Skip to main content

Advertisement

Log in

Cutaneous nerve fibers participate in the progression of psoriasis by linking epidermal keratinocytes and immunocytes

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Recent studies have illustrated that psoriatic lesions are innervated by dense sensory nerve fibers. Psoriatic plaques appeared to improve after central or peripheral nerve injury. Therefore, the nervous system may play a vital role in psoriasis. We aimed to clarify the expression of nerve fibers in psoriasis and their relationship with immune cells and keratinocytes, and to explore the effect of skin nerve impairment. Our results illustrated that nerve fibers in psoriatic lesions increased and were closely innervated around immune cells and keratinocytes. RNA-seq analysis showed that peripheral sensory nerve-related genes were disrupted in psoriasis. In spinal cord hemi-section mice, sensory impairment improved psoriasiform dermatitis and inhibited the abnormal proliferation of keratinocytes. Botulinum toxin A alleviated psoriasiform dermatitis by inhibiting the secretion of calcitonin gene-related peptide. Collectively, cutaneous nerve fibers participate in the progression of psoriasis by linking epidermal keratinocytes and immunocytes. Neurological intervention may be a new treatment strategy for psoriasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available in the GEO repository. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse121212 and https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse53552.

Abbreviations

BTX-A:

Botulinum toxin A

CGRP:

Calcitonin gene-related peptide

DEG:

Differential expression genes

DRG:

Dorsal root ganglion

ELISA:

Enzyme linked immunosorbent assay

FC:

Fold change

GEO:

Gene Expression Omnibus

HE:

Hematoxylin–eosin staining

IF:

Immunofluorescence

IFN:

Interferon

IHC:

Immunohistochemistry

IL:

Interleukin

IMQ:

Imiquimod

NS:

Normal saline

PASI:

Psoriasis Area Severity Index

PGP9.5:

Protein gene product 9.5

qRT-PCR:

Real-Time Quantitative Reverse Transcription PCR

References

  1. Menter A, Strober BE, Kaplan DH, Kivelevitch D, Prater EF, Stoff B, Armstrong AW, Connor C, Cordoro KM, Davis DMR, Elewski BE, Gelfand JM, Gordon KB, Gottlieb AB, Kavanaugh A, Kiselica M, Korman NJ, Kroshinsky D, Lebwohl M, Leonardi CL, Lichten J, Lim HW, Mehta NN, Paller AS, Parra SL, Pathy AL, Rupani RN, Siegel M, Wong EB, Wu JJ, Hariharan V, Elmets CA (2019) Joint AAD-NPF guidelines of care for the management and treatment of psoriasis with biologics. J Am Acad Dermatol 80:1029–1072. https://doi.org/10.1016/j.jaad.2018.11.057

    Article  PubMed  Google Scholar 

  2. Liang Y, Sarkar MK, Tsoi LC, Gudjonsson JE (2017) Psoriasis: a mixed autoimmune and autoinflammatory disease. Curr Opin Immunol 49:1–8. https://doi.org/10.1016/j.coi.2017.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Evers AWM, van Beugen S (2021) How stress affects the skin: from designs to mechanisms. Br J Dermatol 185:12–13. https://doi.org/10.1111/bjd.20397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dixon LJ, Witcraft SM, McCowan NK, Brodell RT (2018) Stress and skin disease quality of life: the moderating role of anxiety sensitivity social concerns. Br J Dermatol 178:951–957. https://doi.org/10.1111/bjd.16082

    Article  CAS  PubMed  Google Scholar 

  5. Weddell G, Cowan MA, Palmer E, Ramaswamy S (1965) Psoriatic skin. Arch Dermatol 91:252–266. https://doi.org/10.1001/archderm.1965.01600090060012

    Article  CAS  PubMed  Google Scholar 

  6. Zhu TH, Nakamura M, Farahnik B, Abrouk M, Lee K, Singh R, Gevorgyan A, Koo J, Bhutani T (2016) The role of the nervous system in the pathophysiology of psoriasis: a review of cases of psoriasis remission or improvement following denervation injury. Am J Clin Dermatol 17:257–263. https://doi.org/10.1007/s40257-016-0183-7

    Article  PubMed  Google Scholar 

  7. Lee EB, Reynolds KA, Pithadia DJ, Thiyanaratnam J, Wu JJ (2019) Clearance of psoriasis after ischemic stroke. Cutis 103:74–76

