) Gut microbiota-derived inosine from dietary barley leaf supplementation attenuates colitis through PPARγ signaling activation. Microbiome 9:83. https://doi.org/10.1186/s40168-021-01028-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zubeidat K, Hovav A-H (2021) Shaped by the epithelium -postnatal immune mechanisms of oral homeostasis. Trends Immunol 42:622–634. https://doi.org/10.1016/j.it.2021.05.006

    Article  CAS  PubMed  Google Scholar 

  56. Jubair WK, Hendrickson JD, Severs EL et al (2018) Modulation of inflammatory arthritis in mice by gut microbiota through mucosal inflammation and autoantibody generation. Arthr Rheumatol 70:1220–1233. https://doi.org/10.1002/art.40490

    Article  CAS  Google Scholar 

  57. Maeda Y, Kurakawa T, Umemoto E et al (2016) Dysbiosis contributes to arthritis development via activation of autoreactive T cells in the intestine. Arthr Rheumatol 68:2646–2661. https://doi.org/10.1002/art.39783

    Article  CAS  Google Scholar 

  58. Tierney BT, Yang Z, Luber JM et al (2019) The landscape of genetic content in the gut and oral human microbiome. Cell Host Microbe 26:283-295.e288. https://doi.org/10.1016/j.chom.2019.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Prodan A, Levin E, Nieuwdorp M (2019) Does disease start in the mouth, the gut or both? Elife 8:e45931. https://doi.org/10.7554/eLife.45931

    Article  PubMed  PubMed Central  Google Scholar 

  60. El-Awady A, de Sousa Rabelo M, Meghil MM et al (2019) Polymicrobial synergy within oral biofilm promotes invasion of dendritic cells and survival of consortia members. npj Biofilms Microbiomes 5:11. https://doi.org/10.1038/s41522-019-0084-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Okamato Y, Ghosh T, Okamoto T et al (2021) Subjects at-risk for future development of rheumatoid arthritis demonstrate a PAD4-and TLR-dependent enhanced histone H3 citrullination and proinflammatory cytokine production in CD14hi monocytes. J Autoimmun 117:102581. https://doi.org/10.1016/j.jaut.2020.102581

    Article  CAS  PubMed  Google Scholar 

  62. Mondal S, Thompson PR (2019) Protein arginine deiminases (PADs): biochemistry and chemical biology of protein citrullination. Acc Chem Res 52:818–832. https://doi.org/10.1021/acs.accounts.9b00024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Curran AM, Naik P, Giles JT et al (2020) PAD enzymes in rheumatoid arthritis: pathogenic effectors and autoimmune targets. Nat Rev Rheumatol 16:301–315. https://doi.org/10.1038/s41584-020-0409-1

    Article  CAS  PubMed  Google Scholar 

  64. Montgomery AB, Kopec J, Shrestha L et al (2016) Crystal structure of Porphyromonas gingivalis peptidylarginine deiminase: implications for autoimmunity in rheumatoid arthritis. Ann Rheum Dis 75:1255. https://doi.org/10.1136/annrheumdis-2015-207656

    Article  CAS  PubMed  Google Scholar 

  65. Gabarrini G (2018) Porphyromonas gingivalis, the beast with two heads. A bacterial role in the etiology of rheumatoid arthritis. University of Groningen, Groningen

    Google Scholar 

  66. Lunar Silva I, Cascales E (2021) Molecular strategies underlying Porphyromonas gingivalis virulence. J Mol Biol 433:166836. https://doi.org/10.1016/j.jmb.2021.166836

    Article  CAS  PubMed  Google Scholar 

  67. Takeuchi H, Sasaki N, Yamaga S et al (2019) Porphyromonas gingivalis induces penetration of lipopolysaccharide and peptidoglycan through the gingival epithelium via degradation of junctional adhesion molecule 1. PLoS Pathog 15:e1008124. https://doi.org/10.1371/journal.ppat.1008124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Quirke A-M, Lugli EB, Wegner N et al (2014) Heightened immune response to autocitrullinated Porphyromonas gingivalis peptidylarginine deiminase: a potential mechanism for breaching immunologic tolerance in rheumatoid arthritis. Ann Rheum Dis 73:263. https://doi.org/10.1136/annrheumdis-2012-202726

    Article  CAS  PubMed  Google Scholar 

  69. Gabarrini G, Grasso S, van Winkelhoff Arie J et al (2020) Gingimaps: protein localization in the oral pathogen Porphyromonas gingivalis. Microbiol Mol Biol Rev 84:e00032-00019. https://doi.org/10.1128/MMBR.00032-19

    Article  Google Scholar 

  70. Glowczyk I, Wong A, Potempa B et al (2017) Inactive gingipains from P. gingivalis selectively skews T cells toward a Th17 phenotype in an IL-6 dependent manner. Front Cell Infect Microbiol 7:140

    Article  Google Scholar 

  71. Maekawa T, Krauss JL, Abe T et al (2014) Porphyromonas gingivalis manipulates complement and TLR Signaling To Uncouple Bacterial Clearance From Inflammation And Promote Dysbiosis. Cell Host Microbe 15:768–778. https://doi.org/10.1016/j.chom.2014.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Manoil D, Bostanci N, Mumcu G et al (2021) Novel and known periodontal pathogens residing in gingival crevicular fluid are associated with rheumatoid arthritis. J Periodontol 92:359–370. https://doi.org/10.1002/JPER.20-0295

    Article  CAS  PubMed  Google Scholar 

  73. Reichert S, Haffner M, Keyßer G et al (2013) Detection of oral bacterial DNA in synovial fluid. J Clin Periodontol 40:591–598. https://doi.org/10.1111/jcpe.12102

