Skip to main content
Log in

Hydrogen peroxide-induced stress acclimation in plants

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Among all reactive oxygen species (ROS), hydrogen peroxide (H2O2) takes a central role in regulating plant development and responses to the environment. The diverse role of H2O2 is achieved through its compartmentalized synthesis, temporal control exerted by the antioxidant machinery, and ability to oxidize specific residues of target proteins. Here, we examine the role of H2O2 in stress acclimation beyond the well-studied transcriptional reprogramming, modulation of plant hormonal networks and long-distance signalling waves by highlighting its global impact on the transcriptional regulation and translational machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Mills G, Sharps K, Simpson D, Pleijel H, Frei M, Burkey K, Emberson L, Uddling J, Broberg M, Feng Z, Kobayashi K, Agrawal M (2018) Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance. Glob Chang Biol 24:4869–4893. https://doi.org/10.1111/gcb.14381

    Article  PubMed  Google Scholar 

  2. Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GED, Schroeder JI (2019) Genetic strategies for improving crop yields. Nature 575:109–118. https://doi.org/10.1038/s41586-019-1679-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19. https://doi.org/10.1016/j.tplants.2005.11.002

    Article  CAS  PubMed  Google Scholar 

  4. Sinha R, Fritschi FB, Zandalinas SI, Mittler R (2021) The impact of stress combination on reproductive processes in crops. Plant Sci 311:111007. https://doi.org/10.1016/j.plantsci.2021.111007

    Article  CAS  PubMed  Google Scholar 

  5. Rivero RM, Mittler R, Blumwald E, Zandalinas SI (2021) Developing climate-resilient crops: improving plant tolerance to stress combination. Plant J. https://doi.org/10.1111/tpj.15483

    Article  PubMed  Google Scholar 

  6. Walter J, Jentsch A, Beierkuhnlein C, Kreyling J (2013) Ecological stress memory and cross stress tolerance in plants in the face of climate extremes. Environ Exp Bot 94:3–8. https://doi.org/10.1016/J.ENVEXPBOT.2012.02.009

    Article  Google Scholar 

  7. Godwin J, Farrona S (2020) Plant Epigenetic Stress Memory Induced by Drought: A Physiological and Molecular Perspective. Methods Mol Biol 2093:243–259. https://doi.org/10.1007/978-1-0716-0179-2_17

    Article  CAS  PubMed  Google Scholar 

  8. Serrano N, Ling Y, Bahieldin A, Mahfouz MM (2019) Thermopriming reprograms metabolic homeostasis to confer heat tolerance. Sci Rep 2019 9:1 9:1–14. https://doi.org/10.1038/s41598-018-36484-z

  9. Crisp PA, Ganguly D, Eichten SR et al (2016) Reconsidering plant memory: Intersections between stress recovery, RNA turnover, and epigenetics. Sci Adv. https://doi.org/10.1126/SCIADV.1501340

    Article  PubMed  PubMed Central  Google Scholar 

  10. Leuendorf JE, Frank M (2020) Schmülling T (2020) Acclimation, priming and memory in the response of Arabidopsis thaliana seedlings to cold stress. Sci Rep 10:1–11. https://doi.org/10.1038/s41598-019-56797-x

    Article  CAS  Google Scholar 

  11. Wiszniewska A, Muszyńska E, Kołton A, Kamińska I, Hanus-Fajerska E (2019) In vitro acclimation to prolonged metallic stress is associated with modulation of antioxidant responses in a woody shrub Daphne jasminea. Plant Cell Tiss Organ Cult 139:339–357. https://doi.org/10.1007/s11240-019-01688-2

    Article  CAS  Google Scholar 

  12. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498. https://doi.org/10.1016/j.tplants.2004.08.009

    Article  CAS  PubMed  Google Scholar 

  13. Mittler R (2017) ROS are good. Trends Plant Sci 22:11–19. https://doi.org/10.1016/j.tplants.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  14. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701

    Article  CAS  PubMed  Google Scholar 

  15. Gómez R, Vicino P, Carrillo N, Lodeyro AF (2019) Manipulation of oxidative stress responses as a strategy to generate stress-tolerant crops. From damage to signaling to tolerance. Crit Rev Biotechnol 39:693–708. https://doi.org/10.1080/07388551.2019.1597829

    Article  CAS  PubMed  Google Scholar 

  16. Kerchev PI, Van Breusegem F (2021) Improving oxidative stress resilience in plants. Plant J. https://doi.org/10.1111/tpj.15493

    Article  PubMed  Google Scholar 

  17. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875. https://doi.org/10.1105/tpc.105.033589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467. https://doi.org/10.1111/j.1365-3040.2009.02041.x

    Article  CAS  PubMed  Google Scholar 

  19. Mhamdi A, Van Breusegem F (2018) Reactive oxygen species in plant development. Development 145:164376. https://doi.org/10.1242/dev.164376

    Article  CAS  Google Scholar 

  20. Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905. https://doi.org/10.1089/ars.2008.2177

    Article  CAS  PubMed  Google Scholar 

  21. Dikalov SI, Harrison DG (2014) Methods for detection of mitochondrial and cellular reactive oxygen species. Antioxid Redox Signal 20:372–382. https://doi.org/10.1089/ars.2012.4886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Noctor G, Mhamdi A, Foyer CH (2016) Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation. Plant Cell Environ 39:1140–1160. https://doi.org/10.1111/pce.12726

    Article  CAS  PubMed  Google Scholar 

  23. Petrov VD, Van Breusegem F (2012) Hydrogen peroxide-a central hub for information flow in plant cells. AoB Plants. https://doi.org/10.1093/aobpla/pls014

    Article  PubMed  PubMed Central  Google Scholar 

  24. Foyer CH (2018) Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ Exp Bot 154:134–142. https://doi.org/10.1016/j.envexpbot.2018.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593. https://doi.org/10.1016/0092-8674(94)90544-4

    Article  CAS  PubMed  Google Scholar 

  26. Wang Y, Zhang J, Li JL, Ma XR (2014) Exogenous hydrogen peroxide enhanced the thermo tolerance of Festuca arundinacea and Lolium perenne by increasing the antioxidative capacity. Acta Physiol Plant 36:2915–2924. https://doi.org/10.1007/s11738-014-1661-2

    Article  CAS  Google Scholar 

  27. Ashfaque F, Iqbal M, Khan R, Khan NA (2014) Exogenously Applied H2O2 promotes proline accumulation, water relations, photosynthetic efficiency and growth of wheat (Triticum aestivum L.) under salt stress. Annu Res Rev Biol 4:105–120. https://doi.org/10.9734/ARRB/2014/5629

