Abstract
The adenosine triphosphate (ATP)-binding cassette efflux transporter G2 (ABCG2) was originally discovered in a multidrug-resistant breast cancer cell line. Studies in the past have expanded the understanding of its role in physiology, disease pathology and drug resistance. With a widely distributed expression across different cell types, ABCG2 plays a central role in ATP-dependent efflux of a vast range of endogenous and exogenous molecules, thereby maintaining cellular homeostasis and providing tissue protection against xenobiotic insults. However, ABCG2 expression is subjected to alterations under various pathophysiological conditions such as inflammation, infection, tissue injury, disease pathology and in response to xenobiotics and endobiotics. These changes may interfere with the bioavailability of therapeutic substrate drugs conferring drug resistance and in certain cases worsen the pathophysiological state aggravating its severity. Considering the crucial role of ABCG2 in normal physiology, therapeutic interventions directly targeting the transporter function may produce serious side effects. Therefore, modulation of transporter regulation instead of inhibiting the transporter itself will allow subtle changes in ABCG2 activity. This requires a thorough comprehension of diverse factors and complex signaling pathways (Kinases, Wnt/β-catenin, Sonic hedgehog) operating at multiple regulatory levels dictating ABCG2 expression and activity. This review features a background on the physiological role of transporter, factors that modulate ABCG2 levels and highlights various signaling pathways, molecular mechanisms and genetic polymorphisms in ABCG2 regulation. This understanding will aid in identifying potential molecular targets for therapeutic interventions to overcome ABCG2-mediated multidrug resistance (MDR) and to manage ABCG2-related pathophysiology.




Similar content being viewed by others
Data availability
Not applicable.
Code availability
Not applicable.
References
Mao Q (2008) BCRP/ABCG2 in the placenta: expression, function and regulation. Pharm Res 25(6):1244–1255. https://doi.org/10.1007/s11095-008-9537-z
Toyoda Y, Takada T, Suzuki H (2019) Inhibitors of human ABCG2: from technical background to recent updates with clinical implications. Front Pharmacol 10:208. https://doi.org/10.3389/fphar.2019.00208
Xu J, Peng H, Zhang JT (2007) Human multidrug transporter ABCG2, a target for sensitizing drug resistance in cancer chemotherapy. Curr Med Chem 14(6):689–701. https://doi.org/10.2174/092986707780059580
Natarajan K, Xie Y, Baer MR, Ross DD (2012) Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance. Biochem Pharmacol 83(8):1084–1103. https://doi.org/10.1016/j.bcp.2012.01.002
Robey RW, To KK, Polgar O, Dohse M, Fetsch P, Dean M, Bates SE (2009) ABCG2: a perspective. Adv Drug Deliv Rev 61(1):3–13. https://doi.org/10.1016/j.addr.2008.11.003
Heyes N, Kapoor P, Kerr ID (2018) Polymorphisms of the multidrug pump ABCG2: a systematic review of their effect on protein expression, function, and drug pharmacokinetics. Drug Metab Dispos 46(12):1886–1899. https://doi.org/10.1124/dmd.118.083030
Hira D, Terada T (2018) BCRP/ABCG2 and high-alert medications: biochemical, pharmacokinetic, pharmacogenetic, and clinical implications. Biochem Pharmacol 147:201–210. https://doi.org/10.1016/j.bcp.2017.10.004
Matsuo H, Takada T, Ichida K, Nakamura T, Nakayama A, Ikebuchi Y, Ito K et al (2009) Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. Sci Transl Med 1(5):5ra11. https://doi.org/10.1126/scitranslmed.3000237
Hosomi A, Nakanishi T, Fujita T, Tamai I (2012) Extra-renal elimination of uric acid via intestinal efflux transporter BCRP/ABCG2. PLoS One 7(2):e30456. https://doi.org/10.1371/journal.pone.0030456
Blazquez AG, Briz O, Romero MR, Rosales R, Monte MJ, Vaquero J, Macias RI et al (2012) Characterization of the role of ABCG2 as a bile acid transporter in liver and placenta. Mol Pharmacol 81(2):273–283. https://doi.org/10.1124/mol.111.075143
Krishnamurthy P, Xie T, Schuetz JD (2007) The role of transporters in cellular heme and porphyrin homeostasis. Pharmacol Ther 114(3):345–358. https://doi.org/10.1016/j.pharmthera.2007.02.001
Nakanishi H, Yonezawa A, Matsubara K, Yano I (2013) Impact of P-glycoprotein and breast cancer resistance protein on the brain distribution of antiepileptic drugs in knockout mouse models. Eur J Pharmacol 710(1–3):20–28. https://doi.org/10.1016/j.ejphar.2013.03.049
Romermann K, Helmer R, Loscher W (2015) The antiepileptic drug lamotrigine is a substrate of mouse and human breast cancer resistance protein (ABCG2). Neuropharmacology 93:7–14. https://doi.org/10.1016/j.neuropharm.2015.01.015
Polgar O, Robey RW, Bates SE (2008) ABCG2: structure, function and role in drug response. Expert Opin Drug Metab Toxicol 4(1):1–15. https://doi.org/10.1517/17425255.4.1.1
Nakanishi T, Ross DD (2012) Breast cancer resistance protein (BCRP/ABCG2): its role in multidrug resistance and regulation of its gene expression. Chin J Cancer 31(2):73–99. https://doi.org/10.5732/cjc.011.10320
Shukla S, Robey RW, Bates SE, Ambudkar SV (2006) The calcium channel blockers, 1,4-dihydropyridines, are substrates of the multidrug resistance-linked ABC drug transporter, ABCG2. Biochemistry 45(29):8940–8951. https://doi.org/10.1021/bi060552f
Mo W, Zhang JT (2012) Human ABCG2: structure, function, and its role in multidrug resistance. Int J Biochem Mol Biol 3(1):1–27
Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, Ross DD (1998) A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 95(26):15665–15670. https://doi.org/10.1073/pnas.95.26.15665
Allikmets R, Schriml LM, Hutchinson A, Romano-Spica V, Dean M (1998) A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res 58(23):5337–5339
Miyake K, Mickley L, Litman T, Zhan Z, Robey R, Cristensen B, Brangi M et al (1999) Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: demonstration of homology to ABC transport genes. Cancer Res 59(1):8–13
Robey RW, Medina-Pérez WY, Nishiyama K, Lahusen T, Miyake K, Litman T, Senderowicz AM et al (2001) Overexpression of the ATP-binding cassette half-transporter, ABCG2 (Mxr/BCrp/ABCP1), in flavopiridol-resistant human breast cancer cells. Clin Cancer Res 7(1):145–152
Schinkel AH, Jonker JW (2012) Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev 64:138–153. https://doi.org/10.1016/j.addr.2012.09.027
Lazarowski AJ, Lubieniecki FJ, Camarero SA, Pomata HH, Bartuluchi MA, Sevlever G, Taratuto AL (2006) New proteins configure a brain drug resistance map in tuberous sclerosis. Pediatr Neurol 34(1):20–24. https://doi.org/10.1016/j.pediatrneurol.2005.06.008
Vogelgesang S, Kunert-Keil C, Cascorbi I, Mosyagin I, Schröder E, Runge U, Jedlitschky G et al (2004) Expression of multidrug transporters in dysembryoplastic neuroepithelial tumors causing intractable epilepsy. Clin Neuropathol 23(5):223–231
Banerjee Dixit A, Sharma D, Srivastava A, Banerjee J, Tripathi M, Prakash D, Sarat Chandra P (2017) Upregulation of breast cancer resistance protein and major vault protein in drug resistant epilepsy. Seizure 47:9–12. https://doi.org/10.1016/j.seizure.2017.02.014
Liu WH, Liu HB, Gao DK, Ge GQ, Zhang P, Sun SR, Wang HM et al (2013) ABCG2 protects kidney side population cells from hypoxia/reoxygenation injury through activation of the MEK/ERK pathway. Cell Transplant 22(10):1859–1868. https://doi.org/10.3727/096368912X657206
Francois LN, Gorczyca L, Du J, Bircsak KM, Yen E, Wen X, Tu MJ et al (2017) Down-regulation of the placental BCRP/ABCG2 transporter in response to hypoxia signaling. Placenta 51:57–63. https://doi.org/10.1016/j.placenta.2017.01.125
To KK, Leung WW, Ng SS (2017) A novel miR-203-DNMT3b-ABCG2 regulatory pathway predisposing colorectal cancer development. Mol Carcinog 56(2):464–477. https://doi.org/10.1002/mc.22508
Martin CM, Ferdous A, Gallardo T, Humphries C, Sadek H, Caprioli A, Garcia JA et al (2008) Hypoxia-inducible factor-2α transactivates Abcg2 and promotes cytoprotection in cardiac side population cells. Circ Res 102(9):1075–1081. https://doi.org/10.1161/circresaha.107.161729
Ke SZ, Ni XY, Zhang YH, Wang YN, Wu B, Gao FG (2013) Camptothecin and cisplatin upregulate ABCG2 and MRP2 expression by activating the ATM/NF-kappaB pathway in lung cancer cells. Int J Oncol 42(4):1289–1296. https://doi.org/10.3892/ijo.2013.1805
Arumugam A, Subramani R, Nandy SB, Terreros D, Dwivedi AK, Saltzstein E, Lakshmanaswamy R (2019) Silencing growth hormone receptor inhibits estrogen receptor negative breast cancer through ATP-binding cassette sub-family G member 2. Exp Mol Med 51(1):1–13. https://doi.org/10.1038/s12276-018-0197-8
Ding XW, Wu JH, Jiang CP (2010) ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sci 86(17–18):631–637. https://doi.org/10.1016/j.lfs.2010.02.012
Graf GA, Li W-P, Gerard RD, Gelissen I, White A, Cohen JC, Hobbs HH (2002) Coexpression of ATP-binding cassette proteins ABCG5 and ABCG8 permits their transport to the apical surface. J Clin Investig 110(5):659–669. https://doi.org/10.1172/jci200216000
Graf GA, Yu L, Li WP, Gerard R, Tuma PL, Cohen JC, Hobbs HH (2003) ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion. J Biol Chem 278(48):48275–48282. https://doi.org/10.1074/jbc.M310223200
Klett EL, Lee MH, Adams DB, Chavin KD, Patel SB (2004) Localization of ABCG5 and ABCG8 proteins in human liver, gall bladder and intestine. BMC Gastroenterol 4:21. https://doi.org/10.1186/1471-230X-4-21
Rocchi E, Khodjakov A, Volk EL, Yang CH, Litman T, Bates SE, Schneider E (2000) The product of the ABC half-transporter gene ABCG2 (BCRP/MXR/ABCP) is expressed in the plasma membrane. Biochem Biophys Res Commun 271(1):42–46. https://doi.org/10.1006/bbrc.2000.2590
Aye IL, Paxton JW, Evseenko DA, Keelan JA (2007) Expression, localisation and activity of ATP binding cassette (ABC) family of drug transporters in human amnion membranes. Placenta 28(8–9):868–877. https://doi.org/10.1016/j.placenta.2007.03.001
Yeboah D, Kalabis GM, Sun M, Ou RC, Matthews SG, Gibb W (2008) Expression and localisation of breast cancer resistance protein (BCRP) in human fetal membranes and decidua and the influence of labour at term. Reprod Fertil Dev 20(2):328–334. https://doi.org/10.1071/rd07133
Bhatia P, Bernier M, Sanghvi M, Moaddel R, Schwarting R, Ramamoorthy A, Wainer IW (2012) Breast cancer resistance protein (BCRP/ABCG2) localises to the nucleus in glioblastoma multiforme cells. Xenobiotica 42(8):748–755. https://doi.org/10.3109/00498254.2012.662726
Nickel S, Selo MA, Fallack J, Clerkin CG, Huwer H, Schneider-Daum N, Lehr CM et al (2017) Expression and activity of breast cancer resistance protein (BCRP/ABCG2) in human distal lung epithelial cells in vitro. Pharm Res 34(12):2477–2487. https://doi.org/10.1007/s11095-017-2172-9
Liang SC, Yang CY, Tseng JY, Wang HL, Tung CY, Liu HW, Chen CY et al (2015) ABCG2 localizes to the nucleus and modulates CDH1 expression in lung cancer cells. Neoplasia 17(3):265–278. https://doi.org/10.1016/j.neo.2015.01.004
Solazzo M, Fantappie O, D’Amico M, Sassoli C, Tani A, Cipriani G, Bogani C et al (2009) Mitochondrial expression and functional activity of breast cancer resistance protein in different multiple drug-resistant cell lines. Cancer Res 69(18):7235–7242. https://doi.org/10.1158/0008-5472.CAN-08-4315
Ahmed F, Arseni N, Glimm H, Hiddemann W, Buske C, Feuring- Buske M (2008) Constitutive expression of the ATP-binding cassette transporter ABCG2 enhances the growth potential of early human hematopoietic progenitors. Stem Cells 26(3):810–818. https://doi.org/10.1634/stemcells.2007-0527
Krishnamurthy P, Ross DD, Nakanishi T, Bailey-Dell K, Zhou S, Mercer KE, Sarkadi B et al (2004) The stem cell marker Bcrp/ ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem 279(23):24218–24225. https://doi.org/10.1074/jbc.M313599200
Scharenberg CW, Harkey MA, Torok-Storb B (2002) The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 99(2):507–512. https://doi.org/10.1182/blood.v99.2.507
Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I et al (2001) The ABC transporter Bcrp1/ ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7(9):1028–1034. https://doi.org/10.1038/nm0901-1028
Lu SJ, Quan C, Li F, Vida L, Honig GR (2002) Hematopoietic progenitor cells derived from embryonic stem cells: analysis of gene expression. Stem Cells 20(5):428–437. https://doi.org/10.1634/stemcells.20-5-428
Apati A, Orban TI, Varga N, Nemeth A, Schamberger A, Krizsik V, Erdelyi-Belle B et al (2008) High level functional expression of the ABCG2 multidrug transporter in undifferentiated human embryonic stem cells. Biochim Biophys Acta 1778(12):2700–2709. https://doi.org/10.1016/j.bbamem.2008.08.010
Susanto J, Lin YH, Chen YN, Shen CR, Yan YT, Tsai ST, Chen CH et al (2008) Porphyrin homeostasis maintained by ABCG2 regulates self-renewal of embryonic stem cells. PLoS One 3(12):e4023. https://doi.org/10.1371/journal.pone.0004023