    Article  CAS  PubMed  Google Scholar 

  74. Sarwar MT, Ohara-Nemoto Y, Kobayakawa T et al (2020) Characterization of substrate specificity and novel autoprocessing mechanism of dipeptidase A from Prevotella intermedia. Biol Chem 401:629–642. https://doi.org/10.1515/hsz-2019-0387

    Article  CAS  PubMed  Google Scholar 

  75. Tett A, Pasolli E, Masetti G et al (2021) Prevotella diversity, niches and interactions with the human host. Nat Rev Microbiol. https://doi.org/10.1038/s41579-021-00559-y

    Article  PubMed  Google Scholar 

  76. Claus SP (2019) The strange case of Prevotella copri: Dr. Jekyll or Mr. Hyde? Cell Host Microbe 26:577–578. https://doi.org/10.1016/j.chom.2019.10.020

    Article  CAS  PubMed  Google Scholar 

  77. Kovatcheva-Datchary P, Nilsson A, Akrami R et al (2015) Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab 22:971–982. https://doi.org/10.1016/j.cmet.2015.10.001

    Article  CAS  PubMed  Google Scholar 

  78. Kishikawa T, Maeda Y, Nii T et al (2020) Metagenome-wide association study of gut microbiome revealed novel aetiology of rheumatoid arthritis in the Japanese population. Ann Rheum Dis 79:103. https://doi.org/10.1136/annrheumdis-2019-215743

    Article  CAS  PubMed  Google Scholar 

  79. Maeda Y, Takeda K (2019) Host–microbiota interactions in rheumatoid arthritis. Exp Mol Med 51:1–6. https://doi.org/10.1038/s12276-019-0283-6

    Article  CAS  PubMed  Google Scholar 

  80. Pianta A, Arvikar SL, Strle K et al (2017) Two rheumatoid arthritis–specific autoantigens correlate microbial immunity with autoimmune responses in joints. J Clin Investig 127:2946–2956. https://doi.org/10.1172/JCI93450

    Article  PubMed  PubMed Central  Google Scholar 

  81. Pisetsky DS (2018) How the gut inflames the joints. Ann Rheum Dis 77:634. https://doi.org/10.1136/annrheumdis-2018-212942

    Article  PubMed  Google Scholar 

  82. McAllister K, Goodson N, Warburton L et al (2017) Spondyloarthritis: diagnosis and management: summary of NICE guidance. BMJ 356:j839. https://doi.org/10.1136/bmj.j839

    Article  PubMed  Google Scholar 

  83. Costantino F, Breban M, Garchon H-J (2018) Genetics and functional genomics of spondyloarthritis. Front Immunol 9:2933

    Article  CAS  Google Scholar 

  84. Zino E, Terlizzi SD, Carugo C et al (2004) Rapid detection of all HLA-B*27 alleles (B*2701–B*2725) by group-specific polymerase chain reaction. Tissue Antigens 63:88–92. https://doi.org/10.1111/j.1399-0039.2004.00158.x

    Article  CAS  PubMed  Google Scholar 

  85. Parida JR, Kumar S, Ahmed S et al (2021) Reactive arthritis and undifferentiated peripheral spondyloarthritis share human leucocyte antigen B27 subtypes and serum and synovial fluid cytokine profiles. Rheumatology 60:3004–3011. https://doi.org/10.1093/rheumatology/keaa746

    Article  CAS  PubMed  Google Scholar 

  86. Gill T, Asquith M, Brooks SR et al (2018) Effects of HLA–B27 on gut microbiota in experimental spondyloarthritis implicate an ecological model of dysbiosis. Arthr Rheumatol 70:555–565. https://doi.org/10.1002/art.40405

    Article  CAS  Google Scholar 

  87. Simone D, Al-Mossawi MH, Bowness P (2018) Progress in our understanding of the pathogenesis of ankylosing spondylitis. Rheumatology 57:vi4–vi9. https://doi.org/10.1093/rheumatology/key001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Khare SD, Luthra HS, David CS (1995) Spontaneous inflammatory arthritis in HLA-B27 transgenic mice lacking beta 2-microglobulin: a model of human spondyloarthropathies. J Exp Med 182:1153–1158. https://doi.org/10.1084/jem.182.4.1153

    Article  CAS  PubMed  Google Scholar 

  89. Hammer RE, Maika SD, Richardson JA et al (1990) Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human β2m: an animal model of HLA-B27-associated human disorders. Cell 63:1099–1112. https://doi.org/10.1016/0092-8674(90)90512-D

    Article  CAS  PubMed  Google Scholar 

  90. Qaiyum Z, Gracey E, Yao Y et al (2019) Integrin and transcriptomic profiles identify a distinctive synovial CD8+ T cell subpopulation in spondyloarthritis. Ann Rheum Dis 78:1566. https://doi.org/10.1136/annrheumdis-2019-215349

    Article  CAS  PubMed  Google Scholar 

  91. Guggino G, Rizzo A, Mauro D et al (2019) Gut-derived CD8+ tissue-resident memory T cells are expanded in the peripheral blood and synovia of SpA patients. Ann Rheum Dis. https://doi.org/10.1136/annrheumdis-2019-216456

    Article  PubMed  Google Scholar 

  92. Gill T, Rosenbaum JT (2021) Putative pathobionts in HLA-B27-associated spondyloarthropathy. Front Immunol 11:3510

    Article  Google Scholar 

  93. Uchiyama K, Naito Y, Takagi T (2019) Intestinal microbiome as a novel therapeutic target for local and systemic inflammation. Pharmacol Ther 199:164–172