    Article  Google Scholar 

  28. Phua SY, De Smet B, Remacle C, Chan KX, Van Breusegem F (2021) Reactive oxygen species and organellar signaling. J Exp Bot 72:5807–5824. https://doi.org/10.1093/jxb/erab218

    Article  CAS  PubMed  Google Scholar 

  29. Foyer CH (2020) How plant cells sense the outside world through hydrogen peroxide. Nature 578:518–519. https://doi.org/10.1038/d41586-020-00403-y

    Article  CAS  PubMed  Google Scholar 

  30. Aranega-Bou P, de la O Leyva M, Finiti I, García-Agustín P, González-Bosch C (2014) Priming of plant resistance by natural compounds Hexanoic acid as a model. Front Plant Sci 5:488. https://doi.org/10.3389/fpls.2014.00488

  31. Balmer A, Pastor V, Gamir J, Flors V, Mauch-Mani B (2015) The ‘prime-ome’: Towards a holistic approach to priming. Trends Plant Sci 20:443–452. https://doi.org/10.1016/j.tplants.2015.04.002

    Article  CAS  PubMed  Google Scholar 

  32. Vincent C, Rowland D, Schaffer B, Bassil E, Racette K, Zurweller B (2020) Primed acclimation: A physiological process offers a strategy for more resilient and irrigation-efficient crop production. Plant Sci 295:110240. https://doi.org/10.1016/j.plantsci.2019.110240

    Article  CAS  PubMed  Google Scholar 

  33. Zhang J, Zhou M, Zhou H et al (2021) Hydrogen sulfide, a signaling molecule in plant stress responses. J Integr Plant Biol 63:146–160. https://doi.org/10.1111/JIPB.13022

    Article  CAS  PubMed  Google Scholar 

  34. Wang H, Ji F, Zhang Y et al (2019) Interactions between hydrogen sulphide and nitric oxide regulate two soybean citrate transporters during the alleviation of aluminium toxicity. Plant Cell Environ 42:2340–2356. https://doi.org/10.1111/PCE.13555

    Article  CAS  PubMed  Google Scholar 

  35. Ishibashi Y, Yamaguchi H, Yuasa T, Iwaya-Inoue M, Arima S, Zheng SH (2011) Hydrogen peroxide spraying alleviates drought stress in soyabean plants. J Plant Physiol 168:1562–1567. https://doi.org/10.1016/j.jplph.2011.02.003

    Article  CAS  PubMed  Google Scholar 

  36. Conrath U, Beckers GJ, Flors V, García-Agustín P, Jakab G, Mauch F, Newman MA, Pieterse CM, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071. https://doi.org/10.1094/MPMI-19-1062

    Article  CAS  PubMed  Google Scholar 

  37. Vaidya AS, Peterson FC, Eckhardt J, Xing Z, Park SY, Dejonghe W, Takeuchi J, Pri-Tal O, Faria J, Elzinga D, Volkman BF, Todoroki Y, Mosquna A, Okamoto M, Cutler SR (2021) Click-to-lead design of a picomolar ABA receptor antagonist with potent activity in vivo. Proc Natl Acad Sci USA 118:e2108281118. https://doi.org/10.1073/pnas.2108281118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kerchev P, van der Meer T, Sujeeth N, Verlee A, Stevens CV, Van Breusegem F, Gechev T (2020) Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants. Biotechnol Adv 40:107503. https://doi.org/10.1146/10.1016/j.biotechadv.2019.107503

    Article  CAS  PubMed  Google Scholar 

  39. Gondim FA, Gomes-Filho E, Costa JH, Alencar NLM, Priso JT (2012) CAT plays a key role in salt stress acclimation induced by hydrogen peroxide pretreatment in maize. J Plant Physiol Biochem 56:62–71. https://doi.org/10.1016/j.plaphy.2012.04.012

    Article  CAS  Google Scholar 

  40. Habib N, Ali Q, Ali S, Javed MT, Zulqurnain Haider M, Perveen R, Shahid MR, Rizwan M, Abdel-Daim MM, Elkelish A, Bin-Jumah M (2020) Use of nitric oxide and hydrogen peroxide for better yield of wheat (Triticum aestivum L.) under water deficit conditions: growth, osmoregulation, and antioxidative defense mechanism. Plants 9:285. https://doi.org/10.3390/plants9020285

    Article  CAS  PubMed Central  Google Scholar 

  41. Silva PCC, Azevedo Neto ADD, Gheyi HJ, Ribas RF, Silva CRDR, Cova AMD (2021) Salt tolerance induced by hydrogen peroxide priming on seed is related to improvement of ion homeostasis and antioxidative defense in sunflower plants. J Plant Nutr 44:1207–2121. https://doi.org/10.1080/01904167.2020.1862202

    Article  CAS  Google Scholar 

  42. de Azevedo Neto AD, Prisco JT, Enéas-Filho J, Medeiros JV, Gomes-Filho E (2005) Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants. J Plant Physiol 162:1114–1122. https://doi.org/10.1016/j.jplph.2005.01.007

    Article  CAS  PubMed  Google Scholar 

  43. Wahid A, Perveen M, Gelani S, Basra SM (2007) Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J Plant Physiol 164:283–294. https://doi.org/10.1016/j.jplph.2006.01.005

    Article  CAS  PubMed  Google Scholar 

  44. Xu FJ, Jin CW, Liu WJ, Zhang YS, Lin XY (2010) Pretreatment with H2O2 alleviates aluminum-induced oxidative stress in wheat seedlings. J Integr Plant Biol 53:44–53. https://doi.org/10.1111/j.1744-7909.2010.01008.x

    Article  CAS  PubMed  Google Scholar 

  45. Dos Santos AG, de Oliveira P-M, de Paiva Pinheiro SK, de Castro ME, de Sousa LL, Camelo Marques E, de Carvalho HH, Gomes-Filho E (2021) H2O2 priming promotes salt tolerance in maize by protecting chloroplasts ultrastructure and primary metabolites modulation. Plant Sci 303:110774. https://doi.org/10.1016/j.plantsci.2020.110774

    Article  CAS  Google Scholar 

  46. Claeys H, Van Landeghem S, Dubois M, Maleux K, Inzé D (2014) What Is Stress? Dose-Response Effects in Commonly Used in Vitro Stress Assays. Plant Physiol 165:519–527. https://doi.org/10.1104/pp.113.234641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gechev T, Gadjev I, Van Breusegem F, Inzé D, Dukiandjiev S, Toneva V, Minkov I (2002) Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cell Mol Life Sci 59:708–714. https://doi.org/10.1007/s00018-002-8459-x