Lechner A, Leech CA, Abraham EJ, Nolan AL, Habener JF (2002) Nestin-positive progenitor cells derived from adult human pancreatic islets of Langerhans contain side population (SP) cells defined by expression of the ABCG2 (BCRP1) ATP-binding cassette transporter. Biochem Biophys Res Commun 293(2):670–674. https://doi.org/10.1016/s0006-291x(02)00275-9
Clayton H, Titley I, Vivanco M (2004) Growth and differentiation of progenitor/stem cells derived from the human mammary gland. Exp Cell Res 297(2):444–460. https://doi.org/10.1016/j.yexcr.2004.03.029
de Paiva CS, Chen Z, Corrales RM, Pflugfelder SC, Li DQ (2005) ABCG2 transporter identifies a population of clonogenic human limbal epithelial cells. Stem Cells 23(1):63–73. https://doi.org/10.1634/stemcells.2004-0093
Islam MO, Kanemura Y, Tajria J, Mori H, Kobayashi S, Hara M, Yamasaki M et al (2005) Functional expression of ABCG2 transporter in human neural stem/progenitor cells. Neurosci Res 52(1):75–82. https://doi.org/10.1016/j.neures.2005.01.013
Pascal LE, Oudes AJ, Petersen TW, Goo YA, Walashek LS, True LD, Liu AY (2007) Molecular and cellular characterization of ABCG2 in the prostate. BMC Urol 7:6. https://doi.org/10.1186/1471-2490-7-6
Tsuji S, Yoshimoto M, Takahashi K, Noda Y, Nakahata T, Heike T (2008) Side population cells contribute to the genesis of human endometrium. Fertil Steril 90(4 Suppl):1528–1537. https://doi.org/10.1016/j.fertnstert.2007.08.005
Bhattacharya S, Das A, Mallya K, Ahmad I (2007) Maintenance of retinal stem cells by Abcg2 is regulated by notch signaling. J Cell Sci 120(Pt 15):2652–2662. https://doi.org/10.1242/jcs.008417
Yu KH, Chang PY, Chang SC, Wu-Chou YH, Wu LA, Chen DP, Lo FS et al (2017) A comprehensive analysis of the association of common variants of ABCG2 with gout. Sci Rep 7(1):9988. https://doi.org/10.1038/s41598-017-10196-2
Meeson AP, Hawke TJ, Graham S, Jiang N, Elterman J, Hutcheson K, Dimaio JM et al (2004) Cellular and molecular regulation of skeletal muscle side population cells. Stem Cells 22(7):1305–1320. https://doi.org/10.1634/stemcells.2004-0077
Martin CM, Meeson AP, Robertson SM, Hawke TJ, Richardson JA, Bates S, Goetsch SC et al (2004) Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 265(1):262–275. https://doi.org/10.1016/j.ydbio.2003.09.028
Pfister O, Oikonomopoulos A, Sereti KI, Sohn RL, Cullen D, Fine GC, Mouquet F et al (2008) Role of the ATP-binding cassette transporter Abcg2 in the phenotype and function of cardiac side population cells. Circ Res 103(8):825–835. https://doi.org/10.1161/CIRCRESAHA.108.174615
Zhou S, Zong Y, Ney PA, Nair G, Stewart CF, Sorrentino BP (2005) Increased expression of the Abcg2 transporter during erythroid maturation plays a role in decreasing cellular protoporphyrin IX levels. Blood 105(6):2571–2576. https://doi.org/10.1182/blood-2004-04-1566
Leimanis ML, Georges E (2007) ABCG2 membrane transporter in mature human erythrocytes is exclusively homodimer. Biochem Biophys Res Commun 354(2):345–350. https://doi.org/10.1016/j.bbrc.2006.12.219
Jiri M, Zhang L, Lan B, He N, Feng T, Liu K, Jin T et al (2016) Genetic variation in the ABCG2 gene is associated with gout risk in the Chinese Han population. Clin Rheumatol 35(1):159–163. https://doi.org/10.1007/s10067-015-3105-9
Zelinski T, Coghlan G, Liu XQ, Reid ME (2012) ABCG2 null alleles define the Jr(a-) blood group phenotype. Nat Genet 44(2):131–132. https://doi.org/10.1038/ng.1075
Saison C, Helias V, Ballif BA, Peyrard T, Puy H, Miyazaki T, Perrot S et al (2012) Null alleles of ABCG2 encoding the breast cancer resistance protein define the new blood group system Junior. Nat Genet 44(2):174–177. https://doi.org/10.1038/ng.1070
Castilho L, Reid ME (2013) A review of the JR blood group system. Immunohematology 29(2):63–68
Raaijmakers MH, de Grouw EP, Heuver LH, van der Reijden BA, Jansen JH, Scheffer G, Scheper RJ et al (2005) Impaired breast cancer resistance protein mediated drug transport in plasma cells in multiple myeloma. Leuk Res 29(12):1455–1458. https://doi.org/10.1016/j.leukres.2005.04.013
Bart J, Hollema H, Groen HJ, de Vries EG, Hendrikse NH, Sleijfer DT, Wegman TD et al (2004) The distribution of drug-efflux pumps, P-gp, BCRP, MRP1 and MRP2, in the normal bloodtestis barrier and in primary testicular tumours. Eur J Cancer 40(14):2064–2070. https://doi.org/10.1016/j.ejca.2004.05.010
Enokizono J, Kusuhara H, Sugiyama Y (2007) Effect of breast cancer resistance protein (Bcrp/Abcg2) on the disposition of phytoestrogens. Mol Pharmacol 72(4):967–975. https://doi.org/10.1124/mol.107.034751
Mruk DD, Su L, Cheng CY (2011) Emerging role for drug transporters at the blood-testis barrier. Trends Pharmacol Sci 32(2):99–106. https://doi.org/10.1016/j.tips.2010.11.007
Lassalle B, Bastos H, Louis JP, Riou L, Testart J, Dutrillaux B, Fouchet P et al (2004) ‘Side Population’ cells in adult mouse testis express Bcrp1 gene and are enriched in spermatogonia and germinal stem cells. Development 131(2):479–487. https://doi.org/10.1242/dev.00918
Scharenberg C, Mannowetz N, Robey RW, Brendel C, Repges P, Sahrhage T, Jahn T et al (2009) ABCG2 is expressed in late spermatogenesis and is associated with the acrosome. Biochem Biophys Res Commun 37(2):302–307. https://doi.org/10.1016/j.bbrc.2008.11.058
Caballero J, Frenette G, D’Amours O, Dufour M, Oko R, Sullivan R (2012) ATP-binding cassette transporter G2 activity in the bovine spermatozoa is modulated along the epididymal duct and at ejaculation. Biol Reprod 86(6):181. https://doi.org/10.1095/biolreprod.111.097477
Fetsch PA, Abati A, Litman T, Morisaki K, Honjo Y, Mittal K, Bates SE (2006) Localization of the ABCG2 mitoxantrone resistance-associated protein in normal tissues. Cancer Lett 235(1):84–92. https://doi.org/10.1016/j.canlet.2005.04.024
Westover D, Li F (2015) New trends for overcoming ABCG2/BCRP-mediated resistance to cancer therapies. J Exp Clin Cancer Res 34:159. https://doi.org/10.1186/s13046-015-0275-x
Jonker JW, Merino G, Musters S, van Herwaarden AE, Bolscher E, Wagenaar E, Mesman E et al (2005) The breast cancer resistance protein BCRP (ABCG2) concentrates drugs and carcinogenic xenotoxins into milk. Nat Med 11(2):127–129. https://doi.org/10.1038/nm1186
van Herwaarden AE, Wagenaar E, Merino G, Jonker JW, Rosing H, Beijnen JH, Schinkel AH (2007) Multidrug transporter ABCG2/breast cancer resistance protein secretes riboflavin (vitamin B2) into milk. Mol Cell Biol 27(4):1247–1253. https://doi.org/10.1128/MCB.01621-06
Wei J, Geale PF, Sheehy PA, Williamson P (2012) The impact of ABCG2 on bovine mammary epithelial cell proliferation. Anim Biotechnol 23(3):221–224. https://doi.org/10.1080/10495398.2012.696567
Lindner S, Halwachs S, Wassermann L, Honscha W (2013) Expression and subcellular localization of efflux transporter ABCG2/BCRP in important tissue barriers of lactating dairy cows, sheep and goats. J Vet Pharmacol Ther 36(6):562–570. https://doi.org/10.1111/jvp.12045
Zhou T, Hu M, Cost M, Poloyac S, Rohan L (2013) Short communication: expression of transporters and metabolizing enzymes in the female lower genital tract: implications for microbicide research. AIDS Res Hum Retroviruses 29(11):1496–1503. https://doi.org/10.1089/AID.2013.0032
Zhou T, Hu M, Pearlman A, Patton D, Rohan L (2014) Expression and localization of p-glycoprotein, multidrug resistance protein 4, and breast cancer resistance protein in the female lower genital tract of human and pigtailed macaque. AIDS Res Hum Retroviruses 30(11):1106–1116. https://doi.org/10.1089/AID.2013.0281
Dankers AC, Sweep FC, Pertijs JC, Verweij V, van den Heuvel JJ, Koenderink JB, Russel FG et al (2012) Localization of breast cancer resistance protein (Bcrp) in endocrine organs and inhibition of its transport activity by steroid hormones. Cell Tissue Res 349(2):551–563. https://doi.org/10.1007/s00441-012-1417-5
Brayboy LM, Oulhen N, Long S, Voigt N, Raker C, Wessel GM (2017) Multidrug resistance transporter-1 and breast cancer resistance protein protect against ovarian toxicity, and are essential in ovarian physiology. Reprod Toxicol 69:121–131. https://doi.org/10.1016/j.reprotox.2017.02.002
Maliepaard M, Scheffer GL, Faneyte IF, van Gastelen MA, Pijnenborg AC, Schinkel AH, van De Vijver MJ et al (2001) Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res 61(8):3458–3464
Kolwankar D, Glover DD, Ware JA, Tracy TS (2005) Expression and function of ABCB1 and ABCG2 in human placental tissue. Drug Metab Dispos 33(4):524–529. https://doi.org/10.1124/dmd.104.002261
Grube M, Reuther S, Meyer zu Schwabedissen H, Kock K, Draber K, Ritter CA, Fusch C et al (2007) Organic anion transporting polypeptide 2B1 and breast cancer resistance protein interact in the transepithelial transport of steroid sulfates in human placenta. Drug Metab Dispos 35(1):30–35. https://doi.org/10.1124/dmd.106.011411
Evseenko DA, Paxton JW, Keelan JA (2007) The xenobiotic transporter ABCG2 plays a novel role in differentiation of trophoblast-like BeWo cells. Placenta 28(Suppl A):S116–120: https://doi.org/10.1016/j.placenta.2006.12.003
Evseenko DA, Murthi P, Paxton JW, Reid G, Emerald BS, Mohankumar KM, Lobie PE et al (2007) The ABC transporter BCRP/ABCG2 is a placental survival factor, and its expression is reduced in idiopathic human fetal growth restriction. FASEB J 21(13):3592–3605. https://doi.org/10.1096/fj.07-8688com
Staud F, Vackova Z, Pospechova K, Pavek P, Ceckova M, Libra A, Cygalova L et al (2006) Expression and transport activity of breast cancer resistance protein (Bcrp/Abcg2) in dually perfused rat placenta and HRP-1 cell line. J Pharmacol Exp Ther 319(1):53–62. https://doi.org/10.1124/jpet.106.105023
Nakayama A, Nakaoka H, Yamamoto K, Sakiyama M, Shaukat A, Toyoda Y, Okada Y et al (2017) GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes. Ann Rheum Dis 76(5):869–877. https://doi.org/10.1136/annrheumdis-2016-209632
Riches Z, Walia G, Berman JM, Wright TE, Collier AC (2016) ATP-binding cassette proteins BCRP, MRP1 and P-gp expression and localization in the human umbilical cord. Xenobiotica 46(6):548–556. https://doi.org/10.3109/00498254.2015.1091118
Cooray HC, Blackmore CG, Maskell L, Barrand MA (2002) Localisation of breast cancer resistance protein in microvessel endothelium of human brain. NeuroReport 13(16):2059–2063. https://doi.org/10.1097/00001756-200211150-00014
Zhang W, Mojsilovic-Petrovic J, Andrade MF, Zhang H, Ball M, Stanimirovic DB (2003) The expression and functional characterization of ABCG2 in brain endothelial cells and vessels. FASEB J 17(14):2085–2087. https://doi.org/10.1096/fj.02-1131fje
Hori S, Ohtsuki S, Tachikawa M, Kimura N, Kondo T, Watanabe M, Nakashima E et al (2004) Functional expression of rat ABCG2 on the luminal side of brain capillaries and its enhancement by astrocyte-derived soluble factor(s). J Neurochem 90(3):526–536. https://doi.org/10.1111/j.1471-4159.2004.02537.x
Yasuda K, Cline C, Vogel P, Onciu M, Fatima S, Sorrentino BP, Thirumaran RK et al (2013) Drug transporters on arachnoid barrier cells contribute to the blood-cerebrospinal fluid barrier. Drug Metab Dispos 41(4):923–931. https://doi.org/10.1124/dmd.112.050344
Uchida Y, Goto R, Takeuchi H, Luczak M, Usui T, Tachikawa M, Terasaki T (2020) Abundant expression of OCT2, MATE1, OAT1, OAT3, PEPT2, BCRP, MDR1, and xCT transporters in blood-arachnoid barrier of pig and polarized localizations at CSF- and blood-facing plasma membranes. Drug Metab Dispos 48(2):135–145. https://doi.org/10.1124/dmd.119.089516
Uchida Y, Zhang Z, Tachikawa M, Terasaki T (2015) Quantitative targeted absolute proteomics of rat blood-cerebrospinal fluid barrier transporters: comparison with a human specimen. J Neurochem 134(6):1104–1115. https://doi.org/10.1111/jnc.13147
Bernd A, Ott M, Ishikawa H, Schroten H, Schwerk C, Fricker G (2015) Characterization of efflux transport proteins of the human choroid plexus papilloma cell line HIBCPP, a functional in vitro model of the blood-cerebrospinal fluid barrier. Pharm Res 32(9):2973–2982. https://doi.org/10.1007/s11095-015-1679-1
Kaur M, Badhan RK (2015) Phytoestrogens modulate breast cancer resistance protein expression and function at the bloodcerebrospinal fluid barrier. J Pharm Pharm Sci 18(2):132–154 https://doi.org/10.18433/j3p31k
Morris ME, Rodriguez-Cruz V, Felmlee MA (2017) SLC and ABC transporters: expression, localization, and species differences at the blood-brain and the blood-cerebrospinal fluid barriers. AAPS J 19(5):1317–1331. https://doi.org/10.1208/s12248-017-0110-8
Meissner K, Heydrich B, Jedlitschky G, Meyer Zu Schwabedissen H, Mosyagin I, Dazert P, Eckel L et al (2006) The ATPbinding cassette transporter ABCG2 (BCRP), a marker for side population stem cells, is expressed in human heart. J Histochem Cytochem 54(2):215–221. https://doi.org/10.1369/jhc.5A6750.2005
Solbach TF, Paulus B, Weyand M, Eschenhagen T, Zolk O, Fromm MF (2008) ATP-binding cassette transporters in human heart failure. Naunyn Schmiedebergs Arch Pharmacol 377(3):231–243. https://doi.org/10.1007/s00210-008-0279-6
Higashikuni Y, Sainz J, Nakamura K, Takaoka M, Enomoto S, Iwata H, Tanaka K et al (2012) The ATP-binding cassette transporter ABCG2 protects against pressure overload-induced cardiac hypertrophy and heart failure by promoting angiogenesis and antioxidant response. Arterioscler Thromb Vasc Biol 32(3):654–661. https://doi.org/10.1161/ATVBAHA.111.240341