    Article  CAS  Google Scholar 

  94. Voruganti A, Bowness P (2020) New developments in our understanding of ankylosing spondylitis pathogenesis. Immunology 161:94–102. https://doi.org/10.1111/imm.13242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Braun J, Sieper J (2007) Ankylosing spondylitis. Lancet 369:1379–1390. https://doi.org/10.1016/S0140-6736(07)60635-7

    Article  PubMed  Google Scholar 

  96. Caffrey MFP, James DCO (1973) Human lymphocyte antigen association in ankylosing spondylitis. Nature 242:121–121

    Article  CAS  Google Scholar 

  97. Peng Z, Wu J, Wang K et al (2021) Production of a promising biosynthetic self-assembled nanoconjugate vaccine against klebsiella pneumoniae serotype O2 in a general Escherichia coli host. Adv Sci. https://doi.org/10.1002/advs.202100549

    Article  Google Scholar 

  98. Ebringer A, Cowling P, Ngwa-Suh N et al (1976) Cross-reactivity between Klebsiella aerogenes species and B27 lymphocyte antigens as an aetiological factor in ankylosing spondylitis. HLA Dis Paris INSERM 58:27

    Google Scholar 

  99. Seager K, Bashir HV, Geczy AF et al (1979) Evidence for a specific B27-associated cell surface marker on lymphocytes of patients with ankylosing spondylitis. Nature 277:68–70. https://doi.org/10.1038/277068a0

    Article  CAS  PubMed  Google Scholar 

  100. Rashid T, Ebringer A (2007) Ankylosing spondylitis is linked to Klebsiella—the evidence. Clin Rheumatol 26:858–864. https://doi.org/10.1007/s10067-006-0488-7

    Article  PubMed  Google Scholar 

  101. Stone MA, Payne U, Schentag C et al (2004) Comparative immune responses to candidate arthritogenic bacteria do not confirm a dominant role for Klebsiella pneumonia in the pathogenesis of familial ankylosing spondylitis. Rheumatology 43:148–155. https://doi.org/10.1093/rheumatology/keg482

    Article  CAS  PubMed  Google Scholar 

  102. Liu G, Hao Y, Yang Q et al (2020) The association of fecal microbiota in ankylosing spondylitis cases with C-reactive protein and erythrocyte sedimentation rate. Mediat Inflamm. https://doi.org/10.1155/2020/8884324

    Article  Google Scholar 

  103. Zhou C, Zhao H, Xiao X-Y et al (2020) Metagenomic profiling of the pro-inflammatory gut microbiota in ankylosing spondylitis. J Autoimmun 107:102360

    Article  CAS  Google Scholar 

  104. Perez-Chada LM, Haberman RH, Chandran V et al (2021) Consensus terminology for preclinical phases of psoriatic arthritis for use in research studies: results from a Delphi consensus study. Nat Rev Rheumatol 17:238–243. https://doi.org/10.1038/s41584-021-00578-2

    Article  PubMed  PubMed Central  Google Scholar 

  105. Villani AP, Rouzaud M, Sevrain M et al (2015) Prevalence of undiagnosed psoriatic arthritis among psoriasis patients: systematic review and meta-analysis. J Am Acad Dermatol 73:242–248. https://doi.org/10.1016/j.jaad.2015.05.001

    Article  PubMed  Google Scholar 

  106. Yegorov S, Babenko D, Kozhakhmetov S et al (2020) Psoriasis is associated with elevated gut IL-1α and intestinal microbiome alterations. Front Immunol 11:2431

    Article  Google Scholar 

  107. Scher JU, Ubeda C, Artacho A et al (2015) Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol 67:128–139. https://doi.org/10.1002/art.38892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Arnold JW, Roach J, Fabela S et al (2021) The pleiotropic effects of prebiotic galacto-oligosaccharides on the aging gut. Microbiome 9:1–9

    Article  Google Scholar 

  109. Zhang W, Xu J-H, Yu T et al (2019) Effects of berberine and metformin on intestinal inflammation and gut microbiome composition in db/db mice. Biomed Pharmacother 118:109131

    Article  CAS  Google Scholar 

  110. Li B, Ge Y, Xu Y et al (2019) Spatial learning and memory impairment in growing mice induced by major oxidized tyrosine product dityrosine. J Agric Food Chem 67:9039–9049. https://doi.org/10.1021/acs.jafc.9b04253

    Article  CAS  PubMed  Google Scholar 

  111. Wang Q, Hernández-Ochoa EO, Viswanathan MC et al (2021) CaMKII oxidation is a critical performance/disease trade-off acquired at the dawn of vertebrate evolution. Nat Commun 12:3175. https://doi.org/10.1038/s41467-021-23549-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chakrabarty RP, Chandel NS (2021) Mitochondria as signaling organelles control mammalian stem cell fate. Cell Stem Cell 28:394–408. https://doi.org/10.1016/j.stem.2021.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Xiong W, MacColl Garfinkel AE, Li Y et al (2015) NRF2 promotes neuronal survival in neurodegeneration and acute nerve damage. J Clin Investig 125:1433–1445. https://doi.org/10.1172/JCI79735