    PubMed  Google Scholar 

  8. Limjunyawong N, Dong X (2019) Spicy immunity: pain to gain. Immunity 51:426–428. https://doi.org/10.1016/j.immuni.2019.08.014

    Article  CAS  PubMed  Google Scholar 

  9. Cohen JA, Wu J, Kaplan DH (2020) Neuronal regulation of cutaneous immunity. J Immunol 204:264–270. https://doi.org/10.4049/jimmunol.1901109

    Article  CAS  PubMed  Google Scholar 

  10. Lagomarsino VN, Kostic AD, Chiu IM (2021) Mechanisms of microbial-neuronal interactions in pain and nociception. Neurobiol Pain 9:100056. https://doi.org/10.1016/j.ynpai.2020.100056

    Article  CAS  PubMed  Google Scholar 

  11. Cohen JA, Edwards TN, Liu AW, Hirai T, Jones MR, Wu J, Li Y, Zhang S, Ho J, Davis BM, Albers KM, Kaplan DH (2019) Cutaneous TRPV1 neurons trigger protective innate type 17 anticipatory immunity. Cell. https://doi.org/10.1016/j.cell.2019.06.022

    Article  PubMed  PubMed Central  Google Scholar 

  12. Serhan N, Basso L, Sibilano R, Petitfils C, Meixiong J, Bonnart C, Reber LL, Marichal T, Starkl P, Cenac N, Dong X, Tsai M, Galli SJ, Gaudenzio N (2019) House dust mites activate nociceptor-mast cell clusters to drive type 2 skin inflammation. Nat Immunol 20:1435–1443. https://doi.org/10.1038/s41590-019-0493-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou Y, Wang P, Yan B-X, Chen X-Y, Landeck L, Wang Z-Y, Li X-X, Zhang J, Zheng M, Man X-Y (2020) Quantitative proteomic profile of psoriatic epidermis identifies OAS2 as a novel biomarker for disease activity. Front Immunol 11:1432–1532. https://doi.org/10.3389/fimmu.2020.01432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tsoi LC, Rodriguez E, Degenhardt F, Baurecht H, Wehkamp U, Volks N, Szymczak S, Swindell WR, Sarkar MK, Raja K, Shao S, Patrick M, Gao Y, Uppala R, Perez White BE, Getsios S, Harms PW, Maverakis E, Elder JT, Franke A, Gudjonsson JE, Weidinger S (2019) Atopic dermatitis is an il-13-dominant disease with greater molecular heterogeneity compared to psoriasis. J Investig Dermatol 139:1480–1489. https://doi.org/10.1016/j.jid.2018.12.018

    Article  CAS  PubMed  Google Scholar 

  15. Russell CB, Rand H, Bigler J, Kerkof K, Timour M, Bautista E, Krueger JG, Salinger DH, Welcher AA, Martin DA (2014) Gene expression profiles normalized in psoriatic skin by treatment with brodalumab, a human anti-IL-17 receptor monoclonal antibody. J Immunol 192:3828–3836. https://doi.org/10.4049/jimmunol.1301737

    Article  CAS  PubMed  Google Scholar 

  16. Usoskin D, Furlan A, Islam S, Abdo H, Lönnerberg P, Lou D, Hjerling-Leffler J, Haeggström J, Kharchenko O, Kharchenko PV, Linnarsson S, Ernfors P (2015) Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci 18:145–153. https://doi.org/10.1038/nn.3881

    Article  CAS  PubMed  Google Scholar 

  17. van der Fits L, Mourits S, Voerman JSA, Kant M, Boon L, Laman JD, Cornelissen F, Mus A-M, Florencia E, Prens EP, Lubberts E (2009) Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol 182:5836–5845. https://doi.org/10.4049/jimmunol.0802999

    Article  CAS  PubMed  Google Scholar 

  18. Schön MP, Manzke V, Erpenbeck L (2021) Animal models of psoriasis-highlights and drawbacks. J Allergy Clin Immunol 147:439–455. https://doi.org/10.1016/j.jaci.2020.04.034

    Article  CAS  PubMed  Google Scholar 

  19. Julius D (2013) TRP channels and pain. Annu Rev Cell Dev Biol 29:355–384. https://doi.org/10.1146/annurev-cellbio-101011-155833