Higashikuni Y, Sainz J, Nakamura K, Takaoka M, Enomoto S, Iwata H, Sahara M et al (2010) The ATP-binding cassette transporter BCRP1/ABCG2 plays a pivotal role in cardiac repair after myocardial infarction via modulation of microvascular endothelial cell survival and function. Arterioscler Thromb Vasc Biol 30(11):2128–2135. https://doi.org/10.1161/ATVBAHA.110.211755
Riches Z, Abanda N, Collier AC (2015) BCRP protein levels do not differ regionally in adult human livers, but decline in the elderly. Chem Biol Interact 242:203–210. https://doi.org/10.1016/j.cbi.2015.10.007
Sukowati CH, Rosso N, Pascut D, Anfuso B, Torre G, Francalanci P, Croce LS et al (2012) Gene and functional up-regulation of the BCRP/ABCG2 transporter in hepatocellular carcinoma. BMC Gastroenterol 12:160. https://doi.org/10.1186/1471-230x-12-160
Vander Borght S, Libbrecht L, Katoonizadeh A, van Pelt J, Cassiman D, Nevens F, Van Lommel A et al (2006) Breast cancer resistance protein (BCRP/ABCG2) is expressed by progenitor cells/reactive ductules and hepatocytes and its expression pattern is influenced by disease etiology and species type: possible functional consequences. J Histochem Cytochem 54(9):1051–1059. https://doi.org/10.1369/jhc.5A6912.2006
Gutmann H, Hruz P, Zimmermann C, Beglinger C, Drewe J (2005) Distribution of breast cancer resistance protein (BCRP/ABCG2) mRNA expression along the human GI tract. Biochem Pharmacol 70(5):695–699. https://doi.org/10.1016/j.bcp.2005.05.031
van Herwaarden AE, Schinkel AH (2006) The function of breast cancer resistance protein in epithelial barriers, stem cells and milk secretion of drugs and xenotoxins. Trends Pharmacol Sci 27(1):10–16. https://doi.org/10.1016/j.tips.2005.11.007
MacLean C, Moenning U, Reichel A, Fricker G (2008) Closing the gaps: a full scan of the intestinal expression of p-glycoprotein, breast cancer resistance protein, and multidrug resistanceassociated protein 2 in male and female rats. Drug Metab Dispos 36(7):1249–1254. https://doi.org/10.1124/dmd.108.020859
Morimoto C, Tamura Y, Asakawa S, Kuribayashi-Okuma E, Nemoto Y, Li J, Murase T et al (2020) ABCG2 expression and uric acid metabolism of the intestine in hyperuricemia model rat. Nucleosides Nucleotides Nucleic Acids 39(5):744–759. https://doi.org/10.1080/15257770.2019.1694684
Ichida K, Matsuo H, Takada T, Nakayama A, Murakami K, Shimizu T, Yamanashi Y et al (2012) Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat Commun 3:764. https://doi.org/10.1038/ncomms1756
Takada T, Ichida K, Matsuo H, Nakayama A, Murakami K, Yamanashi Y, Kasuga H et al (2014) ABCG2 dysfunction increases serum uric acid by decreased intestinal urate excretion. Nucleosides Nucleotides Nucleic Acids 33(4–6):275–281. https://doi.org/10.1080/15257770.2013.854902
Hoque KM, Dixon EE, Lewis RM, Allan J, Gamble GD, Phipps-Green AJ, Halperin Kuhns VL et al (2020) The ABCG2 Q141K hyperuricemia and gout associated variant illuminates the physiology of human urate excretion. Nat Commun 11(1):2767. https://doi.org/10.1038/s41467-020-16525-w
Huls M, Brown CD, Windass AS, Sayer R, van den Heuvel JJ, Heemskerk S, Russel FG et al (2008) The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane. Kidney Int 73(2):220–225. https://doi.org/10.1038/sj.ki.5002645
Matsuo H, Nakayama A, Sakiyama M, Chiba T, Shimizu S, Kawamura Y, Nakashima H et al (2014) ABCG2 dysfunction causes hyperuricemia due to both renal urate underexcretion and renal urate overload. Sci Rep 4:3755. https://doi.org/10.1038/srep03755
Matsuo H, Tsunoda T, Ooyama K, Sakiyama M, Sogo T, Takada T, Nakashima A et al (2016) Hyperuricemia in acute gastroenteritis is caused by decreased urate excretion via ABCG2. Sci Rep 6:31003. https://doi.org/10.1038/srep31003
Castilho L, Reid ME (2013) A review of the JR blood group system. Immunohematology 29(2):63–68
Toshimitsu M, Nagaoka S, Kobori S, Takahashi Y, Murotsuki J (2019) Successful management of the fetal severe anemia associated with Jra alloimmunization by intrauterine transfusion of Jr(a+) red blood cells. Case Rep Obstet Gynecol 2019:5174989. https://doi.org/10.1155/2019/5174989
Slomka M, Sobalska-Kwapis M, Korycka-Machala M, Dziadek J, Bartosz G, Strapagiel D (2020) Comprehensive analysis of ABCG2 genetic variation in the Polish population and its interpopulation comparison. Genes. https://doi.org/10.3390/genes11101144
Kim MS, Kim JS, Park H, Chung Y, Kim H, Ko DH, Hwang SH et al (2020) Fatal hemolytic disease of the fetus and newborn caused by anti-Jr(a) antibody: a case report and literature review. Transfus Apher Sci 59(1): https://doi.org/10.1016/j.transci.2019.06.029
van der Heijden JW, Oerlemans R, Tak PP, Assaraf YG, Kraan MC, Scheffer GL, van der Laken CJ et al (2009) Involvement of breast cancer resistance protein expression on rheumatoid arthritis synovial tissue macrophages in resistance to methotrexate and leflunomide. Arthritis Rheum 60(3):669–677. https://doi.org/10.1002/art.24354
Atisha-Fregoso Y, Lima G, Pascual-Ramos V, Banos-Pelaez M, Fragoso-Loyo H, Jakez-Ocampo J, Contreras-Yanez I et al (2016) Rheumatoid arthritis disease activity is determinant for ABCB1 and ABCG2 drug-efflux transporters function. PLoS One 11(7): https://doi.org/10.1371/journal.pone.0159556
Zhao S, Chen C, Liu S, Zeng W, Su J, Wu L, Luo Z et al (2013) CD147 promotes MTX resistance by immune cells through up-regulating ABCG2 expression and function. J Dermatol Sci 70(3):182–189. https://doi.org/10.1016/j.jdermsci.2013.02.005
do Imperio GE, Bloise E, Javam M, Lye P, Constantinof A, Dunk C, Dos Reis FM et al (2018) Chorioamnionitis induces a specific signature of placental ABC transporters associated with an increase of miR-331-5p in the human preterm placenta. Cell Physiol Biochem 45(2):591–604. https://doi.org/10.1159/00048710
Mason CW, Buhimschi IA, Buhimschi CS, Dong Y, Weiner CP, Swaan PW (2011) ATP-binding cassette transporter expression in human placenta as a function of pregnancy condition. Drug Metab Dispos 39(6):1000–1007. https://doi.org/10.1124/dmd.111.038166
Englund G, Jacobson A, Rorsman F, Artursson P, Kindmark A, Ronnblom A (2007) Efflux transporters in ulcerative colitis: decreased expression of BCRP (ABCG2) and Pgp (ABCB1). Inflamm Bowel Dis 13(3):291–297. https://doi.org/10.1002/ibd.20030
Gutmann H, Hruz P, Zimmermann C, Straumann A, Terracciano L, Hammann F, Lehmann F et al (2008) Breast cancer resistance protein and P-glycoprotein expression in patients with newly diagnosed and therapy-refractory ulcerative colitis compared with healthy controls. Digestion 78(2–3):154–162. https://doi.org/10.1159/000179361
Cai HQ, Catts VS, Webster MJ, Galletly C, Liu D, O’Donnell M, Weickert TW et al (2020) Increased macrophages and changed brain endothelial cell gene expression in the frontal cortex of people with schizophrenia displaying inflammation. Mol Psychiatry 25(4):761–775. https://doi.org/10.1038/s41380-018-0235-x
Lye P, Bloise E, Javam M, Gibb W, Lye SJ, Matthews SG (2015) Impact of bacterial and viral challenge on multidrug resistance in first- and third-trimester human placenta. Am J Pathol 185(6):1666–1675. https://doi.org/10.1016/j.ajpath.2015.02.013
Kojovic D, Ghoneim RH, Serghides L, Piquette-Miller M (2020) Role of HIV and antiretroviral therapy on the expression of placental transporters in women with HIV. AAPS J 22(6):138. https://doi.org/10.1208/s12248-020-00516-2
Zhou Y, Zhang K, Yin X, Nie Q, Ma Y (2016) HIV-1 tat protein enhances expression and function of breast cancer resistance protein. AIDS Res Hum Retroviruses 32(1):1–3. https://doi.org/10.1089/aid.2015.0117
Salagacka-Kubiak A, Żebrowska M, Wosiak A, Balcerczak M, Mirowski M, Balcerczak E (2015) ABCG2 in peptic ulcer: gene expression and mutation analysis. J Appl Genet 57(3):335–342. https://doi.org/10.1007/s13353-015-0327-0
Rigalli JP, Reichel M, Tocchetti GN, Reuter T, Dyckhoff G, Herold-Mende C, Weiss J (2018) Human papilloma virus (HPV) 18 proteins E6 and E7 up-regulate ABC transporters in oropharyngeal carcinoma. Involvement of the nonsense-mediated decay (NMD) pathway. Cancer Lett 428:69–76. https://doi.org/10.1016/j.canlet.2018.04.036
Ge G, Zhang H, Li R, Liu H (2017) The function of SDF-1-CXCR4 axis in SP cells-mediated protective role for renal ischemia/reperfusion injury by SHH/GLI1-ABCG2 pathway. Shock 47(2):251–259. https://doi.org/10.1097/SHK.0000000000000694
Maher TJ, Ren Y, Li Q, Braunlin E, Garry MG, Sorrentino BP, Martin CM (2014) ATP-binding cassette transporter Abcg2 lineage contributes to the cardiac vasculature after oxidative stress. Am J Physiol Heart Circ Physiol 306(12):H1610-1618. https://doi.org/10.1152/ajpheart.00638.2013
Doyle MJ, Zhou S, Tanaka KK, Pisconti A, Farina NH, Sorrentino BP, Olwin BB (2011) Abcg2 labels multiple cell types in skeletal muscle and participates in muscle regeneration. J Cell Biol 195(1):147–163. https://doi.org/10.1083/jcb.201103159
Chang HM, Huang WY, Lin SJ, Huang WC, Shen CR, Mao WY, Shen CN (2016) ABCG2 deficiency in skin impairs reepithelialization in cutaneous wound healing. Exp Dermatol 25(5):355–361. https://doi.org/10.1111/exd.12936
Nakamichi N, Morii E, Ikeda J, Qiu Y, Mamato S, Tian T, Fukuhara S et al (2009) Synergistic effect of interleukin-6 and endoplasmic reticulum stress inducers on the high level of ABCG2 expression in plasma cells. Lab Investig 89(3):327–336. https://doi.org/10.1038/labinvest.2008.157
Xiong H, Callaghan D, Jones A, Bai J, Rasquinha I, Smith C, Pei K et al (2009) ABCG2 is upregulated in Alzheimer’s brain with cerebral amyloid angiopathy and may act as a gatekeeper at the blood-brain barrier for Abeta(1–40) peptides. J Neurosci 29(17):5463–5475. https://doi.org/10.1523/JNEUROSCI.5103-08.2009
Shen S, Callaghan D, Juzwik C, Xiong H, Huang P, Zhang W (2010) ABCG2 reduces ROS-mediated toxicity and inflammation: a potential role in Alzheimer’s disease. J Neurochem 114(6):1590–1604. https://doi.org/10.1111/j.1471-4159.2010.06887.x
Jablonski MR, Jacob DA, Campos C, Miller DS, Maragakis NJ, Pasinelli P, Trotti D (2012) Selective increase of two ABC drug efflux transporters at the blood-spinal cord barrier suggests induced pharmacoresistance in ALS. Neurobiol Dis 47(2):194–200. https://doi.org/10.1016/j.nbd.2012.03.040
Jablonski MR, Markandaiah SS, Jacob D, Meng NJ, Li K, Gennaro V, Lepore AC et al (2014) Inhibiting drug efflux transporters improves efficacy of ALS therapeutics. Ann Clin Transl Neurol 1(12):996–1005. https://doi.org/10.1002/acn3.141
van Vliet EA, Iyer AM, Mesarosova L, Colakoglu H, Anink JJ, van Tellingen O, Maragakis NJ et al (2020) Expression and cellular distribution of P-glycoprotein and breast cancer resistance protein in amyotrophic lateral sclerosis patients. J Neuropathol Exp Neurol 79(3):266–276. https://doi.org/10.1093/jnen/nlz142
Rijavec M, Silar M, Triller N, Kern I, Cegovnik U, Kosnik M, Korosec P (2011) Expressions of topoisomerase IIalpha and BCRP in metastatic cells are associated with overall survival in small cell lung cancer patients. Pathol Oncol Res 17(3):691–696. https://doi.org/10.1007/s12253-011-9370-2
de Lima LT, Vivona D, Bueno CT, Hirata RD, Hirata MH, Luchessi AD, de Castro FA et al (2014) Reduced ABCG2 and increased SLC22A1 mRNA expression are associated with imatinib response in chronic myeloid leukemia. Med Oncol 31(3):851. https://doi.org/10.1007/s12032-014-0851-5
Tuy HD, Shiomi H, Mukaisho KI, Naka S, Shimizu T, Sonoda H, Mekata E et al (2016) ABCG2 expression in colorectal adenocarcinomas may predict resistance to irinotecan. Oncol Lett 12(4):2752–2760. https://doi.org/10.3892/ol.2016.4937
Hu L, McArthur C, Jaffe RB (2010) Ovarian cancer stem-like side-population cells are tumourigenic and chemoresistant. Br J Cancer 102(8):1276–1283. https://doi.org/10.1038/sj.bjc.6605626
Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA et al (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 101(39):14228–14233. https://doi.org/10.1073/pnas.0400067101
Guan GF, Zhang DJ, Zheng Y, Wen LJ, Yu DJ, Lu YQ, Zhao Y (2015) Abnormal Wnt signaling and overexpression of ABCG2 contributes to drug efflux properties of side population cells in nasopharyngeal carcinoma. Mol Med Rep 12(3):4352–4357. https://doi.org/10.3892/mmr.2015.3935
Guan GF, Zhang DJ, Zheng Y, Wen LJ, Yu DJ, Lu YQ, Zhao Y (2015) Significance of ATP-binding cassette transporter proteins in multidrug resistance of head and neck squamous cell carcinoma. Oncol Lett 10(2):631–636. https://doi.org/10.3892/ol.2015.3359
An Y, Ongkeko WM (2009) ABCG2: the key to chemoresistance in cancer stem cells? Expert Opin Drug Metab Toxicol 5(12):1529–1542. https://doi.org/10.1517/17425250903228834
Wang X, Zhang H, Chen X (2019) Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. https://doi.org/10.20517/cdr.2019.10
Huss WJ, Gray DR, Greenberg NM, Mohler JL, Smith GJ (2005) Breast cancer resistance protein-mediated efflux of androgen in putative benign and malignant prostate stem cells. Cancer Res 65(15):6640–6650. https://doi.org/10.1158/0008-5472.Can-04-2548