    Article  PubMed  PubMed Central  Google Scholar 

  114. Dumas A, Knaus UG (2021) Raising the ‘good’ oxidants for immune protection. Front Immunol 12:2116

    Article  Google Scholar 

  115. Fan X-X, Xu M-Z, Leung EL-H et al (2020) ROS-responsive berberine polymeric micelles effectively suppressed the inflammation of rheumatoid arthritis by targeting mitochondria. Nano-Micro Letters 12:76. https://doi.org/10.1007/s40820-020-0410-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wójcik P, Gęgotek A, Žarković N et al (2021) Oxidative stress and lipid mediators modulate immune cell functions in autoimmune diseases. Int J Mol Sci. https://doi.org/10.3390/ijms22020723

    Article  PubMed  PubMed Central  Google Scholar 

  117. Steinz MM, Santos-Alves E, Lanner JT (2020) Skeletal muscle redox signaling in rheumatoid arthritis. Clin Sci 134:2835–2850. https://doi.org/10.1042/CS20190728

    Article  CAS  Google Scholar 

  118. Kristyanto H, Blomberg NJ, Slot LM et al (2020) Persistently activated, proliferative memory autoreactive B cells promote inflammation in rheumatoid arthritis. Sci Transl Med 12:eaaz5327. https://doi.org/10.1126/scitranslmed.aaz5327

    Article  CAS  PubMed  Google Scholar 

  119. Dang PM-C, Stensballe A, Boussetta T et al (2006) A specific p47phox -serine phosphorylated by convergent MAPKs mediates neutrophil NADPH oxidase priming at inflammatory sites. J Clin Investig 116:2033–2043. https://doi.org/10.1172/JCI27544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wright HL, Lyon M, Chapman EA et al (2021) Rheumatoid arthritis synovial fluid neutrophils drive inflammation through production of chemokines, reactive oxygen species, and neutrophil extracellular traps. Front Immunol 11:3364

    Article  Google Scholar 

  121. Datta S, Kundu S, Ghosh P et al (2014) Correlation of oxidant status with oxidative tissue damage in patients with rheumatoid arthritis. Clin Rheumatol 33:1557–1564. https://doi.org/10.1007/s10067-014-2597-z

    Article  PubMed  Google Scholar 

  122. Kim J, Kim HY, Song SY et al (2019) Synergistic oxygen generation and reactive oxygen species scavenging by manganese ferrite/ceria co-decorated nanoparticles for rheumatoid arthritis treatment. ACS Nano 13:3206–3217. https://doi.org/10.1021/acsnano.8b08785

    Article  CAS  PubMed  Google Scholar 

  123. Su X, Li T, Liu Z et al (2018) Licochalcone A activates Keap1-Nrf2 signaling to suppress arthritis via phosphorylation of p62 at serine 349. Free Radic Biol Med 115:471–483. https://doi.org/10.1016/j.freeradbiomed.2017.12.004

    Article  CAS  PubMed  Google Scholar 

  124. Wardyn JD, Ponsford AH, Sanderson CM (2015) Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem Soc Trans 43:621–626. https://doi.org/10.1042/BST20150014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhang W, Feng C, Jiang H (2021) Novel target for treating Alzheimer’s diseases: crosstalk between the Nrf2 pathway and autophagy. Ageing Res Rev 65:101207. https://doi.org/10.1016/j.arr.2020.101207

    Article  CAS  PubMed  Google Scholar 

  126. Gao X, Jiang S, Du Z et al (2019) In vitroKLF2 protects against osteoarthritis by repressing oxidative response through activation of Nrf2/ARE signaling in vitro and in vivo. Oxid Med Cell Longev. https://doi.org/10.1155/2019/8564681

    Article  PubMed  PubMed Central  Google Scholar 

  127. Castejón ML, Alarcón-de-la-Lastra C, Rosillo MÁ et al (2021) A new peracetylated oleuropein derivative ameliorates joint inflammation and destruction in a murine collagen-induced arthritis model via activation of the Nrf-2/Ho-1 antioxidant pathway and suppression of MAPKs and NF-κB activation. Nutrients. https://doi.org/10.3390/nu13020311

    Article  PubMed  PubMed Central  Google Scholar 

  128. Luo Y, Xiong B, Liu H et al (2021) Koumine suppresses IL-1β secretion and attenuates inflammation associated with blocking ROS/NF-κB/NLRP3 axis in macrophages. Front Pharmacol 11:2369

    Google Scholar 

  129. Song H, Zhao C, Yu Z et al (2020) UAF1 deubiquitinase complexes facilitate NLRP3 inflammasome activation by promoting NLRP3 expression. Nat Commun 11:6042. https://doi.org/10.1038/s41467-020-19939-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yan Z, Qi W, Zhan J et al (2020) Activating Nrf2 signalling alleviates osteoarthritis development by inhibiting inflammasome activation. J Cell Mol Med 24:13046–13057. https://doi.org/10.1111/jcmm.15905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Barnes PJ (2020) Oxidative stress-based therapeutics in COPD. Redox Biol 33:101544. https://doi.org/10.1016/j.redox.2020.101544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. García S, Bodaño A, Pablos JL et al (2008) Poly(ADP-ribose) polymerase inhibition reduces tumor necrosis factor-induced inflammatory response in rheumatoid synovial fibroblasts. Ann Rheum Dis 67:631. https://doi.org/10.1136/ard.2007.077040

    Article  CAS  PubMed  Google Scholar 

  133. Chadha S, Behl T, Kumar A et al (2020) Role of Nrf2 in rheumatoid arthritis. Curr Res Transl Med 68:171–181. https://doi.org/10.1016/j.retram.2020.05.002

    Article  PubMed  Google Scholar 

  134. Na H-K, Surh Y-J (2006) Transcriptional regulation via cysteine thiol modification: a novel molecular strategy for chemoprevention and cytoprotection. Mol Carcinog 45:368–380. https://doi.org/10.1002/mc.20225