    Article  CAS  PubMed  Google Scholar 

  48. Yu CW, Murphy TM, Lin CH (2003) Hydrogen peroxide-induced chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation. Funct Plant Biol 30:955–963. https://doi.org/10.1071/FP03091

    Article  CAS  PubMed  Google Scholar 

  49. İşeri ÖD, Körpe DA, Sahin FI, Haberal M (2013) Hydrogen peroxide pretreatment of roots enhanced oxidative stress response of tomato under cold stress. Acta Physiol Plant 35:1905–1913. https://doi.org/10.1007/s11738-013-1228-7

    Article  CAS  Google Scholar 

  50. Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515–523. https://doi.org/10.1016/S0168-9452(02)00159-0

    Article  CAS  Google Scholar 

  51. Mubarakshina Borisova MM, Kozuleva MA, Rudenko NN, Naydov IA, Klenina IB, Ivanov BN (2012) Photosynthetic electron flow to oxygen and diffusion of hydrogen peroxide through the chloroplast envelope via aquaporins. Biochim Biophys Acta 1817:1314–1321. https://doi.org/10.1016/j.bbabio.2012.02.036

    Article  CAS  PubMed  Google Scholar 

  52. Del Río LA, López-Huertas E (2016) ROS generation in peroxisomes and its role in cell signaling. Plant Cell Physiol 57:1364–1376. https://doi.org/10.1093/pcp/pcw076

    Article  CAS  PubMed  Google Scholar 

  53. Segal AW (2016) NADPH oxidases as electrochemical generators to produce ion fluxes and turgor in fungi, plants and humans. Open Biol 6:160028. https://doi.org/10.1098/rsob.160028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal. https://doi.org/10.1126/scisignal.2000448

    Article  PubMed  PubMed Central  Google Scholar 

  55. Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17:9–15. https://doi.org/10.1016/j.tplants.2011.10.001

    Article  CAS  PubMed  Google Scholar 

  56. Li L, Li M, Yu L, Zhou Z, Liang X, Liu Z, Cai G, Gao L, Zhang X, Wang Y, Chen S, Zhou JM (2014) The FLS2-associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe 15:329–338. https://doi.org/10.1016/j.chom.2014.02.009

    Article  CAS  PubMed  Google Scholar 

  57. Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699. https://doi.org/10.1016/j.pbi.2011.07.014

    Article  CAS  PubMed  Google Scholar 

  58. Gong M, Chen B, Li ZG, Guo LH (2001) Heat-shock-induced cross adaptation to heat, chilling, drought and salt stress in maize seedlings and involvement of H2O2. J Plant Physiol 158:112–1130. https://doi.org/10.1078/0176-1617-00327

    Article  Google Scholar 

  59. Wu F, Chi Y, Jiang Z et al (2020) Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis. Nature 578:577–581. https://doi.org/10.1038/s41586-020-2032-3

    Article  CAS  PubMed  Google Scholar 

  60. Gilroy S, Białasek M, Suzuki N, Górecka M, Devireddy Amith R, Karpinski S, Mittler R (2016) ROS, calcium and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol 171:1606–1615. https://doi.org/10.1104/pp.16.00434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Winterbourn CC (2014) The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochem Biophys Acta 1840:730–738. https://doi.org/10.1016/j.bbagen.2013.05.004

    Article  CAS  PubMed  Google Scholar 

  62. Wang Y, Li J, Wang J, Li Z (2010) Exogenous H2O2 improves the chilling tolerance of manilagrass and mascarenegrass by activating the antioxidative system. Plant Growth Regul 61:195–204. https://doi.org/10.1007/s10725-010-9470-0

    Article  CAS  Google Scholar 

  63. Marthandan V, Geetha R, Kumutha K, Renganathan VG, Karthikeyan A, Ramalingam J (2020) Seed Priming: A feasible strategy to enhance drought tolerance in crop plants. Int J Mol Sci 21:8258. https://doi.org/10.3390/ijms21218258

    Article  CAS  PubMed Central  Google Scholar 

  64. Hu T, Chen K, Hu L, Amombo E, Fu J (2016) H2O2 and Ca2+-based signaling and associated ion accumulation, antioxidant systems and secondary metabolism orchestrate the response to NaCl stress in perennial ryegrass. Sci Rep 6:36396. https://doi.org/10.1038/srep36396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hu Y, Ge Y, Zhang C, Ju T, Cheng W (2009) Cadmium toxicity and translocation in rice seedlings are reduced by hydrogen peroxide pretreatment. Plant Growth Regul 59:51–61. https://doi.org/10.1007/s10725-009-9387-7

    Article  CAS  Google Scholar 

  66. Couturier J, Chibani K, Jacquot JP, Rouhier N (2013) Cysteine-based redox regulation and signaling in plants. Front Plant Sci 4:105. https://doi.org/10.3389/fpls.2013.00105

    Article  PubMed  PubMed Central  Google Scholar 

  67. Jacques S, Ghesquière B, De Bock PJ, Demol H, Wahni K, Willems P, Messens J, Van Breusegem F, Gevaert K (2015) Protein methionine sulfoxide dynamics in Arabidopsis thaliana under oxidative stress. Mol Cell Proteomics 14:1217–1229. https://doi.org/10.1074/mcp.M114.043729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Huang J, Willems P, Van Breusegem F, Messens J (2018) Pathways crossing mammalian and plant sulfenomic landscapes. Free Radic Biol Med 122:193–201. https://doi.org/10.1016/j.freeradbiomed.2018.02.012

    Article  CAS  PubMed  Google Scholar 

  69. Roos G, Foloppe N, Messens J (2013) Understanding the pK(a) of redox cysteines: the key role of hydrogen bonding. Antioxid Redox Signal 18:94–127. https://doi.org/10.1089/ars.2012.4521

    Article  CAS  PubMed  Google Scholar 

  70. Roos G, Messens J (2011) Protein sulfenic acid formation: from cellular damage to redox regulation. Free Radic Biol Med 51:314–326. https://doi.org/10.1016/j.freeradbiomed.2011.04.031

