Skip to main content

Advertisement

Log in

Defects in aminoacyl-tRNA synthetase cause partial B and T cell immunodeficiency

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Aminoacyl-tRNA synthetases (ARSs) are emerging as important regulators in various immune diseases; however, their roles in immune cells remain unclear. In this study, using alanyl-tRNA synthetase (AARS) mutant (sti) mice with neurodegenerative disorder, we investigated the effect of translational fidelity in immune cells. Dysfunctional AARS caused disorders in immune cell responses and cellularity. The impairment was caused by dampened TCR signaling than cytokine signaling. Therefore, sti mutant inhibits TCR signaling, impeding T cell survival and responses. B cell numbers were decreased in sti mice. Despite low B cell cellularity, serum IgM, IgA, and IgE levels were higher in sti mice than in wild-type mice. Misacylation of ARS and the consequent translational infidelity induce disturbances in signaling pathways critical for immune cell survival and responses. Our findings provide a novel mechanism by which translational fidelity might play a critical role in cellular and humoral immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4

Similar content being viewed by others

Data availability

All relevant data are within the manuscript and Supplementary Information Appendix.

Code availability

Not applicable.

References

  1. Cusack S (1997) Aminoacyl-tRNA synthetases. Curr Opin Struct Biol 7(6):881–889. https://doi.org/10.1016/s0959-440x(97)80161-3

    Article  CAS  PubMed  Google Scholar 

  2. Schmeing TM, Voorhees RM, Kelley AC, Gao YG, Murphy FV, Weir JR et al (2009) The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326(5953):688–694. https://doi.org/10.1126/science.1179700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pedersen L, Andersen GR, Knudsen CR, Kinzy TG, Nyborg J (2001) Crystallization of the yeast elongation factor complex eEF1A-eEF1B alpha. Acta Crystallogr D Biol Crystallogr 57(Pt 1):159–161. https://doi.org/10.1107/s0907444900015559

    Article  CAS  PubMed  Google Scholar 

  4. Liu B, Conn CS, Qian SB (2012) Viewing folding of nascent polypeptide chains from ribosomes. Expert Rev Proteomics 9(6):579–581. https://doi.org/10.1586/epr.12.57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Walter S, Buchner J (2002) Molecular chaperones–cellular machines for protein folding. Angew Chem Int Ed Engl 41(7):1098–1113. https://doi.org/10.1002/1521-3773(20020402)41:7%3c1098::aid-anie1098%3e3.0.co;2-9

    Article  CAS  PubMed  Google Scholar 

  6. Lin L, Hale SP, Schimmel P (1996) Aminoacylation error correction. Nature 384(6604):33–34. https://doi.org/10.1038/384033b0

    Article  CAS  PubMed  Google Scholar 

  7. Beebe K, Merriman E, Schimmel P (2003) Structure-specific tRNA determinants for editing a mischarged amino acid. J Biol Chem 278(46):45056–45061. https://doi.org/10.1074/jbc.M307080200

    Article  CAS  PubMed  Google Scholar 

  8. Soto C (2003) Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci 4(1):49–60. https://doi.org/10.1038/nrn1007

    Article  CAS  PubMed  Google Scholar 

  9. Kirchner S, Ignatova Z (2015) Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat Rev Genet 16(2):98–112. https://doi.org/10.1038/nrg3861

    Article  CAS  PubMed  Google Scholar 

  10. Liu Y, Satz JS, Vo MN, Nangle LA, Schimmel P, Ackerman SL (2014) Deficiencies in tRNA synthetase editing activity cause cardioproteinopathy. Proc Natl Acad Sci U S A 111(49):17570–17575. https://doi.org/10.1073/pnas.1420196111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ahn YH, Park S, Choi JJ, Park BK, Rhee KH, Kang E et al (2016) Secreted tryptophanyl-tRNA synthetase as a primary defence system against infection. Nat Microbiol 2:16191. https://doi.org/10.1038/nmicrobiol.2016.191