    Article  CAS  PubMed  Google Scholar 

  135. Tang K-T, Lin C-C, Lin S-C et al (2021) Kurarinone attenuates collagen-induced arthritis in mice by inhibiting Th1/Th17 cell responses and oxidative stress. Int J Mol Sci. https://doi.org/10.3390/ijms22084002

    Article  PubMed  PubMed Central  Google Scholar 

  136. Sánchez Macarro M, Ávila-Gandía V, Pérez-Piñero S et al (2021) Antioxidant effect of a probiotic product on a model of oxidative stress induced by high-intensity and duration physical exercise. Antioxidants. https://doi.org/10.3390/antiox10020323

    Article  PubMed  PubMed Central  Google Scholar 

  137. Hao L, Cheng Y, Su W et al (2021) Pediococcus pentosaceus ZJUAF-4 relieves oxidative stress and restores the gut microbiota in diquat-induced intestinal injury. Appl Microbiol Biotechnol 105:1657–1668. https://doi.org/10.1007/s00253-021-11111-6

    Article  CAS  PubMed  Google Scholar 

  138. Monteros MJM, Galdeano CM, Balcells MF et al (2021) Probiotic lactobacilli as a promising strategy to ameliorate disorders associated with intestinal inflammation induced by a non-steroidal anti-inflammatory drug. Sci Rep 11:571. https://doi.org/10.1038/s41598-020-80482-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Richards JL, Yap YA, McLeod KH et al (2016) Dietary metabolites and the gut microbiota: an alternative approach to control inflammatory and autoimmune diseases. Clin Transl Immunol 5:e82. https://doi.org/10.1038/cti.2016.29

    Article  CAS  Google Scholar 

  140. Topping DL, Clifton PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81:1031–1064. https://doi.org/10.1152/physrev.2001.81.3.1031

    Article  CAS  PubMed  Google Scholar 

  141. Qiao S, Lian X, Yue M et al (2020) Regulation of gut microbiota substantially contributes to the induction of intestinal Treg cells and consequent anti-arthritis effect of madecassoside. Int Immunopharmacol 89:107047. https://doi.org/10.1016/j.intimp.2020.107047

    Article  CAS  PubMed  Google Scholar 

  142. Mehta H, Mashiko S, Angsana J et al (2021) Differential changes in inflammatory mononuclear phagocyte and T-cell profiles within psoriatic skin during treatment with Guselkumab vs Secukinumab. J Investig Dermatol 141:1707-1718.e1709. https://doi.org/10.1016/j.jid.2021.01.005

    Article  CAS  PubMed  Google Scholar 

  143. Shen B, Hu J, Song H et al (2019) Antibiotics exacerbated colitis by affecting the microbiota, Treg cells and SCFAs in IL10-deficient mice. Biomed Pharmacother 114:108849. https://doi.org/10.1016/j.biopha.2019.108849

    Article  CAS  PubMed  Google Scholar 

  144. Bai Y, Li Y, Marion T et al (2021) Resistant starch intake alleviates collagen-induced arthritis in mice by modulating gut microbiota and promoting concomitant propionate production. J Autoimmun 116:102564. https://doi.org/10.1016/j.jaut.2020.102564

    Article  CAS  PubMed  Google Scholar 

  145. Cao T, Zhang X, Chen D et al (2018) The epigenetic modification during the induction of Foxp3 with sodium butyrate. Immunopharmacol Immunotoxicol 40:309–318. https://doi.org/10.1080/08923973.2018.1480631

    Article  CAS  PubMed  Google Scholar 

  146. Fan Z, Yang B, Ross RP et al (2020) Protective effects of Bifidobacterium adolescentis on collagen-induced arthritis in rats depend on timing of administration. Food Funct 11:4499–4511. https://doi.org/10.1039/D0FO00077A

    Article  CAS  PubMed  Google Scholar 

  147. Hui W, Yu D, Cao Z et al (2019) Butyrate inhibit collagen-induced arthritis via Treg/IL-10/Th17 axis. Int Immunopharmacol 68:226–233. https://doi.org/10.1016/j.intimp.2019.01.018

    Article  CAS  PubMed  Google Scholar 

  148. Balmer ML, Ma EH, Bantug GR et al (2016) Memory CD8+ T cells require increased concentrations of acetate induced by stress for optimal function. Immunity 44:1312–1324. https://doi.org/10.1016/j.immuni.2016.03.016

    Article  CAS  PubMed  Google Scholar 

  149. Park J, Kim M, Kang SG et al (2015) Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR–S6K pathway. Mucosal Immunol 8:80–93. https://doi.org/10.1038/mi.2014.44

    Article  CAS  PubMed  Google Scholar 

  150. Hernandez-Sanabria E, Heiremans E, Calatayud Arroyo M et al (2020) Short-term supplementation of celecoxib-shifted butyrate production on a simulated model of the gut microbial ecosystem and ameliorated in vitro inflammation. npj Biofilms Microbiomes 6:9. https://doi.org/10.1038/s41522-020-0119-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Verschueren KHG, Blanchet C, Felix J et al (2019) Structure of ATP citrate lyase and the origin of citrate synthase in the Krebs cycle. Nature 568:571–575. https://doi.org/10.1038/s41586-019-1095-5

    Article  CAS  PubMed  Google Scholar 

  152. Lauterbach MA, Hanke JE, Serefidou M et al (2019) Toll-like receptor signaling rewires macrophage metabolism and promotes histone acetylation via ATP-citrate lyase. Immunity 51:997-1011.e1017. https://doi.org/10.1016/j.immuni.2019.11.009