Sabnis NG, Miller A, Titus MA, Huss WJ (2017) The efflux transporter ABCG2 maintains prostate stem cells. Mol Cancer Res 15(2):128–140. https://doi.org/10.1158/1541-7786.MCR-16-0270-T
Gupta N, Martin PM, Miyauchi S, Ananth S, Herdman AV, Martindale RG, Podolsky R et al (2006) Down-regulation of BCRP/ABCG2 in colorectal and cervical cancer. Biochem Biophys Res Commun 343(2):571–577. https://doi.org/10.1016/j.bbrc.2006.02.172
Nie S, Huang Y, Shi M, Qian X, Li H, Peng C, Kong B et al (2018) Protective role of ABCG2 against oxidative stress in colorectal cancer and its potential underlying mechanism. Oncol Rep 40(4):2137–2146. https://doi.org/10.3892/or.2018.6594
Sakata S, Fujiwara M, Ohtsuka K, Kamma H, Nagane M, Sakamoto A, Fujioka Y (2011) ATP-binding cassette transporters in primary central nervous system lymphoma: decreased expression of MDR1 P-glycoprotein and breast cancer resistance protein in tumor capillary endothelial cells. Oncol Rep 25(2):333–339. https://doi.org/10.3892/or.2010.1102
Candeil L, Gourdier I, Peyron D, Vezzio N, Copois V, Bibeau F, Orsetti B et al (2004) ABCG2 overexpression in colon cancer cells resistant to SN38 and in irinotecan-treated metastases. Int J Cancer 109(6):848–854. https://doi.org/10.1002/ijc.20032
Maliepaard M, van Gastelen MA, de Jong LA, Pluim D, van Waardenburg RC, Ruevekamp-Helmers MC, Floot BG et al (1999) Overexpression of the BCRP/MXR/ABCP gene in a topotecan-selected ovarian tumor cell line. Cancer Res 59(18):4559–4563
Perego P, De Cesare M, De Isabella P, Carenini N, Beggiolin G, Pezzoni G, Palumbo M et al (2001) A novel 7-modified camptothecin analog overcomes breast cancer resistance protein-associated resistance in a mitoxantrone-selected colon carcinoma cell line. Cancer Res 61(16):6034–6037
Liu L, Zuo LF, Guo JW (2014) ABCG2 gene amplification and expression in esophageal cancer cells with acquired adriamycin resistance. Mol Med Rep 9(4):1299–1304. https://doi.org/10.3892/mmr.2014.1949
Turner JG, Gump JL, Zhang C, Cook JM, Marchion D, Hazlehurst L, Munster P et al (2006) ABCG2 expression, function, and promoter methylation in human multiple myeloma. Blood 108(12):3881–3889. https://doi.org/10.1182/blood-2005-10-009084
Baxter DE, Kim B, Hanby AM, Verghese ET, Sims AH, Hughes TA (2018) Neoadjuvant endocrine therapy in breast cancer upregulates the cytotoxic drug pump ABCG2/BCRP, and may lead to resistance to subsequent chemotherapy. Clin Breast Cancer 18(6):481–488. https://doi.org/10.1016/j.clbc.2018.07.002
Vander Borght S, van Pelt J, van Malenstein H, Cassiman D, Renard M, Verslype C, Libbrecht L et al (2008) Up-regulation of breast cancer resistance protein expression in hepatoblastoma following chemotherapy: a study in patients and in vitro. Hepatol Res 38(11):1112–1121. https://doi.org/10.1111/j.1872-034X.2008.00381.x
Ridano ME, Racca AC, Flores-Martin J, Camolotto SA, de Potas GM, Genti-Raimondi S, Panzetta-Dutari GM (2012) Chlorpyrifos modifies the expression of genes involved in human placental function. Reprod Toxicol 33(3):331–338. https://doi.org/10.1016/j.reprotox.2012.01.003
Feinshtein V, Erez O, Ben-Zvi Z, Erez N, Eshkoli T, Sheizaf B, Sheiner E et al (2013) Cannabidiol changes P-gp and BCRP expression in trophoblast cell lines. PeerJ 1:e153. https://doi.org/10.7717/peerj.153
Azzaroli F, Raspanti ME, Simoni P, Montagnani M, Lisotti A, Cecinato P, Arena R et al (2013) High doses of ursodeoxycholic acid up-regulate the expression of placental breast cancer resistance protein in patients affected by intrahepatic cholestasis of pregnancy. PLoS One 8(5):e64101. https://doi.org/10.1371/journal.pone.0064101
Blazquez AG, Briz O, Gonzalez-Sanchez E, Perez MJ, Ghanem CI, Marin JJ (2014) The effect of acetaminophen on the expression of BCRP in trophoblast cells impairs the placental barrier to bile acids during maternal cholestasis. Toxicol Appl Pharmacol 277(1):77–85. https://doi.org/10.1016/j.taap.2014.02.019
Rubinchik-Stern M, Shmuel M, Eyal S (2015) Antiepileptic drugs alter the expression of placental carriers: an in vitro study in a human placental cell line. Epilepsia 56(7):1023–1032. https://doi.org/10.1111/epi.13037
Bachmeier C, Levin GM, Beaulieu-Abdelahad D, Reed J, Mullan M (2013) Effect of venlafaxine and desvenlafaxine on drug efflux protein expression and biodistribution in vivo. J Pharm Sci 102(10):3838–3843. https://doi.org/10.1002/jps.23680
Zhang JC, Deng ZY, Wang Y, Xie F, Sun L, Zhang FX (2014) Expression of breast cancer resistance protein in peripheral T cell subsets from HIV1infected patients with antiretroviral therapy. Mol Med Rep 10(2):939–946. https://doi.org/10.3892/mmr.2014.2282
Liu Y, Liu B, Zhang Y, Peng Y, Huang C, Wang N, Jiang J et al (2017) Intestinal absorption mechanisms of 2’-deoxy-2’-betafluoro-4’-azidocytidine, a cytidine analog for AIDS treatment, and its interaction with P-glycoprotein, multidrug resistanceassociated protein 2 and breast cancer resistance protein. Eur J Pharm Sci 105:150–158. https://doi.org/10.1016/j.ejps.2017.05.009
Liu Y, Wang Y, Peng Y, Liu B, Ma F, Jiang J, Wang Q et al (2018) Effects of the antiretroviral drug 2’-deoxy-2’-β-fluoro-4’-azidocytidine (FNC) on P-gp, MRP2 and BCRP expressions and functions. Pharmazie 73(9):503–507. https://doi.org/10.1691/ph.2018.8555
Pal A, Mehn D, Molnar E, Gedey S, Meszaros P, Nagy T, Glavinas H et al (2007) Cholesterol potentiates ABCG2 activity in a heterologous expression system: improved in vitro model to study function of human ABCG2. J Pharmacol Exp Ther 321(3):1085–1094. https://doi.org/10.1124/jpet.106.119289
Telbisz A, Muller M, Ozvegy-Laczka C, Homolya L, Szente L, Varadi A, Sarkadi B (2007) Membrane cholesterol selectively modulates the activity of the human ABCG2 multidrug transporter. Biochim Biophys Acta 1768(11):2698–2713. https://doi.org/10.1016/j.bbamem.2007.06.026
Storch CH, Ehehalt R, Haefeli WE, Weiss J (2007) Localization of the human breast cancer resistance protein (BCRP/ABCG2) in lipid rafts/caveolae and modulation of its activity by cholesterol in vitro. J Pharmacol Exp Ther 323(1):257–264. https://doi.org/10.1124/jpet.107.122994
Jackson SM, Manolaridis I, Kowal J, Zechner M, Taylor NMI, Bause M, Bauer S et al (2018) Structural basis of small-molecule inhibition of human multidrug transporter ABCG2. Nat Struct Mol Biol 25(4):333–340. https://doi.org/10.1038/s41594-018-0049-1
To KK, Hu M, Tomlinson B (2014) Expression and activity of ABCG2, but not ABCB1 or OATP1B1, are associated with cholesterol levels: evidence from in vitro and in vivo experiments. Pharmacogenomics 15(8):1091–1104. https://doi.org/10.2217/pgs.14.58
Wu Y, Si R, Tang H, He Z, Zhu H, Wang L, Fan Y et al (2015) Cholesterol reduces the sensitivity to platinum-based chemotherapy via upregulating ABCG2 in lung adenocarcinoma. Biochem Biophys Res Commun 457(4):614–620. https://doi.org/10.1016/j.bbrc.2015.01.035
Chen L, Manautou JE, Rasmussen TP, Zhong XB (2019) Development of precision medicine approaches based on inter-individual variability of BCRP/ABCG2. Acta Pharm Sin B 9(4):659–674. https://doi.org/10.1016/j.apsb.2019.01.007
Bailey-Dell KJ, Hassel B, Doyle LA, Ross DD (2001) Promoter characterization and genomic organization of the human breast cancer resistance protein (ATP-binding cassette transporter G2) gene. Biochim Biophys Acta 1520(3):234–241. https://doi.org/10.1016/s0167-4781(01)00270-6
Eclov RJ, Kim MJ, Smith R, Ahituv N, Kroetz DL (2018) Rare variants in the ABCG2 promoter modulate in vivo activity. Drug Metab Dispos 46(5):636–642. https://doi.org/10.1124/dmd.117.079541
Mackowiak B, Hodge J, Stern S, Wang H (2018) The roles of xenobiotic receptors: beyond chemical disposition. Drug Metab Dispos 46(9):1361–1371. https://doi.org/10.1124/dmd.118.081042
Yordy JS, Muise-Helmericks RC (2000) Signal transduction and the Ets family of transcription factors. Oncogene 19(55):6503–6513. https://doi.org/10.1038/sj.onc.1204036
Li H, Wang H (2010) Activation of xenobiotic receptors: driving into the nucleus. Expert Opin Drug Metab Toxicol 6(4):409–426. https://doi.org/10.1517/17425251003598886
Anapolsky A, Teng S, Dixit S, Piquette-Miller M (2006) The role of pregnane X receptor in 2-acetylaminofluorene-mediated induction of drug transport and -metabolizing enzymes in mice. Drug Metab Dispos 34(3):405–409. https://doi.org/10.1124/dmd.105.006197
Naspinski C, Gu X, Zhou GD, Mertens-Talcott SU, Donnelly KC, Tian Y (2008) Pregnane X receptor protects HepG2 cells from BaP-induced DNA damage. Toxicol Sci 104(1):67–73. https://doi.org/10.1093/toxsci/kfn058
Lemmen J, Tozakidis IE, Galla HJ (2013) Pregnane X receptor upregulates ABC-transporter Abcg2 and Abcb1 at the bloodbrain barrier. Brain Res 1491:1–13. https://doi.org/10.1016/j.brainres.2012.10.060
Lemmen J, Tozakidis IE, Bele P, Galla HJ (2013) Constitutive androstane receptor upregulates Abcb1 and Abcg2 at the bloodbrain barrier after CITCO activation. Brain Res 1501:68–80. https://doi.org/10.1016/j.brainres.2013.01.025
Whyte-Allman SK, Hoque MT, Jenabian MA, Routy JP, Bendayan R (2017) Xenobiotic nuclear receptors pregnane X receptor and constitutive androstane receptor regulate antiretroviral drug efflux transporters at the blood-testis barrier. J Pharmacol Exp Ther 363(3):324–335. https://doi.org/10.1124/jpet.117.243584
Benoki S, Yoshinari K, Chikada T, Imai J, Yamazoe Y (2012) Transactivation of ABCG2 through a novel cis-element in the distal promoter by constitutive androstane receptor but not pregnane X receptor in human hepatocytes. Arch Biochem Biophys 517(2):123–130. https://doi.org/10.1016/j.abb.2011.10.014
Zhang Y, Huang J, Li X, Fang C, Wang L (2020) Identification of functional transcriptional binding sites within chicken Abcg2 gene promoter and screening its regulators. Genes. https://doi.org/10.3390/genes11020186
Varga T, Czimmerer Z (1812) Nagy L (2011) PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim Biophys Acta 8:1007–1022. https://doi.org/10.1016/j.bbadis.2011.02.014
Szatmari I, Vamosi G, Brazda P, Balint BL, Benko S, Szeles L, Jeney V et al (2006) Peroxisome proliferator-activated receptor gamma-regulated ABCG2 expression confers cytoprotection to human dendritic cells. J Biol Chem 281(33):23812–23823. https://doi.org/10.1074/jbc.M604890200
Hoque MT, Robillard KR, Bendayan R (2012) Regulation of breast cancer resistant protein by peroxisome proliferator-activated receptor alpha in human brain microvessel endothelial cells. Mol Pharmacol 81(4):598–609. https://doi.org/10.1124/mol.111.076745
Eldasher LM, Wen X, Little MS, Bircsak KM, Yacovino LL, Aleksunes LM (2013) Hepatic and renal Bcrp transporter expression in mice treated with perfluorooctanoic acid. Toxicology 306:108–113. https://doi.org/10.1016/j.tox.2013.02.009
Hirai T, Fukui Y, Motojima K (2007) PPARalpha agonists positively and negatively regulate the expression of several nutrient/drug transporters in mouse small intestine. Biol Pharm Bull 30(11):2185–2190. https://doi.org/10.1248/bpb.30.2185
Hoque MT, Shah A, More V, Miller DS, Bendayan R (2015) In vivo and ex vivo regulation of breast cancer resistant protein (Bcrp) by peroxisome proliferator-activated receptor alpha (Pparalpha) at the blood-brain barrier. J Neurochem 135(6):1113–1122. https://doi.org/10.1111/jnc.13389
More VR, Campos CR, Evans RA, Oliver KD, Chan GN, Miller DS, Cannon RE (2017) PPAR-alpha, a lipid-sensing transcription factor, regulates blood-brain barrier efflux transporter expression. J Cereb Blood Flow Metab 37(4):1199–1212. https://doi.org/10.1177/0271678X16650216
Wang J, Zhu XX, Liu L, Xue Y, Yang X, Zou HJ (2016) SIRT1 prevents hyperuricemia via the PGC-1alpha/PPARgamma-ABCG2 pathway. Endocrine 53(2):443–452. https://doi.org/10.1007/s12020-016-0896-7
Lin Y, Bircsak KM, Gorczyca L, Wen X, Aleksunes LM (2017) Regulation of the placental BCRP transporter by PPAR gamma. J Biochem Mol Toxicol. https://doi.org/10.1002/jbt.21880
Kim CE, Park HY, Won HJ, Kim M, Kwon B, Lee SJ, Kim DH et al (2021) Repression of PPARgamma reduces the ABCG2-mediated efflux activity of M2 macrophages. Int J Biochem Cell Biol 130:105895. https://doi.org/10.1016/j.biocel.2020.105895
To KK, Tomlinson B (2013) Targeting the ABCG2-overexpressing multidrug resistant (MDR) cancer cells by PPARgamma agonists. Br J Pharmacol 170(5):1137–1151. https://doi.org/10.1111/bph.12367
Jiao Y, Lu Y, Li XY (2015) Farnesoid X receptor: a master regulator of hepatic triglyceride and glucose homeostasis. Acta Pharmacol Sin 36(1):44–50. https://doi.org/10.1038/aps.2014.116
Herraez E, Gonzalez-Sanchez E, Vaquero J, Romero MR, Serrano MA, Marin JJ, Briz O (2012) Cisplatin-induced chemoresistance in colon cancer cells involves FXR-dependent and FXR-independent up-regulation of ABC proteins. Mol Pharm 9(9):2565–2576. https://doi.org/10.1021/mp300178a
Dubois V, Staels B, Lefebvre P, Verzi MP, Eeckhoute J (2020) Control of cell identity by the nuclear receptor HNF4 in organ pathophysiology. Cells. https://doi.org/10.3390/cells9102185