    Article  CAS  PubMed  Google Scholar 

  71. Waszczak C, Akter S, Eeckhout D, Persiau G, Wahni K, Bodra N, Van Molle I, De Smet B, Vertommen D, Gevaert K, De Jaeger G, Van Montagu M, Messens J, Van Breusegem F (2014) Sulfenome mining in Arabidopsis thaliana. Proc Natl Acad Sci USA 111:11545–11550. https://doi.org/10.1073/pnas.1411607111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Akter S, Fu L, Jung Y, Conte ML, Lawson JR, Lowther WT, Sun R, Liu K, Yang J, Carroll KS (2018) Chemical proteomics reveals new targets of cysteine sulfinic acid reductase. Nat Chem Biol 14:995–1004. https://doi.org/10.1038/s41589-018-0116-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. De Smet B, Willems P, Fernandez-Fernandez AD, Alseekh S, Fernie AR, Messens J, Van Breusegem F (2019) In vivo detection of protein cysteine sulfenylation in plastids. Plant J 97:765–778. https://doi.org/10.1111/tpj.14146

    Article  CAS  PubMed  Google Scholar 

  74. Gadjev I, Vanderauwera S, Gechev TS et al (2006) Transcriptomic Footprints Disclose Specificity of Reactive Oxygen Species Signaling in Arabidopsis. Plant Physiol 141:436–445. https://doi.org/10.1104/PP.106.078717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Willems P, Mhamdi A, Stael S, Storme V, Kerchev P, Noctor G, Gevaert K, Van Breusegem F (2016) The ROS wheel: Refining ROS transcriptional footprints. Plant Physiol 171:1720–1733. https://doi.org/10.1104/pp.16.00420

    Article  PubMed  PubMed Central  Google Scholar 

  76. Beauclair L, Yu A, Bouché N (2010) microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis. Plant J 62:454–462. https://doi.org/10.1111/J.1365-313X.2010.04162.X

    Article  CAS  PubMed  Google Scholar 

  77. Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional Induction of Two Cu/Zn Superoxide Dismutase Genes in Arabidopsis Is Mediated by Downregulation of miR398 and Important for Oxidative Stress Tolerance. Plant Cell 18:2051. https://doi.org/10.1105/TPC.106.041673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Vivarelli S, Lenzken SC, Ruepp MD et al (2013) Paraquat Modulates Alternative Pre-mRNA Splicing by Modifying the Intracellular Distribution of SRPK2. PLoS ONE 8:e61980. https://doi.org/10.1371/JOURNAL.PONE.0061980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ding F, Cui P, Wang Z et al (2014) Genome-wide analysis of alternative splicing of pre-mRNA under salt stress in Arabidopsis. BMC Genom 15:1–14. https://doi.org/10.1186/1471-2164-15-431

    Article  CAS  Google Scholar 

  80. John S, Olas JJ, Mueller-Roeber B (2021) Regulation of alternative splicing in response to temperature variation in plants. J Exp Bot 72:6150–6163. https://doi.org/10.1093/JXB/ERAB232

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zhou Y, Li XH, Guo QH et al (2021) Salt responsive alternative splicing of a RING finger E3 ligase modulates the salt stress tolerance by fine-tuning the balance of COP9 signalosome subunit 5A. PLoS Genet. https://doi.org/10.1371/JOURNAL.PGEN.1009898

    Article  PubMed  PubMed Central  Google Scholar 

  82. Gu J, Xia Z, Luo Y et al (2018) Spliceosomal protein U1A is involved in alternative splicing and salt stress tolerance in Arabidopsis thaliana. Nucleic Acids Res 46:1777. https://doi.org/10.1093/NAR/GKX1229

    Article  CAS  PubMed  Google Scholar 

  83. Moeder W, del Pozo O, Navarre DA et al (2007) Aconitase plays a role in regulating resistance to oxidative stress and cell death in Arabidopsis and Nicotiana benthamiana. Plant Mol Biol 63:273–287. https://doi.org/10.1007/S11103-006-9087-X

    Article  CAS  PubMed  Google Scholar 

  84. Ling Y, Serrano N, Gao G et al (2018) Thermopriming triggers splicing memory in Arabidopsis. J Exp Bot 69:2659–2675. https://doi.org/10.1093/JXB/ERY062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Urquidi Camacho RA, Lokdarshi A, von Arnim AG (2020) Translational gene regulation in plants: A green new deal. Wiley Interdiscip Rev RNA. https://doi.org/10.1002/WRNA.1597

    Article  PubMed  Google Scholar 

  86. Martinez-Seidel F, Beine-Golovchuk O, Hsieh YC, Kopka J (2020) Systematic review of plant ribosome heterogeneity and specialization. Front Plant Sci 11:948. https://doi.org/10.3389/fpls.2020.00948

    Article  PubMed  PubMed Central  Google Scholar 

  87. Xue S, Barna M (2012) Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat Rev Mol Cell Biol 13:355–369. https://doi.org/10.1038/nrm3359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Genuth NR, Barna M (2018) Heterogeneity and specialized functions of translation machinery: from genes to organisms. Nat Rev Genet 19:431–452. https://doi.org/10.1038/s41576-018-0008-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang J, Lan P, Gao H, Zheng L, Li W, Schmidt W (2013) Expression changes of ribosomal proteins in phosphate- and iron-deficient Arabidopsis roots predict stress-specific alterations in ribosome composition. BMC Genomics 14:783. https://doi.org/10.1186/1471-2164-14-783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Salih KJ, Duncan O, Li L, O’Leary B, Fenske R, Trösch J, Millar AH (2020) Impact of oxidative stress on the function, abundance, and turnover of the Arabidopsis 80S cytosolic ribosome. Plant J 103:128–139. https://doi.org/10.1111/tpj.14713

    Article  CAS  PubMed  Google Scholar 

  91. Chen GH, Liu MJ, Xiong Y, Sheen J, Wu SH (2018) TOR and RPS6 transmit light signals to enhance protein translation in deetiolating Arabidopsis seedlings. Proc Natl Acad Sci USA 115:12823–12828. https://doi.org/10.1073/pnas.1809526115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bakshi A, Moin M, Madhav MS, Kirti PB (2019) Target of rapamycin, a master regulator of multiple signalling pathways and a potential candidate gene for crop improvement. Plant Biol (Stuttg) 21:190–205. https://doi.org/10.1111/plb.12935

    Article  CAS  Google Scholar 

  93. Pereyra CM, Aznar NR, Rodriguez MS, Salerno GL, Martínez-Noël GMA (2019) Target of rapamycin signaling is tightly and differently regulated in the plant response under distinct abiotic stresses. Planta 251:21. https://doi.org/10.1007/s00425-019-03305-0