    Article  CAS  PubMed  Google Scholar 

  153. Luu M, Visekruna A (2019) Short-chain fatty acids: bacterial messengers modulating the immunometabolism of T cells. Eur J Immunol 49:842–848. https://doi.org/10.1002/eji.201848009

    Article  CAS  PubMed  Google Scholar 

  154. Wiechers C, Zou M, Galvez E et al (2021) The microbiota is dispensable for the early stages of peripheral regulatory T cell induction within mesenteric lymph nodes. Cell Mol Immunol 18:1211–1221. https://doi.org/10.1038/s41423-021-00647-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Atanes P, Ashik T, Persaud SJ (2021) Obesity-induced changes in human islet G protein-coupled receptor expression: Implications for metabolic regulation. Pharmacol Ther. https://doi.org/10.1016/j.pharmthera.2021.107928

    Article  PubMed  Google Scholar 

  156. Brown AJ, Goldsworthy SM, Barnes AA et al (2003) The orphan G Protein-Coupled Receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids *. J Biol Chem 278:11312–11319. https://doi.org/10.1074/jbc.M211609200

    Article  CAS  PubMed  Google Scholar 

  157. Fu S-P, Wang J-F, Xue W-J et al (2015) Anti-inflammatory effects of BHBA in both in vivo and in vitro Parkinson’s disease models are mediated by GPR109A-dependent mechanisms. J Neuroinflamm 12:9. https://doi.org/10.1186/s12974-014-0230-3

    Article  CAS  Google Scholar 

  158. Kim MH, Kang SG, Park JH et al (2013) Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 145:396–406

    Article  CAS  Google Scholar 

  159. Smith PM, Howitt MR, Panikov N et al (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–573

    Article  CAS  Google Scholar 

  160. Maslowski KM, Vieira AT, Ng A et al (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461:1282–1286. https://doi.org/10.1038/nature08530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Flak MB, Colas RA, Muñoz-Atienza E et al (2019) Inflammatory arthritis disrupts gut resolution mechanisms, promoting barrier breakdown by Porphyromonas gingivalis. JCI Insight. https://doi.org/10.1172/jci.insight.125191

    Article  PubMed  PubMed Central  Google Scholar 

  162. Fakhoury HMA, Kvietys PR, AlKattan W et al (2020) Vitamin D and intestinal homeostasis: Barrier, microbiota, and immune modulation. J Steroid Biochem Mol Biol 200:105663. https://doi.org/10.1016/j.jsbmb.2020.105663

    Article  CAS  PubMed  Google Scholar 

  163. Brandl C, Bucci L, Schett G et al (2021) Crossing the barriers: revisiting the gut feeling in rheumatoid arthritis. Eur J Immunol 51:798–810. https://doi.org/10.1002/eji.202048876

    Article  CAS  PubMed  Google Scholar 

  164. Pedersen SJ, Maksymowych WP (2019) The pathogenesis of ankylosing spondylitis: an update. Curr Rheumatol Rep 21:58. https://doi.org/10.1007/s11926-019-0856-3

    Article  CAS  PubMed  Google Scholar 

  165. Groschwitz KR, Hogan SP (2009) Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol 124:3–22. https://doi.org/10.1016/j.jaci.2009.05.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Krause G, Winkler L, Mueller SL et al (2008) Structure and function of claudins. Biochim Biophys Acta (BBA) 1778:631–645. https://doi.org/10.1016/j.bbamem.2007.10.018

    Article  CAS  Google Scholar 

  167. Turksen K, Troy T-C (2004) Barriers built on claudins. J Cell Sci 117:2435–2447. https://doi.org/10.1242/jcs.01235

    Article  CAS  PubMed  Google Scholar 

  168. Chánez-Paredes S, Montoya-García A, Castro-Ochoa KF et al (2021) The Arp2/3 inhibitory protein arpin is required for intestinal epithelial barrier integrity. Front Cell Dev Biol 9:829

    Article  Google Scholar 

  169. Shi H, Yu Y, Lin D et al (2020) β-glucan attenuates cognitive impairment via the gut-brain axis in diet-induced obese mice. Microbiome 8:143. https://doi.org/10.1186/s40168-020-00920-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Gomez A, Luckey D, Yeoman CJ et al (2012) Loss of sex and age driven differences in the gut microbiome characterize arthritis-susceptible 0401 mice but not arthritis-resistant 0402 mice. PLoS ONE 7:e36095

    Article  CAS  Google Scholar 

  171. Fasano A (2011) Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev 91:151–175

    Article  CAS  Google Scholar 

  172. Tajik N, Frech M, Schulz O et al (2020) Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nat Commun 11:1995. https://doi.org/10.1038/s41467-020-15831-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ciccia F, Guggino G, Rizzo A et al (2017) Dysbiosis and zonulin upregulation alter gut epithelial and vascular barriers in patients with ankylosing spondylitis. Ann Rheum Dis 76:1123. https://doi.org/10.1136/annrheumdis-2016-210000

    Article  CAS  PubMed  Google Scholar 

  174. Rizzo A, Ferrante A, Guggino G et al (2017) Gut inflammation in spondyloarthritis. Best Pract Res Clin Rheumatol 31:863–876. https://doi.org/10.1016/j.berh.2018.08.012