Tin A, Marten J, Halperin Kuhns VL, Li Y, Wuttke M, Kirsten H, Sieber KB et al (2019) Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nat Genet 51(10):1459–1474. https://doi.org/10.1038/s41588-019-0504-x
Tan KP, Wang B, Yang M, Boutros PC, Macaulay J, Xu H, Chuang AI et al (2010) Aryl hydrocarbon receptor is a transcriptional activator of the human breast cancer resistance protein (BCRP/ABCG2). Mol Pharmacol 78(2):175–185. https://doi.org/10.1124/mol.110.065078
Tompkins LM, Li H, Li L, Lynch C, Xie Y, Nakanishi T, Ross DD et al (2010) A novel xenobiotic responsive element regulated by aryl hydrocarbon receptor is involved in the induction of BCRP/ABCG2 in LS174T cells. Biochem Pharmacol 80(11):1754–1761. https://doi.org/10.1016/j.bcp.2010.08.016
DiNatale BC, Smith K, John K, Krishnegowda G, Amin SG, Perdew GH (2012) Ah receptor antagonism represses head and neck tumor cell aggressive phenotype. Mol Cancer Res 10(10):1369–1379. https://doi.org/10.1158/1541-7786.MCR-12-0216
To KK, Yu L, Liu S, Fu J, Cho CH (2012) Constitutive AhR activation leads to concomitant ABCG2-mediated multidrug resistance in cisplatin-resistant esophageal carcinoma cells. Mol Carcinog 51(6):449–464. https://doi.org/10.1002/mc.20810
Yan B, Liu S, Shi Y, Liu N, Chen L, Wang X, Xiao D et al (2018) Activation of AhR with nuclear IKKalpha regulates cancer stemlike properties in the occurrence of radioresistance. Cell Death Dis 9(5):490. https://doi.org/10.1038/s41419-018-0542-9
Wu C, Yu S, Tan Q, Guo P, Liu H (2018) Role of AhR in regulating cancer stem cell-like characteristics in choriocarcinoma. Cell Cycle 17(18):2309–2320. https://doi.org/10.1080/15384101.2018.1535219
Sayyed K, Vee ML, Abdel-Razzak Z, Jouan E, Stieger B, Denizot C, Parmentier Y et al (2016) Alteration of human hepatic drug transporter activity and expression by cigarette smoke condensate. Toxicology 363–364:58–71. https://doi.org/10.1016/j.tox.2016.07.011
Neradugomma NK, Liao MZ, Mao Q (2017) Buprenorphine, norbuprenorphine, R-methadone, and S-methadone upregulate BCRP/ABCG2 expression by activating aryl hydrocarbon receptor in human placental trophoblasts. Mol Pharmacol 91(3):237–249. https://doi.org/10.1124/mol.116.107367
Moore K, Magee M, Sevinsky H, Chang M, Lubin S, Myers E, Ackerman P et al (2019) Methadone and buprenorphine pharmacokinetics and pharmacodynamics when coadministered with fostemsavir to opioid-dependent, human immunodeficiency virus seronegative participants. Br J Clin Pharmacol 85(8):1771–1780. https://doi.org/10.1111/bcp.13964
Halwachs S, Wassermann L, Lindner S, Zizzadoro C, Honscha W (2013) Fungicide prochloraz and environmental pollutant dioxin induce the ABCG2 transporter in bovine mammary epithelial cells by the arylhydrocarbon receptor signaling pathway. Toxicol Sci 131(2):491–501. https://doi.org/10.1093/toxsci/kfs304
To KK, Robey R, Zhan Z, Bangiolo L, Bates SE (2011) Upregulation of ABCG2 by romidepsin via the aryl hydrocarbon receptor pathway. Mol Cancer Res 9(4):516–527. https://doi.org/10.1158/1541-7786.MCR-10-0270
Pugh BF, Tjian R (1991) Transcription from a TATA-less promoter requires a multisubunit TFIID complex. Genes Dev 5(11):1935–1945. https://doi.org/10.1101/gad.5.11.1935
Kolell KJ, Crawford DL (2002) Evolution of Sp transcription factors. Mol Biol Evol 19(3):216–222. https://doi.org/10.1093/oxfordjournals.molbev.a004074
Yang WJ, Song MJ, Park EY, Lee JJ, Park JH, Park K, Park JH et al (2013) Transcription factors Sp1 and Sp3 regulateexpression of human ABCG2 gene and chemoresistance phenotype. Mol Cells 36(4):368–375. https://doi.org/10.1007/s10059-013-0191-x
Hamada S, Satoh K, Hirota M, Kanno A, Umino J, Ito H, Masamune A et al (2012) The homeobox gene MSX2 determines chemosensitivity of pancreatic cancer cells via the regulation of transporter gene ABCG2. J Cell Physiol 227(2):729–738. https://doi.org/10.1002/jcp.22781
Giuliani C, Bucci I, Napolitano G (2018) The role of the transcription factor nuclear factor-kappa B in thyroid autoimmunity and cancer. Front Endocrinol 9:471. https://doi.org/10.3389/fendo.2018.00471
Isshiki M, Umezawa K, Tamura H (2011) Coffee induces breast cancer resistance protein expression in Caco-2 cells. Biol Pharm Bull 34(10):1624–1627. https://doi.org/10.1248/bpb.34.1624
Wang QP, Wang Y, Wang XD, Mo XM, Gu J, Lu ZY, Pan ZL et al (2013) Survivin up-regulates the expression of breast cancer resistance protein (BCRP) through attenuating the suppression of p53 on NF-kappaB expression in MCF-7/5-FU cells. Int J Biochem Cell Biol 45(9):2036–2044. https://doi.org/10.1016/j.biocel.2013.06.026
Yan HQ, Huang XB, Ke SZ, Jiang YN, Zhang YH, Wang YN, Li J et al (2014) Interleukin 6 augments lung cancer chemotherapeutic resistance via ataxia-telangiectasia mutated/NF-kappaB pathway activation. Cancer Sci 105(9):1220–1227. https://doi.org/10.1111/cas.12478
Jiang X, Chen C, Gu S, Zhang Z (2018) Regulation of ABCG2 by nuclear factor kappa B affects the sensitivity of human lung adenocarcinoma A549 cells to arsenic trioxide. Environ Toxicol Pharmacol 57:141–150. https://doi.org/10.1016/j.etap.2017.12.011
Wang J, Xin B, Wang H, He X, Wei W, Zhang T, Shen X (2016) Gastrin regulates ABCG2 to promote the migration, invasion and side populations in pancreatic cancer cells via activation of NF-kappaB signaling. Exp Cell Res 346(1):74–84. https://doi.org/10.1016/j.yexcr.2016.06.001
Hsu HH, Chen MC, Baskaran R, Lin YM, Day CH, Lin YJ, Tu CC et al (2018) Oxaliplatin resistance in colorectal cancer cells is mediated via activation of ABCG2 to alleviate ER stress induced apoptosis. J Cell Physiol 233(7):5458–5467. https://doi.org/10.1002/jcp.26406
Sui H, Zhou LH, Zhang YL, Huang JP, Liu X, Ji Q, Fu XL et al (2016) Evodiamine suppresses ABCG2 mediated drug resistance by inhibiting p50/p65 NF-kappaB pathway in colorectal cancer. J Cell Biochem 117(6):1471–1481. https://doi.org/10.1002/jcb.25451
Adachi T, Nakagawa H, Chung I, Hagiya Y, Hoshijima K, Noguchi N, Kuo MT et al (2007) Nrf2-dependent and -independent induction of ABC transporters ABCC1, ABCC2, and ABCG2 in HepG2 cells under oxidative stress. J Exp Ther Oncol 6(4):335–348
Ishikawa T, Kajimoto Y, Sun W, Nakagawa H, Inoue Y, Ikegami Y, Miyatake S et al (2013) Role of Nrf2 in cancer photodynamic therapy: regulation of human ABC transporter ABCG2. J Pharm Sci 102(9):3058–3069. https://doi.org/10.1002/jps.23563
Choi BH, Ryoo IG, Kang HC, Kwak MK (2014) The sensitivity of cancer cells to pheophorbide a-based photodynamic therapy is enhanced by Nrf2 silencing. PLoS One 9(9): https://doi.org/10.1371/journal.pone.0107158
Tian S, Yong M, Zhu J, Zhang L, Pan L, Chen Q, Li KT et al (2017) Enhancement of the effect of methyl pyropheophorbidea-mediated photodynamic therapy was achieved by increasing ROS through inhibition of Nrf2-HO-1 or Nrf2-ABCG2 signaling. Anticancer Agents Med Chem 17(13):1824–1836. https://doi.org/10.2174/1871520617666170327145857
Wang X, Campos CR, Peart JC, Smith LK, Boni JL, Cannon RE, Miller DS (2014) Nrf2 upregulates ATP binding cassette transporter expression and activity at the blood-brain and blood-spinal cord barriers. J Neurosci 34(25):8585–8593. https://doi.org/10.1523/JNEUROSCI.2935-13.2014
Lu MC, Zhang X, Wu F, Tan SJ, Zhao J, You QD, Jiang ZY (2019) Discovery of a potent kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2) protein-protein interaction inhibitor with natural proline structure as a cytoprotective agent against acetaminophen-induced hepatotoxicity.J. Med Chem 62(14):6796–6813. https://doi.org/10.1021/acs.jmedchem.9b00818
Jeong HS, Ryoo IG, Kwak MK (2015) Regulation of the expression of renal drug transporters in KEAP1-knockdown human tubular cells. Toxicol In Vitro 29(5):884–892. https://doi.org/10.1016/j.tiv.2015.03.013
Hong YB, Kang HJ, Kwon SY, Kim HJ, Kwon KY, Cho CH, Lee JM et al (2010) Nuclear factor (erythroid-derived 2)-like 2 regulates drug resistance in pancreatic cancer cells. Pancreas 39(4):463–472. https://doi.org/10.1097/MPA.0b013e3181c31314
Kim EJ, Kim YJ, Lee HI, Jeong SH, Nam HJ, Cho JH (2020) NRF2 knockdown resensitizes 5-fluorouracil-resistant pancreatic cancer cells by suppressing HO-1 and ABCG2 expression. Int J Mol Sci. https://doi.org/10.3390/ijms21134646
Singh A, Wu H, Zhang P, Happel C, Ma J, Biswal S (2010) Expression of ABCG2 (BCRP) is regulated by Nrf2 in cancer cells that confers side population and chemoresistance phenotype. Mol Cancer Ther 9(8):2365–2376. https://doi.org/10.1158/1535-7163.MCT-10-0108
Jia Y, Chen J, Zhu H, Jia ZH, Cui MH (2015) Aberrantly elevated redox sensing factor Nrf2 promotes cancer stem cell survival via enhanced transcriptional regulation of ABCG2 and Bcl-2/Bmi-1 genes. Oncol Rep 4(5):2296–2304. https://doi.org/10.3892/or.2015.4214
Choi BH, Ryu DY, Ryoo IG, Kwak MK (2017) NFE2L2/NRF2 silencing-inducible miR-206 targets c-MET/EGFR and suppresses BCRP/ABCG2 in cancer cells. Oncotarget 8(63):107188–107205. https://doi.org/10.18632/oncotarget.22513
Loboda A, Jozkowicz A, Dulak J (2010) HIF-1 and HIF-2 transcription factors–similar but not identical. Mol Cells 29(5):435–442. https://doi.org/10.1007/s10059-010-0067-2
He X, Wang J, Wei W, Shi M, Xin B, Zhang T, Shen X (2016) Hypoxia regulates ABCG2 activity through the activivation of ERK1/2/HIF-1alpha and contributes to chemoresistance in pancreatic cancer cells. Cancer Biol Ther 17(2):188–198. https://doi.org/10.1080/15384047.2016.1139228
Wang WJ, Sui H, Qi C, Li Q, Zhang J, Wu SF, Mei MZ et al (2016) Ursolic acid inhibits proliferation and reverses drug resistance of ovarian cancer stem cells by downregulating ABCG2 through suppressing the expression of hypoxia-inducible factor-1alpha in vitro. Oncol Rep 36(1):428–440. https://doi.org/10.3892/or.2016.4813
Nishihashi K, Kawashima K, Nomura T, Urakami-Takebayashi Y, Miyazaki M, Takano M, Nagai J (2017) Cobalt chloride induces expression and function of breast cancer resistance protein (BCRP/ABCG2) in human renal proximal tubular epithelial cell line HK-2. Biol Pharm Bull 40(1):82–87. https://doi.org/10.1248/bpb.b16-00684
Xiang L, Liu ZH, Huan Q, Su P, Du GJ, Wang Y, Gao P et al (2012) Hypoxia-inducible factor-2a is associated with ABCG2 expression, histology-grade and Ki67 expression in breast invasive ductal carcinoma. Diagn Pathol 7:32. https://doi.org/10.1186/1746-1596-7-32
He M, Wu H, Jiang Q, Liu Y, Han L, Yan Y, Wei B et al (2019) Hypoxia-inducible factor-2alpha directly promotes BCRP expression and mediates the resistance of ovarian cancer stem cells to adriamycin. Mol Oncol 13(2):403–421. https://doi.org/10.1002/1878-0261.12419
Wen AY, Sakamoto KM, Miller LS (2010) The role of the transcription factor CREB in immune function. J Immunol 185(11):6413–6419. https://doi.org/10.4049/jimmunol.1001829
Xie Y, Nakanishi T, Natarajan K, Safren L, Hamburger AW, Hussain A, Ross DD (2015) Functional cyclic AMP response element in the breast cancer resistance protein (BCRP/ABCG2) promoter modulates epidermal growth factor receptor pathway- or androgen withdrawal-mediated BCRP/ABCG2 transcription in human cancer cells. Biochim Biophys Acta 1849(3):317–327. https://doi.org/10.1016/j.bbagrm.2015.01.003
Szilagyi JT, Composto-Wahler GM, Joseph LB, Wang B, Rosen T, Laskin JD, Aleksunes LM (2019) Anandamide down-regulates placental transporter expression through CB2 receptor-mediated inhibition of cAMP synthesis. Pharmacol Res 141:331–342. https://doi.org/10.1016/j.phrs.2019.01.002
Lu YH, Chang YP, Li T, Han F, Li CJ, Li XY, Xue M et al (2020) Empagliflozin attenuates hyperuricemia by upregulation of ABCG2 via AMPK/AKT/CREB signaling pathway in type 2 diabetic mice. Int J Biol Sci 16(3):529–542. https://doi.org/10.7150/ijbs.33007
Miller DM, Thomas SD, Islam A, Muench D, Sedoris K (2012) c-Myc and cancer metabolism. Clin Cancer Res 18(20):5546–5553. https://doi.org/10.1158/1078-0432.CCR-12-0977
Kang KW, Im YB, Go WJ, Han HK (2009) C-myc amplification altered the gene expression of ABC- and SLC-transporters in human breast epithelial cells. Mol Pharm 6(2):627–633. https://doi.org/10.1021/mp800116f
Porro A, Iraci N, Soverini S, Diolaiti D, Gherardi S, Terragna C, Durante S et al (2011) c-MYC oncoprotein dictates transcriptional profiles of ATP-binding cassette transporter genes in chronic myelogenous leukemia CD34+ hematopoietic progenitor cells. Mol Cancer Res 9(8):1054–1066. https://doi.org/10.1158/1541-7786.MCR-10-0510
Zhang HL, Wang P, Lu MZ, Zhang SD (2016) c-Myc regulation of ATP-binding cassette transporter reverses chemoresistance in CD133(+) colon cancer stem cells. Sheng Li Xue Bao 68(2):171–178
Jordan KL, Haas AR, Logan TJ, Hall DJ (1994) Detailed analysis of the basic domain of the E2F1 transcription factor indicates that it is unique among bHLH proteins. Oncogene 9(4):1177–1185
Rosenfeldt MT, Bell LA, Long JS, O’rey J, Nixon C, Roberts F, Dufes C et al (2014) E2F1 drives chemotherapeutic drug resistance via ABCG2. Oncogene 33(32):4164–4172. https://doi.org/10.1038/onc.2013.470
Robey RW, Steadman K, Polgar O, Morisaki K, Blayney M, Mistry P, Bates SE (2004) Pheophorbide a is a specific probe for ABCG2 function and inhibition. Cancer Res 64(4):1242–1246. https://doi.org/10.1158/0008-5472.can-03-3298