    Article  CAS  PubMed  Google Scholar 

  20. Nestle FO, Conrad C, Tun-Kyi A, Homey B, Gombert M, Boyman O, Burg G, Liu Y-J, Gilliet M (2005) Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J Exp Med 202:135–143. https://doi.org/10.1084/jem.20050500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Joseph T, Kurian J, Warwick DJ, Friedmann PS (2005) Unilateral remission of psoriasis following traumatic nerve palsy. Br J Dermatol 152:185–186. https://doi.org/10.1111/j.1365-2133.2005.06330.x

    Article  CAS  PubMed  Google Scholar 

  22. Filli L, Zörner B, Weinmann O, Schwab ME (2011) Motor deficits and recovery in rats with unilateral spinal cord hemisection mimic the Brown–Sequard syndrome. Brain 134:2261–2273. https://doi.org/10.1093/brain/awr167

    Article  PubMed  Google Scholar 

  23. Roosterman D, Goerge T, Schneider SW, Bunnett NW, Steinhoff M (2006) Neuronal control of skin function: the skin as a neuroimmunoendocrine organ. Physiol Rev 86:1309–1379. https://doi.org/10.1152/physrev.00026.2005

    Article  CAS  PubMed  Google Scholar 

  24. Armstrong AW, Read C (2020) Pathophysiology, clinical presentation, and treatment of psoriasis: a review. JAMA 323:1945–1960. https://doi.org/10.1001/jama.2020.4006

    Article  CAS  PubMed  Google Scholar 

  25. Huang W, Foster JA, Rogachefsky AS (2000) Pharmacology of botulinum toxin. J Am Acad Dermatol 43:249–259. https://doi.org/10.1067/mjd.2000.105567

    Article  CAS  PubMed  Google Scholar 

  26. Tillmaand EG, Anapindi KDB, De La Toba EA, Guo CJ, Krebs J, Lenhart AE, Liu Q, Sweedler JV (2020) Quantitative characterization of the neuropeptide level changes in dorsal horn and dorsal root ganglia regions of the murine itch models. J Proteome Res 19:1248–1257. https://doi.org/10.1021/acs.jproteome.9b00758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chu C, Artis D, Chiu IM (2020) Neuro-immune interactions in the tissues. Immunity 52:464–474. https://doi.org/10.1016/j.immuni.2020.02.017

    Article  CAS  PubMed  Google Scholar 

  28. Blake KJ, Jiang XR, Chiu IM (2019) Neuronal regulation of immunity in the skin and lungs. Trends Neurosci 42:537–551. https://doi.org/10.1016/j.tins.2019.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Taneda K, Tominaga M, Negi O, Tengara S, Kamo A, Ogawa H, Takamori K (2011) Evaluation of epidermal nerve density and opioid receptor levels in psoriatic itch. Br J Dermatol 165:277–284. https://doi.org/10.1111/j.1365-2133.2011.10347.x

    Article  PubMed  Google Scholar 

  30. Tan Y, Ng WJ, Lee SZX, Lee BTK, Nattkemper LA, Yosipovitch G, Ng LG, Tey HL (2019) Dimensional optical clearing and imaging of pruritic atopic dermatitis and psoriasis skin reveals downregulation of epidermal innervation. J Investig Dermatol 139:1201–1204. https://doi.org/10.1016/j.jid.2018.11.006

    Article  CAS  PubMed  Google Scholar 

  31. Chen O, Donnelly CR, Ji R-R (2020) Regulation of pain by neuro-immune interactions between macrophages and nociceptor sensory neurons. Curr Opin Neurobiol 62:17–25. https://doi.org/10.1016/j.conb.2019.11.006

    Article  CAS  PubMed  Google Scholar 

  32. Kashem SW, Riedl MS, Yao C, Honda CN, Vulchanova L, Kaplan DH (2015) Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity. Immunity 43:515–526. https://doi.org/10.1016/j.immuni.2015.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fukui T, Fukaya T, Uto T, Takagi H, Nasu J, Miyanaga N, Nishikawa Y, Koseki H, Choijookhuu N, Hishikawa Y, Yamashita Y, Sato K (2020) Pivotal role of CD103 in the development of psoriasiform dermatitis. Sci Rep 10:8371. https://doi.org/10.1038/s41598-020-65355-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kurihara K, Fujiyama T, Phadungsaksawasdi P, Ito T, Tokura Y (2019) Significance of IL-17A-producing CD8+CD103+ skin resident memory T cells in psoriasis lesion and their possible relationship to clinical course. J Dermatol Sci 95:21–27. https://doi.org/10.1016/j.jdermsci.2019.06.002