    Article  CAS  PubMed  Google Scholar 

  94. Gerashchenko MV, Lobanov AV, Gladyshev VN (2012) Genome-wide ribosome profiling reveals complex translational regulation in response to oxidative stress. Proc Natl Acad Sci USA 109:17394–17399. https://doi.org/10.1073/pnas.1120799109

    Article  PubMed  PubMed Central  Google Scholar 

  95. Moore M, Smith A, Wesemann C, Schmidtpott S, Wegener M, Farooq MA, Seidel T, Pogson B, Dietz K-J (2021) Retrograde control of cytosolic translation targets synthesis of plastid localized proteins and nuclear responses for efficient light acclimation. bioRxiv. https://doi.org/10.1101/2021.02.18.431817

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ahn CS, Lee DH, Pai HS (2019) Characterization of Maf1 in Arabidopsis: function under stress conditions and regulation by the TOR signaling pathway. Planta 249:527–542. https://doi.org/10.1007/s00425-018-3024-5

    Article  CAS  PubMed  Google Scholar 

  97. Torrent M, Chalancon G, de Groot NS, Wuster A, Madan Babu M (2018) Cells alter their tRNA abundance to selectively regulate protein synthesis during stress conditions. Sci Signal. https://doi.org/10.1126/scisignal.aat6409

    Article  PubMed  PubMed Central  Google Scholar 

  98. Lalande S, Merret R, Salinas-Giegé T, Drouard L (2020) Arabidopsis tRNA-derived fragments as potential modulators of translation. RNA Biol 17:1137–1148. https://doi.org/10.1080/15476286.2020.1722514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Thompson DM, Lu C, Green PJ, Parker R (2008) tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA 14:2095–2103. https://doi.org/10.1261/rna.1232808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cognat V, Morelle G, Megel C, Lalande S, Molinier J, Vincent T, Small I, Duchêne AM, Maréchal-Drouard L (2020) The nuclear and organellar tRNA-derived RNA fragment population in Arabidopsis thaliana is highly dynamic. Nucleic Acids Res 48:8812–8813. https://doi.org/10.1093/nar/gkaa651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lokdarshi A, Guan J, Urquidi Camacho RA, Cho SK, Morgan PW, Leonard M, Shimono M, Day B, von Arnim AG (2020) Light activates the translational regulatory kinase GCN2 via reactive oxygen species emanating from the chloroplast. Plant Cell 32:1161–1178. https://doi.org/10.1105/tpc.19.00751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu X, Afrin T, Pajerowska-Mukhtar KM (2019) Arabidopsis GCN2 kinase contributes to ABA homeostasis and stomatal immunity. Commun Biol 2:302. https://doi.org/10.1038/s42003-019-0544-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. David R, Burgess A, Parker B, Li J, Pulsford K, Sibbritt T, Preiss T, Searle IR (2017) Transcriptome-Wide Mapping of RNA 5-Methylcytosine in Arabidopsis mRNAs and Noncoding RNAs. Plant Cell 29:445–460. https://doi.org/10.1105/tpc.16.00751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Giorgio M, Dellino GI, Gambino V, Roda N, Pelicci PG (2020) On the epigenetic role of guanosine oxidation. Redox Biol 29:101398. https://doi.org/10.1016/j.redox.2019.101398

    Article  CAS  PubMed  Google Scholar 

  105. Hofer T, Badouard C, Bajak E, Ravanat JL, Mattsson A, Cotgreave IA (2005) Hydrogen peroxide causes greater oxidation in cellular RNA than in DNA. Biol Chem 386:333–337. https://doi.org/10.1515/BC.2005.040

    Article  CAS  PubMed  Google Scholar 

  106. Bazin J, Langlade N, Vincourt P, Arribat S, Balzergue S, El-Maarouf-Bouteau H, Bailly C (2011) Targeted mRNA oxidation regulates sunflower seed dormancy alleviation during dry after-ripening. Plant Cell 23:2196–2208. https://doi.org/10.1105/tpc.111.086694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhan Y, Dhaliwal JS, Adjibade P, Uniacke J, Mazroui R, Zerges W (2015) Localized control of oxidized RNA. J Cell Sci 128:4210–4219. https://doi.org/10.1242/jcs.175232

    Article  CAS  PubMed  Google Scholar 

  108. Chantarachot T, Bailey-Serres J (2018) Polysomes, stress granules, and processing bodies: a dynamic triumvirate controlling cytoplasmic mRNA fate and function. Plant Physiol 176:254–269. https://doi.org/10.1104/pp.17.01468

    Article  CAS  PubMed  Google Scholar 

  109. Maruri-López I, Figueroa NE, Hernández-Sánchez IE, Chodasiewicz M (2021) Plant Stress Granules: Trends and Beyond. Front Plant Sci 12:722643. https://doi.org/10.3389/fpls.2021.722643

    Article  PubMed  PubMed Central  Google Scholar 

  110. Emara MM, Fujimura K, Sciaranghella D, Ivanova V, Ivanov P, Anderson P (2012) Hydrogen peroxide induces stress granule formation independent of eIF2α phosphorylation. Biochem Biophys Res Commun 423:763–769. https://doi.org/10.1016/j.bbrc.2012.06.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lokdarshi A, Conner WC, McClintock C, Li T, Roberts DM (2016) Arabidopsis CML38, a calcium sensor that localizes to ribonucleoprotein complexes under hypoxia stress. Plant Physiol 170:1046–1059. https://doi.org/10.1104/pp.15.01407

    Article  CAS  PubMed  Google Scholar 

  112. Nguyen CC, Nakaminami K, Matsui A, Kobayashi S, Kurihara Y, Toyooka K, Tanaka M, Seki M (2016) Oligouridylate binding protein 1b plays an integral role in plant heat stress tolerance. Front Plant Sci 7:853. https://doi.org/10.3389/fpls.2016.00853

    Article  PubMed  PubMed Central  Google Scholar 

  113. Chodasiewicz M, Sokolowska EM, Nelson-Dittrich AC, Masiuk A, Beltran JCM, Nelson ADL, Skirycz A (2020) Identification and characterization of the heat-induced plastidial stress granules reveal new insight into Arabidopsis stress response. Front Plant Sci 11:595792. https://doi.org/10.3389/fpls.2020.595792

    Article  PubMed  PubMed Central  Google Scholar 

  114. Uniacke J, Zerges W (2008) Stress induces the assembly of RNA granules in the chloroplast of Chlamydomonas reinhardtii. J Cell Biol 182:641–646. https://doi.org/10.1083/jcb.200805125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481. https://doi.org/10.1146/annurev.arplant.58.032806.103946