Stein C, Bardet AF, Roma G, Bergling S, Clay I, Ruchti A, Agarinis C et al (2015) YAP1 exerts its transcriptional control via TEAD-mediated activation of enhancers. PLoS Genet 11(8):e1005465. https://doi.org/10.1371/journal.pgen.1005465
Dai Y, Liu S, Zhang WQ, Yang YL, Hang P, Wang H, Cheng L et al (2017) YAP1 regulates ABCG2 and cancer cell side population in human lung cancer cells. Oncotarget 8(3):4096–4109. https://doi.org/10.18632/oncotarget.13686
Roh Y-G, Mun M-H, Jeong M-S, Kim W-T, Lee S-R, Chung J-W, Kim SI et al (2018) Drug resistance of bladder cancer cells through activation of ABCG2 by FOXM1. BMB Rep 51(2):98–103. https://doi.org/10.5483/BMBRep.2018.51.2.222
Jeong HW, Cui W, Yang Y, Lu J, He J, Li A, Song D et al (2011) SALL4, a stem cell factor, affects the side population by regulation of the ATP-binding cassette drug transport genes. PLoS One 6(4):e18372. https://doi.org/10.1371/journal.pone.0018372
Lee SH, Oh SY, Do SI, Lee HJ, Kang HJ, Rho YS, Bae WJ et al (2014) SOX2 regulates self-renewal and tumorigenicity of stem-like cells of head and neck squamous cell carcinoma. Br J Cancer 111(11):2122–2130. https://doi.org/10.1038/bjc.2014.528
Sun R, Jiang B, Qi H, Zhang X, Yang J, Duan J, Li Y et al (2015) SOX4 contributes to the progression of cervical cancer and the resistance to the chemotherapeutic drug through ABCG2. Cell Death Dis 6(11):e1990–e1990. https://doi.org/10.1038/cddis.2015.290
Wang M, Wang Z, Zhi X, Ding W, Xiong J, Tao T, Yang Y et al (2020) SOX9 enhances sorafenib resistance through upregulating ABCG2 expression in hepatocellular carcinoma. Biomed Pharmacother 129:110315. https://doi.org/10.1016/j.biopha.2020.110315
Hosokawa Y, Takahashi H, Inoue A, Kawabe Y, Funahashi Y, Kameda K, Sugimoto K et al (1850) (2015) Oct-3/4 modulates the drug-resistant phenotype of glioblastoma cells through expression of ATP binding cassette transporter G2. Biochim Biophys Acta 6:1197–1205. https://doi.org/10.1016/j.bbagen.2015.01.017
Siddique HR, Saleem M (2012) Role of BMI1, a stem cell factor, in cancer recurrence and chemoresistance: preclinical and clinical evidences. Stem Cells 30(3):372–378. https://doi.org/10.1002/stem.1035
Yu CC, Lo WL, Chen YW, Huang PI, Hsu HS, Tseng LM, Hung SC et al (2011) Bmi-1 regulates snail expression and promotes metastasis ability in head and neck squamous cancer-derived ALDH1 positive cells. J Oncol. https://doi.org/10.1155/2011/609259
Paranjape AN, Balaji SA, Mandal T, Krushik EV, Nagaraj P, Mukherjee G, Rangarajan A (2014) Bmi1 regulates self-renewal and epithelial to mesenchymal transition in breast cancer cells through Nanog. BMC Cancer 14:785. https://doi.org/10.1186/1471-2407-14-785
Su J, Wu S, Tang W, Qian H, Zhou H, Guo T (2016) Reduced SLC27A2 induces cisplatin resistance in lung cancer stem cells by negatively regulating Bmi1-ABCG2 signaling. Mol Carcinog 55(11):1822–1832. https://doi.org/10.1002/mc.22430
Deng L, Xiang X, Yang F, Xiao D, Liu K, Chen Z, Zhang R et al (2017) Functional evidence that the self-renewal gene NANOG regulates esophageal squamous cancer development. Biochem Biophys Res Commun 490(2):161–168. https://doi.org/10.1016/j.bbrc.2017.06.016
Ardito F, Giuliani M, Perrone D, Troiano G, Lo Muzio L (2017) The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (review). Int J Mol Med 40(2):271–280. https://doi.org/10.3892/ijmm.2017.3036
Whitmarsh AJ (2007) Regulation of gene transcription by mitogen-activated protein kinase signaling pathways. Biochim Biophys Acta 1773(8):1285–1298. https://doi.org/10.1016/j.bbamcr.2006.11.011
Crawford RR, Potukuchi PK, Schuetz EG, Schuetz JD (2018) Beyond competitive inhibition: regulation of ABC transporters by kinases and protein-protein interactions as potential mechanisms of drug-drug interactions. Drug Metab Dispos 46(5):567–580. https://doi.org/10.1124/dmd.118.080663
Xie Y, Xu K, Linn DE, Yang X, Guo Z, Shimelis H, Nakanishi T et al (2008) The 44-kDa Pim-1 kinase phosphorylates BCRP/ABCG2 and thereby promotes its multimerization and drug-resistant activity in human prostate cancer cells. J Biol Chem 283(6):3349–3356. https://doi.org/10.1074/jbc.M707773200
Chalhoub N, Baker SJ (2009) PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol 4:127–150. https://doi.org/10.1146/annurev.pathol.4.110807.092311
Mogi M, Yang J, Lambert JF, Colvin GA, Shiojima I, Skurk C, Summer R et al (2003) Akt signaling regulates side population cell phenotype via Bcrp1 translocation. J Biol Chem 278(40):39068–39075. https://doi.org/10.1074/jbc.M306362200
Takada T, Suzuki H, Gotoh Y, Sugiyama Y (2005) Regulation of the cell surface expression of human BCRP/ABCG2 by the phosphorylation state of Akt in polarized cells. Drug Metab Dispos 33(7):905–909. https://doi.org/10.1124/dmd.104.003228
Hu C, Li H, Li J, Zhu Z, Yin S, Hao X, Yao M et al (2008) Analysis of ABCG2 expression and side population identifies intrinsic drug efflux in the HCC cell line MHCC-97L and its modulation by Akt signaling. Carcinogenesis 29(12):2289–2297. https://doi.org/10.1093/carcin/bgn223
Bleau AM, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW, Holland EC (2009) PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4(3):226–235. https://doi.org/10.1016/j.stem.2009.01.007
Li H, Gao Q, Guo L, Lu SH (2011) The PTEN/PI3K/Akt pathway regulates stem-like cells in primary esophageal carcinoma cells. Cancer Biol Ther 11(11):950–958. https://doi.org/10.4161/cbt.11.11.15531
Goler-Baron V, Assaraf YG (2011) Structure and function of ABCG2-rich extracellular vesicles mediating multidrug resistance. PLoS One 6(1):e16007. https://doi.org/10.1371/journal.pone.0016007
Kogure A, Kosaka N, Ochiya T (2019) Cross-talk between cancer cells and their neighbors via miRNA in extracellular vesicles: an emerging player in cancer metastasis. J Biomed Sci 26(1):7. https://doi.org/10.1186/s12929-019-0500-6
Goler-Baron V, Sladkevich I, Assaraf YG (2012) Inhibition of the PI3K-Akt signaling pathway disrupts ABCG2-rich extracellular vesicles and overcomes multidrug resistance in breast cancer cells. Biochem Pharmacol 83(10):1340–1348. https://doi.org/10.1016/j.bcp.2012.01.033
An Y, Kiang A, Lopez JP, Kuo SZ, Yu MA, Abhold EL, Chen JS et al (2012) Cigarette smoke promotes drug resistance and expansion of cancer stem cell-like side population. PLoS One 7(11):e47919. https://doi.org/10.1371/journal.pone.0047919
Hou H, Sun H, Lu P, Ge C, Zhang L, Li H, Zhao F et al (2013) Tunicamycin potentiates cisplatin anticancer efficacy through the DPAGT1/Akt/ABCG2 pathway in mouse Xenograft models of human hepatocellular carcinoma. Mol Cancer Ther 12(12):2874–2884. https://doi.org/10.1158/1535-7163.MCT-13-0201
Komori H, Yamada K, Tamai I (2018) Hyperuricemia enhances intracellular urate accumulation via down-regulation of cell-surface BCRP/ABCG2 expression in vascular endothelial cells. Biochim Biophys Acta Biomembr 1860(5):973–980. https://doi.org/10.1016/j.bbamem.2018.01.006
Nakanishi T, Shiozawa K, Hassel BA, Ross DD (2006) Complex interaction of BCRP/ABCG2 and imatinib in BCR-ABL-expressing cells: BCRP-mediated resistance to imatinib is attenuated by imatinib-induced reduction of BCRP expression. Blood 108(2):678–684. https://doi.org/10.1182/blood-2005-10-4020
Wang XQ, Ongkeko WM, Chen L, Yang ZF, Lu P, Chen KK, Lopez JP et al (2010) Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4-AKT-ATP-binding cassette G2 pathway. Hepatology 52(2):528–539. https://doi.org/10.1002/hep.23692
Lee TK, Castilho A, Cheung VC, Tang KH, Ma S, Ng IO (2011) Lupeol targets liver tumor-initiating cells through phosphatase and tensin homolog modulation. Hepatology 53(1):160–170. https://doi.org/10.1002/hep.24000
Huang FF, Wu DS, Zhang L, Yu YH, Yuan XY, Li WJ, Chen XP et al (2013) Inactivation of PTEN increases ABCG2 expression and the side population through the PI3K/Akt pathway in adult acute leukemia. Cancer Lett 336(1):96–105. https://doi.org/10.1016/j.canlet.2013.04.006
Huang FF, Zhang L, Wu DS, Yuan XY, Yu YH, Zhao XL, Chen FP et al (2014) PTEN regulates BCRP/ABCG2 and the side population through the PI3K/Akt pathway in chronic myeloid leukemia. PLoS One 9(3):e88298. https://doi.org/10.1371/journal.pone.0088298
Wang L, Lin N, Li Y (2019) The PI3K/AKT signaling pathway regulates ABCG2 expression and confers resistance to chemotherapy in human multiple myeloma. Oncol Rep 41(3):1678–1690. https://doi.org/10.3892/or.2019.6968
Zou Z, Zhang J, Zhang H, Liu H, Li Z, Cheng D, Chen J et al (2014) 3-Methyladenine can depress drug efflux transporters via blocking the PI3K-AKT-mTOR pathway thus sensitizing MDR cancer to chemotherapy. J Drug Target 22(9):839–848. https://doi.org/10.3109/1061186X.2014.936870
Hu CF, Huang YY, Wang YJ, Gao FG (2016) Upregulation of ABCG2 via the PI3K-Akt pathway contributes to acidic microenvironment-induced cisplatin resistance in A549 and LTEP-a-2 lung cancer cells. Oncol Rep 36(1):455–461. https://doi.org/10.3892/or.2016.4827
Ma D, Wu L, Li S, Sun Z, Wang K (2017) Vasohibin2 promotes adriamycin resistance of breast cancer cells through regulating ABCG2 via AKT signaling pathway. Mol Med Rep 16(6):9729–9734. https://doi.org/10.3892/mmr.2017.7792
Wang H, Jia XH, Chen JR, Yi YJ, Wang JY, Li YJ, Xie SY (2016) HOXB4 knockdown reverses multidrug resistance of human myelogenous leukemia K562/ADM cells by downregulating P-gp, MRP1 and BCRP expression via PI3K/Akt signaling pathway. Int J Oncol 49(6):2529–2537. https://doi.org/10.3892/ijo.2016.3738
Li Y, Sun J, Gao S, Hu H, Xie P (2018) HOXB4 knockdown enhances the cytotoxic effect of paclitaxel and cisplatin by downregulating ABC transporters in ovarian cancer cells. Gene 663:9–16. https://doi.org/10.1016/j.gene.2018.04.033
Lu M, Wang Y, Zhan X (2019) The MAPK pathway-based drug therapeutic targets in pituitary adenomas. Front Endocrinol 10:330. https://doi.org/10.3389/fendo.2019.00330
Hepburn AC, Veeratterapillay R, Williamson SC, El-Sherif A, Sahay N, Thomas HD, Mantilla A et al (2012) Side population in human non-muscle invasive bladder cancer enriches for cancer stem cells that are maintained by MAPK signalling. PLoS One 7(11):e50690. https://doi.org/10.1371/journal.pone.0050690
Xie J, Jin B, Li DW, Shen B, Cong N, Zhang TZ, Dong P (2014) ABCG2 regulated by MAPK pathways is associated with cancer progression in laryngeal squamous cell carcinoma. Am J Cancer Res 4(6):698–709
Zhang H, Jiang H, Zhang H, Liu J, Hu X, Chen L (2019) Ribophorin II potentiates P-glycoprotein- and ABCG2-mediated multidrug resistance via activating ERK pathway in gastric cancer. Int J Biol Macromol 128:574–582. https://doi.org/10.1016/j.ijbiomac.2019.01.195
Li Y, Zhang J, Xu P, Sun B, Zhong Z, Liu C, Ling Z et al (2016) Acute liver failure impairs function and expression of breast cancer-resistant protein (BCRP) at rat blood-brain barrier partly via ammonia-ROS-ERK1/2 activation. J Neurochem 138(2):282–294. https://doi.org/10.1111/jnc.13666
Zhu MM, Tong JL, Xu Q, Nie F, Xu XT, Xiao SD, Ran ZH (2012) Increased JNK1 signaling pathway is responsible for ABCG2-mediated multidrug resistance in human colon cancer. PLoS One 7(8):e41763. https://doi.org/10.1371/journal.pone.0041763
Tomiyasu H, Watanabe M, Sugita K, Goto-Koshino Y, Fujino Y, Ohno K, Sugano S et al (2013) Regulations of ABCB1 and ABCG2 expression through MAPK pathways in acute lymphoblastic leukemia cell lines. Anticancer Res 33(12):5317–5323
He C, Zhang H, Wang B, He J, Ge G (2018) SDF-1/CXCR4 axis promotes the growth and sphere formation of hypoxic breast cancer SP cells by c-Jun/ABCG2 pathway. Biochem Biophys Res Commun 505(2):593–599. https://doi.org/10.1016/j.bbrc.2018.09.130
Hu L, Liang Y, Wu K, Wang C, Zhang T, Peng R, Zou F (2021) Repressing PDCD4 activates JNK/ABCG2 pathway to induce chemoresistance to fluorouracil in colorectal cancer cells. Ann Transl Med 9(2):114 https://doi.org/10.21037/atm-20-4292
Peng J, Li W, Li H, Jia Y, Liu Z (2009) Inhibition of p38 MAPK facilitates ex vivo expansion of skin epithelial progenitor cells. Vitro Cell Dev Biol Anim 45(9):558–565. https://doi.org/10.1007/s11626-009-9223-4
MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17(1):9–26. https://doi.org/10.1016/j.devcel.2009.06.016
Taelman VF, Dobrowolski R, Plouhinec JL, Fuentealba LC, Vorwald PP, Gumper I, Sabatini DD et al (2010) Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell 143(7):1136–1148. https://doi.org/10.1016/j.cell.2010.11.034
Pon YL, Wong AS (2006) Gonadotropin-induced apoptosis in human ovarian surface epithelial cells is associated with cyclooxygenase- 2 up-regulation via the beta-catenin/T-cell factor signaling pathway. Mol Endocrinol 20(12):3336–3350. https://doi.org/10.1210/me.2006-0125
Lim JC, Kania KD, Wijesuriya H, Chawla S, Sethi JK, Pulaski L, Romero IA et al (2008) Activation of beta-catenin signalling by GSK-3 inhibition increases p-glycoprotein expression in brain endothelial cells. J Neurochem 106(4):1855–1865. https://doi.org/10.1111/j.1471-4159.2008.05537.x