    Article  CAS  PubMed  Google Scholar 

  35. Fattori V, Ferraz CR, Rasquel-Oliveira FS, Verri WA Jr (2021) Neuroimmune communication in infection and pain: friends or foes? Immunol Lett 229:32–43. https://doi.org/10.1016/j.imlet.2020.11.009

    Article  CAS  PubMed  Google Scholar 

  36. Kupczyk P, Reich A, Gajda M, Hołysz M, Wysokińska E, Paprocka M, Nevozhay D, Chodaczek G, Jagodziński PP, Ziółkowski P, Szepietowski JC (2018) UCHL1/PGP 9.5 dynamic in neuro-immune-cutaneous milieu: focusing on axonal nerve terminals and epidermal keratinocytes in psoriatic itch. Biomed Res Int 2018:7489316. https://doi.org/10.1155/2018/7489316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Granstein RD, Wagner JA, Stohl LL, Ding W (2015) Calcitonin gene-related peptide: key regulator of cutaneous immunity. Acta Physiol (Oxf) 213:586–594. https://doi.org/10.1111/apha.12442

    Article  CAS  Google Scholar 

  38. Liu JA, Yu J, Cheung CW (2021) Immune actions on the peripheral nervous system in pain. Int J Mol Sci. https://doi.org/10.3390/ijms22031448

    Article  PubMed  PubMed Central  Google Scholar 

  39. Qin B, Sun C, Chen L, Wang S, Yang J, Xie Z, Shen Z (2021) The nerve injuries attenuate the persistence of psoriatic lesions. J Dermatol Sci 102:85–93. https://doi.org/10.1016/j.jdermsci.2021.02.0066

    Article  CAS  PubMed  Google Scholar 

  40. Ostrowski SM, Belkadi A, Loyd CM, Diaconu D, Ward NL (2011) Cutaneous denervation of psoriasiform mouse skin improves acanthosis and inflammation in a sensory neuropeptide-dependent manner. J Investig Dermatol 131:1530–1538. https://doi.org/10.1038/jid.2011.60

    Article  CAS  PubMed  Google Scholar 

  41. Ding W, Stohl LL, Xu L, Zhou XK, Manni M, Wagner JA, Granstein RD (2016) Calcitonin gene-related peptide-exposed endothelial cells bias antigen presentation to CD4+ T cells toward a Th17 response. J Immunol 196:2181–2194. https://doi.org/10.4049/jimmunol.1500303

    Article  CAS  PubMed  Google Scholar 

  42. Amalia SN, Uchiyama A, Baral H, Inoue Y, Yamazaki S, Fujiwara C, Sekiguchi A, Yokoyama Y, Ogino S, Torii R, Hosoi M, Ishikawa O, Motegi S-I (2021) Suppression of neuropeptide by botulinum toxin improves imiquimod-induced psoriasis-like dermatitis via the regulation of neuroimmune system. J Dermatol Sci 101:58–68. https://doi.org/10.1016/j.jdermsci.2020.11.003

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 81930089).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was performed by X-YM and S-QC. Data curation and formal analysis and writing were performed by S-QC, X-YC and Y-ZC. Supervision and validation were performed by YZ, B-XY and Z-YW. Review and editing were performed by FX, Y-ZH and Y-XZ.

Corresponding author

Correspondence to Xiao-Yong Man.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

The study was approved by the Ethics Committee of the Second Affiliated Hospital, Zhejiang University School of Medicine. All animal experiments were performed in accordance with protocols approved by the Animal Care and Use Committee.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent to publish

No individual information, image or video was included in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, SQ., Chen, XY., Cui, YZ. et al. Cutaneous nerve fibers participate in the progression of psoriasis by linking epidermal keratinocytes and immunocytes. Cell. Mol. Life Sci. 79, 267 (2022). https://doi.org/10.1007/s00018-022-04299-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04299-x

Keywords

Navigation