    Article  PubMed  Google Scholar 

  175. Chen Y, Yang B, Stanton C et al (2021) Bifidobacterium pseudocatenulatum ameliorates DSS-induced colitis by maintaining intestinal mechanical barrier, blocking proinflammatory cytokines, inhibiting TLR4/NF-κB signaling, and altering gut microbiota. J Agric Food Chem 69:1496–1512. https://doi.org/10.1021/acs.jafc.0c06329

    Article  CAS  PubMed  Google Scholar 

  176. Gao Y, Liu Y, Ma F et al (2021) Lactobacillus plantarum Y44 alleviates oxidative stress by regulating gut microbiota and colonic barrier function in Balb/C mice with subcutaneous d-galactose injection. Food Funct 12:373–386. https://doi.org/10.1039/D0FO02794D

    Article  CAS  PubMed  Google Scholar 

  177. Hu T, Wang H, Xiang C et al (2020) Lactobacillus acidophilus preventive effect of XY27 on DSS-induced ulcerative colitis in mice. Drug Des Devel Ther 14:5645–5657. https://doi.org/10.2147/DDDT.S284422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Jia H, Ren S, Wang X (2019) Heat-killed probiotic regulates the body’s regulatory immunity to attenuate subsequent experimental autoimmune arthritis. Immunol Lett 216:89–96. https://doi.org/10.1016/j.imlet.2019.10.009

    Article  CAS  PubMed  Google Scholar 

  179. Jhun J, Min H-K, Na HS et al (2020) Combinatmarion treatment with Lactobacillus acidophilus LA-1, vitamin B, and curcumin ameliorates the progression of osteoarthritis by inhibiting the pro-inflammatory mediators. Immunol Lett 228:112–121. https://doi.org/10.1016/j.imlet.2020.10.008

    Article  CAS  PubMed  Google Scholar 

  180. Yamashita M, Matsumoto K, Endo T et al (2017) Preventive effect of Lactobacillus helveticus SBT2171 on collagen-induced arthritis in mice. Front Microbiol 8:1159

    Article  Google Scholar 

  181. Salminen S, Collado MC, Endo A et al (2021) The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat Rev Gastroenterol Hepatol. https://doi.org/10.1038/s41575-021-00440-6

    Article  PubMed  PubMed Central  Google Scholar 

  182. Nowak B, Śróttek M, Ciszek-Lenda M et al (2020) Exopolysaccharide from Lactobacillus rhamnosus KL37 Inhibits T Cell-dependent Immune Response in Mice. Arch Immunol Ther Exp 68:17. https://doi.org/10.1007/s00005-020-00581-7

    Article  CAS  Google Scholar 

  183. Liu Y, Alookaran JJ, Rhoads JM (2018) Probiotics in autoimmune and inflammatory disorders. Nutrients. https://doi.org/10.3390/nu10101537

    Article  PubMed  PubMed Central  Google Scholar 

  184. Liu Y, Aryee MJ, Padyukov L et al (2013) Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol 31:142–147. https://doi.org/10.1038/nbt.2487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Huang Y, Wang H, Ba X et al (2020) Decipher manifestations and Treg /Th17 imbalance in multi-staging rheumatoid arthritis and correlation with TSDR/RORC methylation. Mol Immunol 127:1–11. https://doi.org/10.1016/j.molimm.2020.08.002

    Article  CAS  PubMed  Google Scholar 

  186. Ai R, Boyle DL, Wang W et al (2021) Distinct DNA methylation patterns of rheumatoid arthritis peripheral blood and synovial tissue T cells. ACR Open Rheumatol 3:127–132. https://doi.org/10.1002/acr2.11231

    Article  PubMed  PubMed Central  Google Scholar 

  187. Ghadimi D, Helwig U, Schrezenmeir J et al (2012) Epigenetic imprinting by commensal probiotics inhibits the IL-23/IL-17 axis in an in vitro model of the intestinal mucosal immune system. J Leukoc Biol 92:895–911. https://doi.org/10.1189/jlb.0611286

    Article  CAS  PubMed  Google Scholar 

  188. Takahashi K, Sugi Y, Nakano K et al (2011) Epigenetic control of the host gene by commensal bacteria in large intestinal epithelial cells. J Biol Chem 286:35755–35762

    Article  CAS  Google Scholar 

  189. Shulman Z, Stern-Ginossar N (2020) The RNA modification N6-methyladenosine as a novel regulator of the immune system. Nat Immunol 21:501–512. https://doi.org/10.1038/s41590-020-0650-4

    Article  CAS  PubMed  Google Scholar 

  190. Luo Q, Gao Y, Zhang L et al (2020) Decreased ALKBH5, FTO, and YTHDF2 in peripheral blood are as risk factors for rheumatoid arthritis. Biomed Res Int. https://doi.org/10.1155/2020/5735279

    Article  PubMed  PubMed Central  Google Scholar 

  191. Jiang H, Cao K, Fan C et al (2021) Transcriptome-wide high-throughput m6A sequencing of differential m6A methylation patterns in the human rheumatoid arthritis fibroblast-like synoviocytes cell line MH7A. J Inflamm Res 14:575

    Article  Google Scholar 

  192. Jabs S, Biton A, Bécavin C et al (2020) Impact of the gut microbiota on the m6A epitranscriptome of mouse cecum and liver. Nat Commun 11:1344. https://doi.org/10.1038/s41467-020-15126-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Suzuki A, Guerrini MM, Yamamoto K (2021) Functional genomics of autoimmune diseases. Ann Rheum Dis 80:689. https://doi.org/10.1136/annrheumdis-2019-216794

    Article  CAS  PubMed  Google Scholar 

  194. Cunningham CC, Wade S, Floudas A et al (2021) Serum miRNA signature in rheumatoid arthritis and “at-risk individuals.” Front Immunol 12:126