    Article  CAS  PubMed  Google Scholar 

  12. Howard OM, Dong HF, Yang D, Raben N, Nagaraju K, Rosen A et al (2002) Histidyl-tRNA synthetase and asparaginyl-tRNA synthetase, autoantigens in myositis, activate chemokine receptors on T lymphocytes and immature dendritic cells. J Exp Med 196(6):781–791. https://doi.org/10.1084/jem.20020186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou JJ, Wang F, Xu Z, Lo WS, Lau CF, Chiang KP et al (2014) Secreted histidyl-tRNA synthetase splice variants elaborate major epitopes for autoantibodies in inflammatory myositis. J Biol Chem 289(28):19269–19275. https://doi.org/10.1074/jbc.C114.571026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu C, Sun B, Nie A, Zhou Z (2020) The tRNA-associated dysregulation in immune responses and immune diseases. Acta Physiol (Oxf) 228(2):e13391. https://doi.org/10.1111/apha.13391

    Article  CAS  Google Scholar 

  15. Lee JW, Beebe K, Nangle LA, Jang J, Longo-Guess CM, Cook SA et al (2006) Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature 443(7107):50–55. https://doi.org/10.1038/nature05096

    Article  CAS  PubMed  Google Scholar 

  16. Kim G, Hwang H, Jo Y, Lee B, Lee YH, Kim CH et al (2018) Soluble γc receptor attenuates anti-tumor responses of CD8(+) T cells in T cell immunotherapy. Int J Cancer 143(5):1212–1223. https://doi.org/10.1002/ijc.31402

    Article  CAS  PubMed  Google Scholar 

  17. Lee B, Jo Y, Kim G, Ali LA, Sohn DH, Lee SG et al (2019) Specific inhibition of soluble γc receptor attenuates collagen-induced arthritis by modulating the inflammatory T cell responses. Front Immunol 10:209. https://doi.org/10.3389/fimmu.2019.00209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alves NL, Arosa FA, van Lier RA (2007) Common gamma chain cytokines: dissidence in the details. Immunol Lett 108(2):113–120. https://doi.org/10.1016/j.imlet.2006.11.006

    Article  CAS  PubMed  Google Scholar 

  19. Takada K, Jameson SC (2009) Naive T cell homeostasis: from awareness of space to a sense of place. Nat Rev Immunol 9(12):823–832. https://doi.org/10.1038/nri2657

    Article  CAS  PubMed  Google Scholar 

  20. Keller HR, Kim HK, Jo Y, Gress RE, Hong C, Park JH (2020) The abundance and availability of cytokine receptor IL-2Rβ (CD122) constrain the lymphopenia-induced homeostatic proliferation of naive CD4 T cells. J Immunol (Baltimore, Md: 1950) 204(12):3227–3235. https://doi.org/10.4049/jimmunol.1901276

    Article  CAS  Google Scholar 

  21. Hong C, Luckey MA, Ligons DL, Waickman AT, Park JY, Kim GY et al (2014) Activated T cells secrete an alternatively spliced form of common γ-chain that inhibits cytokine signaling and exacerbates inflammation. Immunity 40(6):910–923. https://doi.org/10.1016/j.immuni.2014.04.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boding L, Bonefeld CM, Nielsen BL, Lauritsen JP, von Essen MR, Hansen AK et al (2009) TCR down-regulation controls T cell homeostasis. J Immunol 183(8):4994–5005. https://doi.org/10.4049/jimmunol.0901539

    Article  CAS  PubMed  Google Scholar 

  23. Surh CD, Sprent J (2008) Homeostasis of naive and memory T cells. Immunity 29(6):848–862. https://doi.org/10.1016/j.immuni.2008.11.002

    Article  CAS  PubMed  Google Scholar 

  24. Aloulou M, Fazilleau N (2019) Regulation of B cell responses by distinct populations of CD4 T cells. Biomed J 42(4):243–251. https://doi.org/10.1016/j.bj.2019.06.002

    Article  PubMed  PubMed Central  Google Scholar 

  25. King C (2009) New insights into the differentiation and function of T follicular helper cells. Nat Rev Immunol 9(11):757–766. https://doi.org/10.1038/nri2644