Harati R, Benech H, Villegier AS, Mabondzo A (2013) P-glycoprotein, breast cancer resistance protein, Organic Anion Transporter 3, and Transporting Peptide 1a4 during blood-brain barrier maturation: involvement of Wnt/beta-catenin and endothelin-1= signaling. Mol Pharm 10(5):1566–1580. https://doi.org/10.1021/mp300334r
Chau WK, Ip CK, Mak AS, Lai HC, Wong AS (2013) c-Kit mediates chemoresistance and tumor-initiating capacity of ovarian cancer cells through activation of Wnt/beta-catenin-ATPbinding cassette G2 signaling. Oncogene 32(22):2767–2781. https://doi.org/10.1038/onc.2012.290
Luo K, Gu X, Liu J, Zeng G, Peng L, Huang H, Jiang M et al (2016) Inhibition of disheveled-2 resensitizes cisplatin-resistant lung cancer cells through down-regulating Wnt/beta-catenin signaling. Exp Cell Res 347(1):105–113. https://doi.org/10.1016/j.yexcr.2016.07.014
Zhang K, Li M, Huang H, Li L, Yang J, Feng L, Gou J et al (2017) Dishevelled1–3 contribute to multidrug resistance in colorectal cancer via activating Wnt/β-catenin signaling. Oncotarget 8(70):115803–115816 https://doi.org/10.18632/oncotarget.23253
Zheng L, Rui C, Zhang H, Chen J, Jia X, Xiao Y (2019) Sonic hedgehog signaling in epithelial tissue development. Regen Med Res 7:3. https://doi.org/10.1051/rmr/190004
Sims-Mourtada J, Izzo JG, Ajani J, Chao KS (2007) Sonic Hedgehog promotes multiple drug resistance by regulation of drug transport. Oncogene 26(38):5674–5679. https://doi.org/10.1038/sj.onc.1210356
Xu M, Gong A, Yang H, George SK, Jiao Z, Huang H, Jiang X et al (2015) Sonic hedgehog-glioma associated oncogene homolog 1 signaling enhances drug resistance in CD44(+)/ Musashi-1(+) gastric cancer stem cells. Cancer Lett 369(1):124–133. https://doi.org/10.1016/j.canlet.2015.08.005
Kim JE, Singh RR, Cho-Vega JH, Drakos E, Davuluri Y, Khokhar FA, Fayad L et al (2009) Sonic hedgehog signaling proteins and ATP-binding cassette G2 are aberrantly expressed in diffuse large B-cell lymphoma. Mod Pathol 22(10):1312–1320. https://doi.org/10.1038/modpathol.2009.98
Singh RR, Kunkalla K, Qu C, Schlette E, Neelapu SS, Samaniego F, Vega F (2011) ABCG2 is a direct transcriptional target of hedgehog signaling and involved in stroma-induced drug tolerance in diffuse large B-cell lymphoma. Oncogene 30(49):4874–4886. https://doi.org/10.1038/onc.2011.195
Zhang W, Yu F, Wang Y, Zhang Y, Meng L, Chi Y (2018) Rab23 promotes the cisplatin resistance of ovarian cancer via the Shh- Gli-ABCG2 signaling pathway. Oncol Lett 15(4):5155–5160. https://doi.org/10.3892/ol.2018.7949
Teng S, Piquette-Miller M (2008) Regulation of transporters by nuclear hormone receptors: implications during inflammation. Mol Pharm 5(1):67–76. https://doi.org/10.1021/mp700102q
Evseenko DA, Paxton JW, Keelan JA (2007) Independent regulation of apical and basolateral drug transporter expression and function in placental trophoblasts by cytokines, steroids, and growth factors. Drug Metab Dispos 35(4):595–601. https://doi.org/10.1124/dmd.106.011478
Le Vee M, Lecureur V, Stieger B, Fardel O (2009) Regulation of drug transporter expression in human hepatocytes exposed to the proinflammatory cytokines tumor necrosis factor-alpha or interleukin-6. Drug Metab Dispos 37(3):685–693. https://doi.org/10.1124/dmd.108.023630
Le Vee M, Jouan E, Stieger B, Lecureur V, Fardel O (2011) Regulation of drug transporter expression by oncostatin M in human hepatocytes. Biochem Pharmacol 82(3):304–311. https://doi.org/10.1016/j.bcp.2011.04.017
Mosaffa F, Lage H, Afshari JT, Behravan J (2009) Interleukin-1 beta and tumor necrosis factor-alpha increase ABCG2 expression in MCF-7 breast carcinoma cell line and its mitoxantroneresistant derivative, MCF-7/MX. Inflamm Res 58(10):669–676. https://doi.org/10.1007/s00011-009-0034-6
Mosaffa F, Kalalinia F, Lage H, Afshari JT, Behravan J (2012) Pro-inflammatory cytokines interleukin-1 beta, interleukin 6, and tumor necrosis factor-alpha alter the expression and function of ABCG2 in cervix and gastric cancer cells. Mol Cell Biochem 363(1–2):385–393. https://doi.org/10.1007/s11010-011-1191-9
Pradhan M, Bembinster LA, Baumgarten SC, Frasor J (2010) Proinflammatory cytokines enhance estrogen-dependent expression of the multidrug transporter gene ABCG2 through estrogen receptor and NF{kappa}B cooperativity at adjacent response elements. J Biol Chem 285(41):31100–31106. https://doi.org/10.1074/jbc.M110.155309
Xu L, Huang TJ, Hu H, Wang MY, Shi SM, Yang Q, Lin F et al (2018) The developmental transcription factor IRF6 attenuates ABCG2 gene expression and distinctively reverses stemness phenotype in nasopharyngeal carcinoma. Cancer Lett 431:230–243. https://doi.org/10.1016/j.canlet.2017.10.016
Zhang Y, Zhao W, Li S, Lv M, Yang X, Li M, Zhang Z (2019) CXCL11 promotes self-renewal and tumorigenicity of alpha2delta1(+) liver tumor-initiating cells through CXCR3/ERK1/2 signaling. Cancer Lett 449:163–171. https://doi.org/10.1016/j.canlet.2019.02.016
Poller B, Drewe J, Krahenbuhl S, Huwyler J, Gutmann H (2010) Regulation of BCRP (ABCG2) and P-glycoprotein (ABCB1) by cytokines in a model of the human blood-brain barrier. Cell Mol Neurobiol 30(1):63–70. https://doi.org/10.1007/s10571-009-9431-1
Fillman SG, Cloonan N, Catts VS, Miller LC, Wong J, McCrossin T, Cairns M et al (2013) Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry 18(2):206–214. https://doi.org/10.1038/mp.2012.110
Weidner LD, Kannan P, Mitsios N, Kang SJ, Hall MD, Theodore WH, Innis RB et al (2018) The expression of inflammatory markers and their potential influence on efflux transporters in drug-resistant mesial temporal lobe epilepsy tissue. Epilepsia 59(8):1507–1517. https://doi.org/10.1111/epi.14505
Ward PS, Thompson CB (2012) Signaling in control of cell growth and metabolism. Cold Spring Harb Perspect Biol 4(7): https://doi.org/10.1101/cshperspect.a006783
Yin L, Castagnino P, Assoian RK (2008) ABCG2 expression and side population abundance regulated by a transforming growth factor beta-directed epithelial-mesenchymal transition. Cancer Res 68(3):800–807. https://doi.org/10.1158/0008-5472.CAN-07-2545
Ehata S, Johansson E, Katayama R, Koike S, Watanabe A, Hoshino Y, Katsuno Y et al (2011) Transforming growth factorbeta decreases the cancer-initiating cell population within diffuse- type gastric carcinoma cells. Oncogene 30(14):1693–1705. https://doi.org/10.1038/onc.2010.546
de Boussac H, Orban TI, Varady G, Tihanyi B, Bacquet C, Brozik A, Varadi A et al (2012) Stimulus-induced expression of the ABCG2 multidrug transporter in HepG2 hepatocarcinoma model cells involves the ERK1/2 cascade and alternative promoters. Biochem Biophys Res Commun 426(2):172–176. https://doi.org/10.1016/j.bbrc.2012.08.046
Drubay V, Skrypek N, Cordiez L, Vasseur R, Schulz C, Boukrout N, Duchene B et al (2018) TGF-betaRII knock-down in pancreatic cancer cells promotes tumor growth and gemcitabine resistance importance of STAT3 phosphorylation on S727. Cancers. https://doi.org/10.3390/cancers10080254
Lim YC, Kang HJ, Moon JH (2014) C-Met pathway promotes self-renewal and tumorigenecity of head and neck squamous cell carcinoma stem-like cell. Oral Oncol 50(7):633–639. https://doi.org/10.1016/j.oraloncology.2014.04.004
Jung KA, Choi BH, Kwak MK (2015) The c-MET/PI3K signaling is associated with cancer resistance to doxorubicin andphotodynamic therapy by elevating BCRP/ABCG2 expression. Mol Pharmacol 87(3):465–476. https://doi.org/10.1124/mol.114.096065
Meyer zu Schwabedissen HE, Grube M, Dreisbach A, Jedlitschky G, Meissner K, Linnemann K, Fusch C et al (2006) Epidermal growth factor-mediated activation of the map kinase cascade results in altered expression and function of ABCG2 (BCRP). Drug Metab Dispos 34(4):524–533. https://doi.org/10.1124/dmd.105.007591
Lopez JP, Wang-Rodriguez J, Chang C, Chen JS, Pardo FS, Aguilera J, Ongkeko WM (2007) Gefitinib inhibition of drug resistance to doxorubicin by inactivating ABCG2 in thyroid cancer cell lines. Arch Otolaryngol Head Neck Surg 133(10):1022–1027. https://doi.org/10.1001/archotol.133.10.1022
Pick A, Wiese M (2012) Tyrosine kinase inhibitors influence ABCG2 expression in EGFR-positive MDCK BCRP cells via the PI3K/Akt signaling pathway. ChemMedChem 7(4):650–662. https://doi.org/10.1002/cmdc.201100543
Huang WC, Chen YJ, Li LY, Wei YL, Hsu SC, Tsai SL, Chiu PC et al (2011) Nuclear translocation of epidermal growth factor receptor by Akt-dependent phosphorylation enhances breast cancer-resistant protein expression in gefitinib-resistant cells. J Biol Chem 286(23):20558–20568. https://doi.org/10.1074/jbc.M111.240796
Zhang W, Ding W, Chen Y, Feng M, Ouyang Y, Yu Y, He Z (2011) Up-regulation of breast cancer resistance protein plays a role in HER2-mediated chemoresistance through PI3K/Akt and nuclear factor-kappa B signaling pathways in MCF7 breast cancer cells. Acta Biochim Biophys Sin 43(8):647–653. https://doi.org/10.1093/abbs/gmr050
Gilani RA, Kazi AA, Shah P, Schech AJ, Chumsri S, Sabnis G, Jaiswal AK et al (2012) The importance of HER2 signaling in the tumor-initiating cell population in aromatase inhibitorresistant breast cancer. Breast Cancer Res Treat 135(3):681–692. https://doi.org/10.1007/s10549-012-2148-8
Kim CK, Oh S, Kim SJ, Leem SH, Heo J, Chung SH (2018) Correlation of IGF1R expression with ABCG2 and CD44 expressions in human osteosarcoma. Genes Genomics 40(4):381–388. https://doi.org/10.1007/s13258-017-0639-z
Jeong WY, Yoo HY, Kim CW (2017) Neuregulin-1 accelerates corneal epithelial wound healing. Growth Factors 35(6):225–233. https://doi.org/10.1080/08977194.2018.1436055
Ee PL, Kamalakaran S, Tonetti D, He X, Ross DD, Beck WT (2004) Identification of a novel estrogen response element in the breast cancer resistance protein (ABCG2) gene. Cancer Res 64(4):1247–1251. https://doi.org/10.1158/0008-5472.can-03-3583
Imai Y, Ishikawa E, Asada S, Sugimoto Y (2005) Estrogenmediatedpost transcriptional down-regulation of breast cancer resistance protein/ABCG2. Cancer Res 65(2):596–604
Zhang Y, Zhou G, Wang H, Zhang X, Wei F, Cai Y, Yin D (2006) Transcriptional upregulation of breast cancer resistance protein by 17beta-estradiol in ERalpha-positive MCF-7 breast cancer cells. Oncology 71(5–6):446–455. https://doi.org/10.1159/000108594
Chang FW, Fan HC, Liu JM, Fan TP, Jing J, Yang CL, Hsu RJ (2017) Estrogen enhances the expression of the multidrug transporter gene ABCG2-increasing drug resistance of breast cancer cells through estrogen receptors. Int J Mol Sci. https://doi.org/10.3390/ijms18010163
Li W, Jia M, Qin X, Hu J, Zhang X, Zhou G (2013) Harmfuleffect of ERbeta on BCRP-mediated drug resistance and cellproliferation in ERalpha/PR-negative breast cancer. FEBS J280(23):6128–6140. https://doi.org/10.1111/febs.12533
Yasuda S, Itagaki S, Hirano T, Iseki K (2006) Effects of sex hormones on regulation of ABCG2 expression in the placental cell line BeWo. J Pharm Pharm Sci 9(1):133–139
Mahringer A, Fricker G (2010) BCRP at the blood-brain barrier: genomic regulation by 17β-estradiol. Mol Pharm 7(5):1835–1847. https://doi.org/10.1021/mp1001729
Hartz AM, Mahringer A, Miller DS, Bauer B (2010) 17-beta- Estradiol: a powerful modulator of blood-brain barrier BCRP activity. J Cereb Blood Flow Metab 30(10):1742–1755. https://doi.org/10.1038/jcbfm.2010.36
Hartz AM, Madole EK, Miller DS, Bauer B (2010) Estrogen receptor beta signaling through phosphatase and tensin homolog/phosphoinositide 3-kinase/Akt/glycogen synthase kinase 3 downregulatesblood-brain barrier breast cancer resistance protein. J Pharmacol Exp Ther 334(2):467–476. https://doi.org/10.1124/jpet.110.168930
Halperin Kuhns VL, Woodward OM (2020) Sex differences in urate handling. Int J Mol Sci. https://doi.org/10.3390/ijms21124269
Wang H, Lee EW, Zhou L, Leung PC, Ross DD, Unadkat JD, Mao Q (2008) Progesterone receptor (PR) isoforms PRA and PRB differentially regulate expression of the breast cancer resistance protein in human placental choriocarcinoma BeWo cells. Mol Pharmacol 73(3):845–854. https://doi.org/10.1124/mol.107.041087
Yasuda S, Kobayashi M, Itagaki S, Hirano T, Iseki K (2009) Response of the ABCG2 promoter in T47D cells and BeWo cells to sex hormone treatment. Mol Biol Rep 36(7):1889–1896. https://doi.org/10.1007/s11033-008-9395-0
Wu X, Zhang X, Sun L, Zhang H, Li L, Wang X, Li W et al (2013) Progesterone negatively regulates BCRP in progesterone receptor-positive human breast cancer cells. Cell Physiol Biochem 32(2):344–354. https://doi.org/10.1159/000354442
Wu AM, Dalvi P, Lu X, Yang M, Riddick DS, Matthews J, Clevenger CV et al (2013) Induction of multidrug resistance transporter ABCG2 by prolactin in human breast cancer cells. Mol Pharmacol 83(2):377–388. https://doi.org/10.1124/mol.112.082362
Hsieh TF, Chen CC, Yu AL, Ma WL, Zhang C, Shyr CR, Chang C (2013) Androgen receptor decreases the cytotoxic effects of chemotherapeutic drugs in upper urinary tract urothelial carcinoma cells. Oncol Lett 5(4):1325–1330. https://doi.org/10.3892/ol.2013.1140
Sun NK, Huang SL, Lu HP, Chang TC, Chao CC (2015) Integrative transcriptomics-based identification of cryptic drivers of taxol-resistance genes in ovarian carcinoma cells: analysis of the androgen receptor. Oncotarget 6(29):27065–27082. https://doi.org/10.18632/oncotarget.4824