    Article  CAS  PubMed  Google Scholar 

  116. Rodrigues O, Reshetnyak G, Grondin A, Saijo Y, Leonhardt N, Maurel C, Verdoucq L (2017) Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA- and pathogen-triggered stomatal closure. Proc Natl Acad Sci USA 114:9200–9205. https://doi.org/10.1073/pnas.1704754114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Exposito-Rodriguez M, Laissue PP, Yvon-Durocher G, Smirnoff N, Mullineaux PM (2017) Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism. Nat Commun 8:49. https://doi.org/10.1038/s41467-017-00074-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Caplan JL, Kumar AS, Park E, Padmanabhan MS, Hoban K, Modla S, Czymmek K, Dinesh-Kumar SP (2015) Chloroplast stromules function during innate immunity. Dev Cell 34:45–57. https://doi.org/10.1016/j.devcel.2015.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ashtamker C, Kiss V, Sagi M, Davydov O, Fluhr R (2007) Diverse subcellular locations of cryptogein-induced reactive oxygen species production in tobacco bright yellow-2 cells. Plant Physiol 143:1817–1826. https://doi.org/10.1104/pp.106.090902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Roschzttardtz H, Séguéla-Arnaud M, Briat JF, Vert G, Curie C (2011) The FRD3 citrate effluxer promotes iron nutrition between symplastically disconnected tissues throughout Arabidopsis development. Plant Cell 23:2725–2737. https://doi.org/10.1105/tpc.111.088088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. El-Esawi M, Arthaut LD, Jourdan N, d’Harlingue A, Link J, Martino CF, Ahmad M (2017) Blue-light induced biosynthesis of ROS contributes to the signaling mechanism of Arabidopsis cryptochrome. Sci Rep 7:13875. https://doi.org/10.1038/s41598-017-13832-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Vivancos PD, Dong Y, Ziegler K, Markovic J, Pallardó FV, Pellny TK, Verrier PJ, Foyer CH (2010) Recruitment of glutathione into the nucleus during cell proliferation adjusts whole-cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield. Plant J 64:825–838. https://doi.org/10.1111/j.1365-313X.2010.04371.x

    Article  CAS  PubMed  Google Scholar 

  123. Zechmann B, Stumpe M, Mauch F (2011) Immunocytochemical determination of the subcellular distribution of ascorbate in plants. Planta 233:1–12. https://doi.org/10.1007/s00425-010-1275-x

    Article  CAS  PubMed  Google Scholar 

  124. Go YM, Jones DP (2010) Redox control systems in the nucleus: mechanisms and functions. Antioxid Redox Signal 13:489–509. https://doi.org/10.1089/ars.2009.3021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gaber A, Ogata T, Maruta T, Yoshimura K, Tamoi M, Shigeoka S (2012) The Involvement of Arabidopsis glutathione peroxidase 8 in the suppression of oxidative damage in the nucleus and cytosol. Plant Cell Physiol 53:1596–1606. https://doi.org/10.1093/pcp/pcs100

    Article  CAS  PubMed  Google Scholar 

  126. Delorme-Hinoux V, Bangash SA, Meyer AJ, Reichheld JP (2016) Nuclear thiol redox systems in plants. Plant Sci 243:84–95. https://doi.org/10.1016/j.plantsci.2015.12.002

    Article  CAS  PubMed  Google Scholar 

  127. Serrato AJ, Crespo JL, Florencio FJ, Cejudo FJ (2001) Characterization of two thioredoxin h with predominant localization in the nucleus of aleurone and scutellum cells of germinating wheat seeds. Plant Mol Biol 46:361–371. https://doi.org/10.1023/a:1010697331184

    Article  CAS  PubMed  Google Scholar 

  128. Ying Y, Yue W, Wang S, Li S, Wang M, Zhao Y, Wang C, Mao C, Whelan J, Shou H (2017) Two h-Type Thioredoxins Interact with the E2 Ubiquitin conjugase PHO2 to fine-tune phosphate homeostasis in Rice. Plant Physiol 173:812–824. https://doi.org/10.1104/pp.16.01639

    Article  CAS  PubMed  Google Scholar 

  129. Serrato AJ, Cejudo FJ (2003) Type-h thioredoxins accumulate in the nucleus of developing wheat seed tissues suffering oxidative stress. Planta 217:392–399. https://doi.org/10.1007/s00425-003-1009-4

    Article  CAS  PubMed  Google Scholar 

  130. Kim J-H (2021) Multifaceted chromatin structure and transcription changes in plant stress response. Int J Mol Sci 22:2013. https://doi.org/10.3390/ijms22042013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kinoshita T, Seki M (2014) Epigenetic memory for stress response and adaptation in plants. Plant Cell Physiol 55:1859–1863. https://doi.org/10.1093/pcp/pcu125

    Article  CAS  PubMed  Google Scholar 

  132. Bilichak A, Kovalchuk I (2016) Transgenerational response to stress in plants and its application for breeding. J Exp Bot 67:2081–2092. https://doi.org/10.1093/jxb/erw066

    Article  CAS  PubMed  Google Scholar 

  133. Crisp PA, Ganguly D, Eichten SR, Borevitz JO, Pogson BJ (2016) Reconsidering plant memory: Intersections between stress recovery, RNA turnover, and epigenetics. Sci Adv 2:e1501340. https://doi.org/10.1126/sciadv.1501340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sani E, Herzyk P, Perrella G, Colot V, Amtmann A (2013) Hyperosmotic priming of Arabidopsis seedlings establishes a long-term somatic memory accompanied by specific changes of the epigenome. Genome Biol 14:r59. https://doi.org/10.1186/gb-2013-14-6-r59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Singh D, Chaudhary P, Taunk J, Singh CK, Sharma S, Singh VJ, Singh D, Chinnusamy V, Yadav R, Pal M (2021) Plant epigenomics for extenuation of abiotic stresses: Challenges and future perspectives. J Exp Bot. https://doi.org/10.1093/jxb/erab337

    Article  PubMed  PubMed Central  Google Scholar 

  136. Sudan J, Raina M, Singh R (2018) Plant epigenetic mechanisms: role in abiotic stress and their generational heritability. 3 Biotech 8:172

    Article  PubMed  PubMed Central  Google Scholar 

  137. Matsuda M, Shimomura I (2013) Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract 7:330–341. https://doi.org/10.1016/j.orcp.2013.05.004