    Article  CAS  PubMed  Google Scholar 

  26. Dogan SA, Pujol C, Maiti P, Kukat A, Wang S, Hermans S et al (2014) Tissue-specific loss of DARS2 activates stress responses independently of respiratory chain deficiency in the heart. Cell Metab 19(3):458–469. https://doi.org/10.1016/j.cmet.2014.02.004

    Article  CAS  PubMed  Google Scholar 

  27. Hilander T, Zhou XL, Konovalova S, Zhang FP, Euro L, Chilov D et al (2018) Editing activity for eliminating mischarged tRNAs is essential in mammalian mitochondria. Nucleic Acids Res 46(2):849–860. https://doi.org/10.1093/nar/gkx1231

    Article  CAS  PubMed  Google Scholar 

  28. Vo MN, Terrey M, Lee JW, Roy B, Moresco JJ, Sun L et al (2018) ANKRD16 prevents neuron loss caused by an editing-defective tRNA synthetase. Nature 557(7706):510–515. https://doi.org/10.1038/s41586-018-0137-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morris R, Kershaw NJ, Babon JJ (2018) The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci 27(12):1984–2009. https://doi.org/10.1002/pro.3519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hwang JR, Byeon Y, Kim D, Park SG (2020) Recent insights of T cell receptor-mediated signaling pathways for T cell activation and development. Exp Mol Med 52(5):750–761. https://doi.org/10.1038/s12276-020-0435-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lo WL, Shah NH, Ahsan N, Horkova V, Stepanek O, Salomon AR et al (2018) Lck promotes Zap70-dependent LAT phosphorylation by bridging Zap70 to LAT. Nat Immunol 19(7):733–741. https://doi.org/10.1038/s41590-018-0131-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Horejsí V, Zhang W, Schraven B (2004) Transmembrane adaptor proteins: organizers of immunoreceptor signalling. Nat Rev Immunol 4(8):603–616. https://doi.org/10.1038/nri1414

    Article  CAS  PubMed  Google Scholar 

  33. Itoh M, Dai H, Horike SI, Gonzalez J, Kitami Y, Meguro-Horike M et al (2019) Biallelic KARS pathogenic variants cause an early-onset progressive leukodystrophy. Brain 142(3):560–573. https://doi.org/10.1093/brain/awz001

    Article  PubMed  Google Scholar 

  34. Khan WN (2009) B cell receptor and BAFF receptor signaling regulation of B cell homeostasis. J Immunol 183(6):3561–3567. https://doi.org/10.4049/jimmunol.0800933

    Article  CAS  PubMed  Google Scholar 

  35. Calamito M, Juntilla MM, Thomas M, Northrup DL, Rathmell J, Birnbaum MJ et al (2010) Akt1 and Akt2 promote peripheral B-cell maturation and survival. Blood 115(20):4043–4050. https://doi.org/10.1182/blood-2009-09-241638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kurosaki T, Hikida M (2009) Tyrosine kinases and their substrates in B lymphocytes. Immunol Rev 228(1):132–148. https://doi.org/10.1111/j.1600-065X.2008.00748

    Article  CAS  PubMed  Google Scholar 

  37. Mackay F, Schneider P, Rennert P, Browning J (2003) BAFF and APRIL: a tutorial on B cell survival. Annu Rev Immunol 21:231–264. https://doi.org/10.1146/annurev.immunol.21.120601.141152

    Article  CAS  PubMed  Google Scholar 

  38. Yasuda T, Sanjo H, Pagès G, Kawano Y, Karasuyama H, Pouysségur J et al (2008) Erk kinases link pre-B cell receptor signaling to transcriptional events required for early B cell expansion. Immunity 28(4):499–508. https://doi.org/10.1016/j.immuni.2008.02.015

    Article  CAS  PubMed  Google Scholar 

  39. Moore PA, Belvedere O, Orr A, Pieri K, LaFleur DW, Feng P et al (1999) BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 285(5425):260–263. https://doi.org/10.1126/science.285.5425.260