    Article  Google Scholar 

  195. Lin S-H, Ho J-C, Li S-C et al (2020) Upregulation of miR-941 in circulating CD14+ monocytes enhances osteoclast activation via WNT16 inhibition in patients with psoriatic arthritis. Int J Mol Sci. https://doi.org/10.3390/ijms21124301

    Article  PubMed  PubMed Central  Google Scholar 

  196. Chen L, Al-Mossawi MH, Ridley A et al (2017) miR-10b-5p is a novel Th17 regulator present in Th17 cells from ankylosing spondylitis. Ann Rheum Dis 76:620. https://doi.org/10.1136/annrheumdis-2016-210175

    Article  CAS  PubMed  Google Scholar 

  197. Rao Y, Fang Y, Tan W et al (2020) Delivery of long non-coding RNA NEAT1 by peripheral blood monouclear cells-derived exosomes promotes the occurrence of rheumatoid arthritis via the MicroRNA-23a/MDM2/SIRT6 Axis. Front Cell Dev Biol 8:952

    Article  Google Scholar 

  198. Tang X, Wang J, Xia X et al (2019) Elevated expression of ciRS-7 in peripheral blood mononuclear cells from rheumatoid arthritis patients. Diagn Pathol 14:11. https://doi.org/10.1186/s13000-019-0783-7

    Article  PubMed  PubMed Central  Google Scholar 

  199. Rodríguez-Nogales A, Algieri F, Garrido-Mesa J et al (2017) Differential intestinal anti-inflammatory effects of Lactobacillus fermentum and Lactobacillus salivarius in DSS mouse colitis: impact on microRNAs expression and microbiota composition. Mol Nutr Food Res 61:1700144. https://doi.org/10.1002/mnfr.201700144

    Article  CAS  Google Scholar 

  200. Hou Q, Huang Y, Wang Y et al (2020) Lactobacillus casei LC01 regulates intestinal epithelial permeability through miR-144 targeting of OCLN and ZO1. J Microbiol Biotechnol 30:1480–1487. https://doi.org/10.4014/jmb.2002.02059

    Article  CAS  PubMed  Google Scholar 

  201. Thomson DW, Dinger ME (2016) Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet 17:272–283. https://doi.org/10.1038/nrg.2016.20

    Article  CAS  PubMed  Google Scholar 

  202. Tian P, O’Riordan KJ, Lee Y-K et al (2020) Towards a psychobiotic therapy for depression: Bifidobacterium breve CCFM1025 reverses chronic stress-induced depressive symptoms and gut microbial abnormalities in mice. Neurobiol Stress 12:100216. https://doi.org/10.1016/j.ynstr.2020.100216

    Article  PubMed  PubMed Central  Google Scholar 

  203. Bhanja S, Mohanakumar KP (2010) Early-life treatment of antiserotonin antibodies alters sensitivity to serotonin receptors, nociceptive stimulus and serotonin metabolism in adult rats. Int J Dev Neurosci 28:317–324. https://doi.org/10.1016/j.ijdevneu.2010.02.007

    Article  CAS  PubMed  Google Scholar 

  204. Yeoh N, Burton JP, Suppiah P et al (2013) The role of the microbiome in rheumatic diseases. Curr Rheumatol Rep 15:314. https://doi.org/10.1007/s11926-012-0314-y

    Article  CAS  PubMed  Google Scholar 

  205. Hanssen NMJ, de Vos WM, Nieuwdorp M (2021) Fecal microbiota transplantation in human metabolic diseases: from a murky past to a bright future? Cell Metab 33:1098–1110. https://doi.org/10.1016/j.cmet.2021.05.005

    Article  CAS  PubMed  Google Scholar 

  206. Danne C, Rolhion N, Sokol H (2021) Recipient factors in faecal microbiota transplantation: one stool does not fit all. Nat Rev Gastroenterol Hepatol 18:503–513. https://doi.org/10.1038/s41575-021-00441-5

    Article  PubMed  Google Scholar 

  207. Zeng J, Peng L, Zheng W et al (2021) Fecal microbiota transplantation for rheumatoid arthritis: a case report. Clin Case Rep 9:906–909. https://doi.org/10.1002/ccr3.3677

    Article  PubMed  Google Scholar 

  208. Kragsnaes MS, Kjeldsen J, Horn HC et al (2021) Safety and efficacy of faecal microbiota transplantation for active peripheral psoriatic arthritis: an exploratory randomised placebo-controlled trial. Ann Rheum Dis 80:1158. https://doi.org/10.1136/annrheumdis-2020-219511

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (Nos. 32021005, 31820103010), and the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province.

Author information

Authors and Affiliations

Authors

Contributions

WC and BY supervised the study. RPR, CS and HZ participated in the design and discussion of the research. BL, BY, XL, JZ, RPR, CS, HZ, and WC contributed to the analysis, and interpretation for the work. BL drafted manuscript. BY, RPR and WC revised the manuscript and all authors have read and approved final interpretation for the work.

Corresponding authors

Correspondence to Bo Yang, R. Paul Ross or Wei Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval and consent to participate

Not applicable.

Consent for publication

The manuscript does not contain human research, and any individual person’s data in any form (including any individual details, images or videos).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Yang, B., Liu, X. et al. Microbiota-assisted therapy for systemic inflammatory arthritis: advances and mechanistic insights. Cell. Mol. Life Sci. 79, 470 (2022). https://doi.org/10.1007/s00018-022-04498-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04498-6

Keywords

Navigation