    Article  Google Scholar 

  138. Dimauro I, Paronetto MP, Caporossi D (2020) Exercise, redox homeostasis and the epigenetic landscape. Redox Biol 35:101477. https://doi.org/10.1016/j.redox.2020.10147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Rm SK, Wang Y, Zhang X et al (2020) Redox Components: Key Regulators of Epigenetic Modifications in Plants. Int J Mol Sci. https://doi.org/10.3390/IJMS21041419

    Article  Google Scholar 

  140. O’Hagan HM, Wang W, Sen S, Destefano Shields C, Lee SS, Zhang YW, Clements EG, Cai Y, Van Neste L, Easwaran H, Casero RA, Sears CL, Baylin SB (2011) Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands. Cancer Cell 20:606–619. https://doi.org/10.1016/j.ccr.2011.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bazopoulou D, Knoefler D, Zheng Y et al (2019) Developmental ROS individualizes organismal stress resistance and lifespan. Nature 576:301–305. https://doi.org/10.1038/s41586-019-1814-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Buzas DM (2016) Emerging links between iron-sulfur clusters and 5-methylcytosine base excision repair in plants. Genes Genet Syst 91:51–62. https://doi.org/10.1266/ggs.16-00015

    Article  CAS  PubMed  Google Scholar 

  143. Lamadema N, Burr S, Brewer AC (2019) Dynamic regulation of epigenetic demethylation by oxygen availability and cellular redox. Free Radic Biol Med 131:282–298. https://doi.org/10.1016/j.freeradbiomed.2018.12.009

    Article  CAS  PubMed  Google Scholar 

  144. Lindermayr C, Rudolf EE, Durner J, Groth M (2020) Interactions between metabolism and chromatin in plant models. Mol Metab 38:100951. https://doi.org/10.1016/j.molmet.2020.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ago T, Liu T, Zhai P, Chen W, Li H, Molkentin JD, Vatner SF, Sadoshima J (2008) A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy. Cell 133:978–993. https://doi.org/10.1016/j.cell.2008.04.041

    Article  CAS  PubMed  Google Scholar 

  146. Schader T, Löwe O, Reschke C, Malacarne P, Hahner F, Müller N, Gajos-Draus A, Backs J, Schröder K (2020) Oxidation of HDAC4 by Nox4-derived H2O2 maintains tube formation by endothelial cells. Redox Biol 36:101669. https://doi.org/10.1016/j.redox.2020.101669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Mengel A, Ageeva A, Georgii E, Bernhardt J, Wu K, Durner J, Lindermayr C (2017) Nitric Oxide modulates histone acetylation at stress genes by inhibition of histone deacetylases. Plant Physiol 173:1434–1452. https://doi.org/10.1104/pp.16.01734

    Article  CAS  PubMed  Google Scholar 

  148. Ageeva-Kieferle A, Georgii E, Winkler B, Ghirardo A, Albert A, Hüther P, Mengel A, Becker C, Schnitzler JP, Durner J, Lindermayr C (2021) Nitric oxide coordinates growth, development, and stress response via histone modification and gene expression. Plant Physiol 187:336–360. https://doi.org/10.1093/plphys/kiab222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Nott A, Watson PM, Robinson JD, Crepaldi L, Riccio A (2008) S-nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons. Nature 455:411–415. https://doi.org/10.1038/nature07238

    Article  CAS  PubMed  Google Scholar 

  150. Nott A, Nitarska J, Veenvliet JV, Schacke S, Derijck AA, Sirko P, Muchardt C, Pasterkamp RJ, Smidt MP, Riccio A (2013) S-nitrosylation of HDAC2 regulates the expression of the chromatin-remodeling factor Brm during radial neuron migration. Proc Natl Acad Sci USA 110:3113–3118. https://doi.org/10.1073/pnas.1218126110

    Article  PubMed  PubMed Central  Google Scholar 

  151. Kreuz S, Fischle W (2016) Oxidative stress signaling to chromatin in health and disease. Epigenomics 8:843–862. https://doi.org/10.2217/epi-2016-0002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Galligan JJ, Marnett LJ (2017) Histone Adduction and Its Functional Impact on Epigenetics. Chem Res Toxicol 30:376–387. https://doi.org/10.1021/acs.chemrestox.6b00379

    Article  CAS  PubMed  Google Scholar 

  153. Galligan JJ, Rose KL, Beavers WN, Hill S, Tallman KA, Tansey WP, Marnett LJ (2014) Stable histone adduction by 4-oxo-2-nonenal: a potential link between oxidative stress and epigenetics. J Am Chem Soc 136:11864–11866. https://doi.org/10.1021/ja503604t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Borg M, Berger F (2015) Chromatin remodelling during male gametophyte development. Plant J 83:177–188. https://doi.org/10.1111/tpj.12856

    Article  CAS  PubMed  Google Scholar 

  155. Zheng M, Lin J, Liu X, Chu W, Li J, Gao Y, An K, Song W, Xin M, Yao Y, Peng H, Ni Z, Sun Q, Hu Z (2021) Histone acetyltransferase TaHAG1 acts as a crucial regulator to strengthen salt tolerance of hexaploid wheat. Plant Physiol 186:1951–1969. https://doi.org/10.1093/plphys/kiab187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Sanders YY, Liu H, Liu G, Thannickal VJ (2015) Epigenetic mechanisms regulate NADPH oxidase-4 expression in cellular senescence. Free Radic Biol Med 79:197–205. https://doi.org/10.1016/j.freeradbiomed.2014.12.008

    Article  CAS  PubMed  Google Scholar 

  157. Brewer AC (2021) Physiological interrelationships between NADPH oxidases and chromatin remodelling. Free Radic Biol Med 170:109–115. https://doi.org/10.1016/j.freeradbiomed.2021.01.052

    Article  CAS  PubMed  Google Scholar 

  158. Zelko IN, Folz RJ (2015) Regulation of Oxidative Stress in Pulmonary Artery Endothelium. Modulation of Extracellular Superoxide Dismutase and NOX4 Expression Using Histone Deacetylase Class I Inhibitors. Am J Respir Cell Mol Biol 53:513–524. https://doi.org/10.1165/rcmb.2014-0260OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Manea SA, Constantin A, Manda G, Sasson S, Manea A (2015) Regulation of Nox enzymes expression in vascular pathophysiology: Focusing on transcription factors and epigenetic mechanisms. Redox Biol 5:358–366. https://doi.org/10.1016/j.redox.2015.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. He H, Van Breusegem F, Mhamdi A (2018) Redox-dependent control of nuclear transcription in plants. J Exp Bot 69:3359–3372. https://doi.org/10.1093/jxb/ery130