    Article  CAS  PubMed  Google Scholar 

  40. Nie A, Sun B, Fu Z, Yu D (2019) Roles of aminoacyl-tRNA synthetases in immune regulation and immune diseases. Cell Death Dis 10(12):901. https://doi.org/10.1038/s41419-019-2145-5

    Article  PubMed  PubMed Central  Google Scholar 

  41. Park SG, Schimmel P, Kim S (2008) Aminoacyl tRNA synthetases and their connections to disease. Proc Natl Acad Sci U S A 105(32):11043–11049. https://doi.org/10.1073/pnas.0802862105

    Article  PubMed  PubMed Central  Google Scholar 

  42. Boguniewicz M, Leung DY (2011) Atopic dermatitis: a disease of altered skin barrier and immune dysregulation. Immunol Rev 242(1):233–246. https://doi.org/10.1111/j.1600-065X.2011.01027.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Crameri R, Blaser K (2002) Allergy and immunity to fungal infections and colonization. Eur Respir J 19(1):151–157. https://doi.org/10.1183/09031936.02.00229102

    Article  CAS  PubMed  Google Scholar 

  44. Fay NS, Larson EC, Jameson JM (2016) Chronic inflammation and γδ T cells. Front Immunol 7:210. https://doi.org/10.3389/fimmu.2016.00210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Iwamura C, Nakayama T (2010) Role of NKT cells in allergic asthma. Curr Opin Immunol 22(6):807–813. https://doi.org/10.1016/j.coi.2010.10.008

    Article  CAS  PubMed  Google Scholar 

  46. Wilson RP, McGettigan SE, Dang VD, Kumar A, Cancro MP, Nikbakht N et al (2019) IgM plasma cells reside in healthy skin and accumulate with chronic inflammation. J Invest Dermatol 139(12):2477–2487. https://doi.org/10.1016/j.jid.2019.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sun W, Gudi RR, Johnson BM, Vasu C (2020) Abundance and nuclear antigen reactivity of intestinal and fecal immunoglobulin A in lupus-prone mice at younger ages correlate with the onset of eventual systemic autoimmunity. Sci Rep 10(1):14258. https://doi.org/10.1038/s41598-020-71272-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Matsumoto M, Ra C, Kawamoto K, Sato H, Itakura A, Sawada J et al (1999) IgE hyperproduction through enhanced tyrosine phosphorylation of Janus kinase 3 in NC/Nga mice, a model for human atopic dermatitis. J Immunol 162(2):1056–1063

    CAS  PubMed  Google Scholar 

  49. Cookson W (2004) The immunogenetics of asthma and eczema: a new focus on the epithelium. Nat Rev Immunol 4(12):978–988. https://doi.org/10.1038/nri1500

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Lee at the KRIBB and the members of the Hong lab for critical review of this manuscript. This work was supported by the Medical Research Center Program (2015R1A5A2009656) and Basic Science Research Program (2020R1A2C1006616) through a National Research Foundation of Korea (NRF) funded by the Korean government.

Funding

Funding was provided by the Medical Research Center Program (2015R1A5A2009656) and Basic Science Research Program (2020R1A2C1006616) through a National Research Foundation of Korea (NRF).

Author information

Authors and Affiliations

Authors

Contributions

CH conceived and designed the study. JAS, YJ, HH, DL, SEL, DH, JK and CH performed experiments and analyzed data. JAS, YJ, DL, JHL, PS and CH analyzed and interpreted the results. JAS and CH wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Changwan Hong.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Ethical approval

All the procedures involving animals in this study complied with Pusan National University (PNU) Institutional Animal Care and Use Committee (PNU-2020-2714) and the KRIBB Animal Care and Use Committee (KRIBB-AEC-18156).

Consent for publication

All the authors have approved and agreed to publish this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 701 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shim, J.A., Jo, Y., Hwang, H. et al. Defects in aminoacyl-tRNA synthetase cause partial B and T cell immunodeficiency. Cell. Mol. Life Sci. 79, 87 (2022). https://doi.org/10.1007/s00018-021-04122-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-021-04122-z

Keywords

Navigation