    Article  CAS  PubMed  Google Scholar 

  161. Dietz KJ (2014) Redox regulation of transcription factors in plant stress acclimation and development. Antioxid Redox Signal 21:1356–1372. https://doi.org/10.1089/ars.2013.5672

    Article  CAS  PubMed  Google Scholar 

  162. Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944. https://doi.org/10.1016/s0092-8674(03)00429-x

    Article  CAS  PubMed  Google Scholar 

  163. Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X (2008) Plant immunity requires conformational changes [corrected] of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956. https://doi.org/10.1126/science.1156970

    Article  CAS  PubMed  Google Scholar 

  164. Hieno A, Naznin HA, Inaba-Hasegawa K, Yokogawa T et al (2019) Transcriptome analysis and identification of a transcriptional regulatory network in the response to H2O2. Plant Physiol 180:1629–1646. https://doi.org/10.1104/pp.18.01426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Babbar R, Karpinska B, Grover A, Foyer CH (2021) Heat-Induced Oxidation of the Nuclei and Cytosol. Front Plant Sci 11:617779. https://doi.org/10.3389/fpls.2020.617779

    Article  PubMed  PubMed Central  Google Scholar 

  166. Giesguth M, Sahm A, Simon S, Dietz KJ (2015) Redox-dependent translocation of the heat shock transcription factor AtHSFA8 from the cytosol to the nucleus in Arabidopsis thaliana. FEBS Lett 589:718–725. https://doi.org/10.1016/j.febslet.2015.01.039

    Article  CAS  PubMed  Google Scholar 

  167. Liu Y, Zhang C, Chen J, Guo L, Li X, Li W, Yu Z, Deng J, Zhang P, Zhang K, Zhang L (2013) Arabidopsis heat shock factor HsfA1a directly senses heat stress, pH changes, and hydrogen peroxide via the engagement of redox state. Plant Physiol Biochem 64:92–98. https://doi.org/10.1016/j.plaphy.2012.12.013

    Article  CAS  PubMed  Google Scholar 

  168. Petrov V, Vermeirssen V, De Clercq I, Van Breusegem F, Minkov I, Vandepoele K, Gechev TS (2012) Identification of cis-regulatory elements specific for different types of reactive oxygen species in Arabidopsis thaliana. Gene 499:52–60. https://doi.org/10.1016/j.gene.2012.02.035

    Article  CAS  PubMed  Google Scholar 

  169. De Clercq I, Van de Velde J, Luo X, Liu L, Storme V, Van Bel M, Pottie R, Vaneechoutte D, Van Breusegem F, Vandepoele K (2021) Integrative inference of transcriptional networks in Arabidopsis yields novel ROS signalling regulators. Nat Plants 7:500–513. https://doi.org/10.1038/s41477-021-00894-1

    Article  CAS  PubMed  Google Scholar 

  170. Moffat CS, Ingle RA, Wathugala DL, Saunders NJ, Knight H, Knight MR (2012) ERF5 and ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against Botrytis cinerea in Arabidopsis. PLoS ONE 7:e35995. https://doi.org/10.1371/journal.pone.0035995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Babitha KC, Ramu SV, Pruthvi V, Mahesh P, Nataraja KN, Udayakumar M (2013) Co-expression of AtbHLH17 and AtWRKY28 confers resistance to abiotic stress in Arabidopsis. Transgenic Res 22:327–341. https://doi.org/10.1007/s11248-012-9645-8

    Article  CAS  PubMed  Google Scholar 

  172. Sewelam N, Kazan K, Thomas-Hall SR, Kidd BN, Manners JM, Schenk PM (2013) Ethylene response factor 6 is a regulator of reactive oxygen species signaling in Arabidopsis. PLoS ONE 8:e70289. https://doi.org/10.1371/journal.pone.0070289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Dubois M, Skirycz A, Claeys H, Maleux K, Dhondt S, De Bodt S, Vanden Bossche R, De Milde L, Yoshizumi T, Matsui M, Inzé D (2013) Ethylene Response Factor6 acts as a central regulator of leaf growth under water-limiting conditions in Arabidopsis. Plant Physiol 162:319–332. https://doi.org/10.1104/pp.113.216341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Shahnejat-Bushehri S, Nobmann B, Devi Allu A, Balazadeh S (2016) JUB1 suppresses Pseudomonas syringae-induced defense responses through accumulation of DELLA proteins. Plant Signal Behav 11:e1181245. https://doi.org/10.1080/15592324.2016.1181245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Chen X, Liu J, Lin G, Wang A, Wang Z, Lu G (2013) Overexpression of AtWRKY28 and AtWRKY75 in Arabidopsis enhances resistance to oxalic acid and Sclerotinia sclerotiorum. Plant Cell Rep 32:1589–1599. https://doi.org/10.1007/s00299-013-1469-3

    Article  CAS  PubMed  Google Scholar 

  176. Ebrahimian-Motlagh S, Ribone PA, Thirumalaikumar VP, Allu AD, Chan RL, Mueller-Roeber B, Balazadeh S (2017) JUNGBRUNNEN1 Confers Drought Tolerance Downstream of the HD-Zip I Transcription Factor AtHB13. Front Plant Sci 8:2118. https://doi.org/10.3389/fpls.2017.02118

    Article  PubMed  PubMed Central  Google Scholar 

  177. Vanderauwera S, Vandenbroucke K, Inzé A, van de Cotte B, Mühlenbock P, De Rycke R, Naouar N, Van Gaever T, Van Montagu MC, Van Breusegem F (2012) AtWRKY15 perturbation abolishes the mitochondrial stress response that steers osmotic stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 109:20113–20118. https://doi.org/10.1073/pnas.1217516109

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Czech Science Foundation (Grant number 22-17092S to PK), Polish National Science Centre (SONATA12 UMO-2016/23/D/NZ3/02491 given to PG), and Ministry of Education, Youth and Sports of the Czech Republic (European Regional Development Fund-Project “Centre for Experimental Plant Biology” (Grant no. CZ.02.1.01/0.0/0.0/16_019/0000738 to SJ).

Author information

Authors and Affiliations

Authors

Contributions

PK and PG conceived and wrote the manuscript. MQ, SM, and SJ took part in writing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pavel Kerchev.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qureshi, M.K., Gawroński, P., Munir, S. et al. Hydrogen peroxide-induced stress acclimation in plants. Cell. Mol. Life Sci. 79, 129 (2022). https://doi.org/10.1007/s00018-022-04156-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04156-x

Keywords

Navigation