Chung WM, Ho YP, Chang WC, Dai YC, Chen L, Hung YC, Ma WL (2019) Increase paclitaxel sensitivity to better suppress serous epithelial ovarian cancer via ablating androgen receptor/aryl hydrocarbon receptor-ABCG2 axis. Cancers. https://doi.org/10.3390/cancers11040463
Sugimoto R, Watanabe H, Ikegami K, Enoki Y, Imafuku T, Sakaguchi Y, Murata M et al (2017) Down-regulation of ABCG2, a urate exporter, by parathyroid hormone enhances urate accumulation in secondary hyperparathyroidism. Kidney Int 91(3):658–670. https://doi.org/10.1016/j.kint.2016.09.041
Watanabe H, Maruyama T (2018) Role of parathyroid hormone in regulating transporter and metabolizing enzyme function. Ther Apher Dial 22(3):251–254. https://doi.org/10.1111/1744-9987.12686
O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 9:402. https://doi.org/10.3389/fendo.2018.00402
You F, Luan H, Sun D, Cui T, Ding P, Tang H, Sun D (2019) miRNA-106a promotes breast cancer cell proliferation, clonogenicity, migration, and invasion through inhibiting apoptosis and chemosensitivity. DNA Cell Biol 38(2):198–207. https://doi.org/10.1089/dna.2018.4282
Zhang L, Guo X, Zhang D, Fan Y, Qin L, Dong S, Zhang L (2017) Upregulated miR-132 in Lgr5(+) gastric cancer stem celllike cells contributes to cisplatin-resistance via SIRT1/CREB/ABCG2 signaling pathway. Mol Carcinog 56(9):2022–2034. https://doi.org/10.1002/mc.22656
Xie M, Fu Z, Cao J, Liu Y, Wu J, Li Q, Chen Y (2018) Micro-RNA-132 and microRNA-212 mediate doxorubicin resistance by down-regulating the PTEN-AKT/NF-kappaB signaling pathway in breast cancer. Biomed Pharmacother 102:286–294. https://doi.org/10.1016/j.biopha.2018.03.088
Ma Y, Wang B, Guo Y, Zhang Y, Huang S, Bao X, Bai M (2016) Inhibition of miR-196a affects esophageal cancer cell growth in vitro. Biomed Pharmacother 84:22–27. https://doi.org/10.1016/j.biopha.2016.09.013
Chen B, Zhang D, Kuai J, Cheng M, Fang X, Li G (2017) Upregulation of miR-199a/b contributes to cisplatin resistance via Wnt/beta-catenin-ABCG2 signaling pathway in ALDHA1(+) colorectal cancer stem cells. Tumour Biol 39(6):1010428317715155. https://doi.org/10.1177/1010428317715155
Huang Y, Hong X, Hu J, Lu Q (2017) Targeted regulation of MiR-98 on E2F1 increases chemosensitivity of leukemia cells K562/A02. Onco Targets Ther 10:3233–3239. https://doi.org/10.2147/OTT.S126819
Liu H, Song X, Hou J, Zhao Z, Chang J (2018) Posttranscriptional regulation of human antigen R by miR-133b enhances docetaxel cytotoxicity through the inhibition of ATP-binding cassette subfamily G member 2 in prostate cancer cells. DNA Cell Biol 37(3):210–219. https://doi.org/10.1089/dna.2017.3940
Shen WW, Zeng Z, Zhu WX, Fu GH (2013) MiR-142-3p functions as a tumor suppressor by targeting CD133, ABCG2, and Lgr5 in colon cancer cells. J Mol Med 91(8):989–1000. https://doi.org/10.1007/s00109-013-1037-x
Shi L, Wang Z, Sun G, Wan Y, Guo J, Fu X (2014) miR-145 inhibits migration and invasion of glioma stem cells by targeting ABCG2. Neuromolecular Med 16(2):517–528. https://doi.org/10.1007/s12017-014-8305-y
Jiao X, Zhao L, Ma M, Bai X, He M, Yan Y, Wang Y et al (2013) MiR-181a enhances drug sensitivity in mitoxantone-resistant breast cancer cells by targeting breast cancer resistance protein (BCRP/ABCG2). Breast Cancer Res Treat 139(3):717–730. https://doi.org/10.1007/s10549-013-2607-x
Cheng W, Liu T, Wan X, Gao Y, Wang H (2012) Micro-RNA-199a targets CD44 to suppress the tumorigenicity and multidrug resistance of ovarian cancer-initiating cells. FEBS J 279(11):2047–2059. https://doi.org/10.1111/j.1742-4658.2012.08589.x
Liu S, Tetzlaff MT, Cui R, Xu X (2012) miR-200c inhibits melanoma progression and drug resistance through down-regulation of BMI-1. Am J Pathol 181(5):1823–1835. https://doi.org/10.1016/j.ajpath.2012.07.009
Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D, Diehn M et al (2009) Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138(3):592–603. https://doi.org/10.1016/j.cell.2009.07.011
Zhao L, Ren Y, Tang H, Wang W, He Q, Sun J, Zhou X et al (2015) Deregulation of the miR-222-ABCG2 regulatory module in tongue squamous cell carcinoma contributes to chemoresistance and enhanced migratory/invasive potential. Oncotarget 6(42):44538–44550 https://doi.org/10.18632/oncotarget.6253
Wang Y, Zhao L, Xiao Q, Jiang L, He M, Bai X, Ma M et al (2016) miR-302a/b/c/d cooperatively inhibit BCRP expression to increase drug sensitivity in breast cancer cells. Gynecol Oncol 141(3):592–601. https://doi.org/10.1016/j.ygyno.2015.11.034
Kang DW, Yang ES, Noh YN, Hwang WC, Jo SY, Suh YA, Park WS et al (2017) MicroRNA-320a and microRNA-4496 attenuate Helicobacter pylori cytotoxin-associated gene A (CagA)-inducedcancer-initiating potential and chemoresistance by targeting betacatenin and ATP-binding cassette, subfamily G, member 2. J Pathol 241(5):614–625. https://doi.org/10.1002/path.4866
He DX, Gu XT, Jiang L, Jin J, Ma X (2014) A methylation-based regulatory network for microRNA 320a in chemoresistant breast cancer. Mol Pharmacol 86(5):536–547. https://doi.org/10.1124/mol.114.092759
Pan YZ, Morris ME, Yu AM (2009) MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol Pharmacol 75(6):1374–1379. https://doi.org/10.1124/mol.108.054163
Li X, Pan YZ, Seigel GM, Hu ZH, Huang M, Yu AM (2011) Breast cancer resistance protein BCRP/ABCG2 regulatory microRNAs (hsa-miR-328, -519c and -520h) and their differential expression in stem-like ABCG2+ cancer cells. Biochem Pharmacol 81(6):783–792. https://doi.org/10.1016/j.bcp.2010.12.018
Xu XT, Xu Q, Tong JL, Zhu MM, Nie F, Chen X, Xiao SD et al (2012) MicroRNA expression profiling identifies miR-328 regulates cancer stem cell-like SP cells in colorectal cancer. Br J Cancer 106(7):1320–1330. https://doi.org/10.1038/bjc.2012.88
Yan BL, Li XL, An JY (2019) MicroRNA-328 acts as an antioncogene by targeting ABCG2 in gastric carcinoma. Eur Rev Med Pharmacol Sci 23(14):6148–6159 https://doi.org/10.26355/eurrev_201907_18428
Ma MT, He M, Wang Y, Jiao XY, Zhao L, Bai XF, Yu ZJ et al (2013) MiR-487a resensitizes mitoxantrone (MX)-resistant breast cancer cells (MCF-7/MX) to MX by targeting breast cancer resistance protein (BCRP/ABCG2). Cancer Lett 339(1):107–115. https://doi.org/10.1016/j.canlet.2013.07.016
Xie ZY, Liu MS, Zhang C, Cai PC, Xiao ZH, Wang FF (2018) Aspirin enhances the sensitivity of hepatocellular carcinoma side population cells to doxorubicin via miR-491/ABCG2. Biosci Rep. https://doi.org/10.1042/BSR20180854
Guo J, Jin D, Wu Y, Yang L, Du J, Gong K, Chen W et al (2018) The miR 495-UBE2C-ABCG2/ERCC1 axis reverses cisplatin resistance by downregulating drug resistance genes in cisplatinresistant non-small cell lung cancer cells. EBioMedicine 35:204–221. https://doi.org/10.1016/j.ebiom.2018.08.001
To KK, Zhan Z, Litman T, Bates SE (2008) Regulation of ABCG2 expression at the 3’ untranslated region of its mRNA through modulation of transcript stability and protein translation by a putative microRNA in the S1 colon cancer cell line. Mol Cell Biol 28(17):5147–5161. https://doi.org/10.1128/MCB.00331-08
To KK, Leung WW, Ng SS (2015) Exploiting a novel miR-519c-HuR-ABCG2 regulatory pathway to overcome chemoresistance in colorectal cancer. Exp Cell Res 338(2):222–231. https://doi.org/10.1016/j.yexcr.2015.09.011
Abdelmohsen K, Srikantan S, Kuwano Y, Gorospe M (2008) miR-519 reduces cell proliferation by lowering RNA-binding protein HuR levels. Proc Natl Acad Sci USA 105(51):20297–20302. https://doi.org/10.1073/pnas.0809376106
Tsai HC, Chang AC, Tsai CH, Huang YL, Gan L, Chen CK, Liu SC et al (2019) CCN2 promotes drug resistance in osteosarcoma by enhancing ABCG2 expression. J Cell Physiol 234(6):9297–9307. https://doi.org/10.1002/jcp.27611
Liao R, Sun J, Zhang L, Lou G, Chen M, Zhou D, Chen Z et al (2008) MicroRNAs play a role in the development of human hematopoietic stem cells. J Cell Biochem 104(3):805–817. https://doi.org/10.1002/jcb.21668
Wang F, Xue X, Wei J, An Y, Yao J, Cai H, Wu J et al (2010) hsa-miR-520h downregulates ABCG2 in pancreatic cancer cells to inhibit migration, invasion, and side populations. Br J Cancer 103(4):567–574. https://doi.org/10.1038/sj.bjc.6605724
Awortwe C, Kaehler M, Rosenkranz B, Cascorbi I, Bruckmueller H (2018) MicroRNA-655-3p regulates Echinacea purpurea mediated activation of ABCG2. Xenobiotica 48(10):1050–1058. https://doi.org/10.1080/00498254.2017.1390624
Jia M, Wei Z, Liu P, Zhao X (2016) Silencing of ABCG2 by microRNA-3163 inhibits multidrug resistance in retinoblastoma cancer stem cells. J Korean Med Sci 31(6):836–842. https://doi.org/10.3346/jkms.2016.31.6.836
Handy DE, Castro R, Loscalzo J (2011) Epigenetic modifications:basic mechanisms and role in cardiovascular disease. Circulation 123(19):2145–2156. https://doi.org/10.1161/CIRCULATIONAHA.110.956839
Moon HH, Kim SH, Ku JL (2016) Correlation between the promoter methylation status of ATP-binding cassette sub-family G member 2 and drug sensitivity in colorectal cancer cell lines. Oncol Rep 35(1):298–306. https://doi.org/10.3892/or.2015.4342
Martin V, Sanchez-Sanchez AM, Herrera F, Gomez-Manzano C, Fueyo J, Alvarez-Vega MA, Antolin I et al (2013) Melatonin-induced methylation of the ABCG2/BCRP promoter as a novel mechanism to overcome multidrug resistance in brain tumour stem cells. Br J Cancer 108(10):2005–2012. https://doi.org/10.1038/bjc.2013.188
To KK, Zhan Z, Bates SE (2006) Aberrant promoter methylation of the ABCG2 gene in renal carcinoma. Mol Cell Biol 26(22):8572–8585. https://doi.org/10.1128/MCB.00650-06
To KK, Polgar O, Huff LM, Morisaki K, Bates SE (2008) Histone modifications at the ABCG2 promoter following treatment with histone deacetylase inhibitor mirror those in multidrug-resistant cells. Mol Cancer Res 6(1):151–164. https://doi.org/10.1158/1541-7786.MCR-07-0175
Chikamatsu K, Ishii H, Murata T, Sakakura K, Shino M, Toyoda M, Takahashi K et al (2013) Alteration of cancer stem cell-like phenotype by histone deacetylase inhibitors in squamous cell carcinoma of the head and neck. Cancer Sci 104(11):1468–1475. https://doi.org/10.1111/cas.12271
Kawabata KC, Hayashi Y, Inoue D, Meguro H, Sakurai H, Fukuyama T, Tanaka Y et al (2018) High expression of ABCG2 induced by EZH2 disruption has pivotal roles in MDS pathogenesis. Leukemia 32(2):419–428. https://doi.org/10.1038/leu.2017.227
Hsu MC, Pan MR, Chu PY, Tsai YL, Tsai CH, Shan YS, Chen LT et al (2018) Protein arginine methyltransferase 3 enhances chemoresistance in pancreatic cancer by methylating hnRNPA1 to increase ABCG2 expression. Cancers. https://doi.org/10.3390/cancers11010008
Panchal O, Wichmann G, Grenman R, Eckhardt L, Kunz-Schughart LA, Franke H, Dietz A et al (2020) SATB1 as oncogenic driver and potential therapeutic target in head & neck squamous cell carcinoma (HNSCC). Sci Rep 10(1):8615. https://doi.org/10.1038/s41598-020-65077-y
Botchkarev VA (2015) Integration of the transcription factorregulated and epigenetic mechanisms in the control of keratinocyte differentiation. J Investig Dermatol Symp Proc 17(2):30–32. https://doi.org/10.1038/jidsymp.2015.37
Sunkara KP, Gupta G, Hansbro PM, Dua K, Bebawy M (2018) Functional relevance of SATB1 in immune regulation and tumorigenesis. Biomed Pharmacother 104:87–93. https://doi.org/10.1016/j.biopha.2018.05.045
Zhang H, Su X, Guo L, Zhong L, Li W, Yue Z, Wang X et al (2014) Silencing SATB1 inhibits the malignant phenotype and increases sensitivity of human osteosarcoma U2OS cells to arsenic trioxide. Int J Med Sci 11(12):1262–1269. https://doi.org/10.7150/ijms.10038
Herzog M, Storch CH, Gut P, Kotlyar D, Fullekrug J, Ehehalt R, Haefeli WE et al (2011) Knockdown of caveolin-1 decreases activity of breast cancer resistance protein (BCRP/ABCG2) and increases chemotherapeutic sensitivity. Naunyn Schmiedebergs Arch Pharmacol 383(1):1–11. https://doi.org/10.1007/s00210-010-0568-8
Wang Z, Wang N, Li W, Liu P, Chen Q, Situ H, Zhong S et al (2014) Caveolin-1 mediates chemoresistance in breast cancer stem cells via β-catenin/ABCG2 signaling pathway. Carcinogenesis 35(10):2346–2356. https://doi.org/10.1093/carcin/bgu155
Turner EC, Mulvaney EP, Reid HM, Kinsella BT (2011) Interaction of the human prostacyclin receptor with the PDZ adapter protein PDZK1: role in endothelial cell migration and angiogenesis. Mol Biol Cell 22(15):2664–2679. https://doi.org/10.1091/mbc.E11-04-0374
Kim JK, Kwon O, Kim J, Kim EK, Park HK, Lee JE, Kim KL et al (2012) PDZ domain-containing 1 (PDZK1) protein regulates phospholipase C-beta3 (PLC-beta3)-specific activation of somatostatin by forming a ternary complex with PLC-beta3 and somatostatin receptors. J Biol Chem 287(25):21012–21024. https://doi.org/10.1074/jbc.M111.337865
Shimizu T, Sugiura T, Wakayama T, Kijima A, Nakamichi N, Iseki S, Silver DL et al (2011) PDZK1 regulates breast cancer resistance protein in small intestine. Drug Metab Dispos 39(11):2148–2154. https://doi.org/10.1124/dmd.111.040295
Chen M, Lu X, Lu C, Shen N, Jiang Y, Chen M, Wu H (2018) Soluble uric acid increases PDZK1 and ABCG2 expression in human intestinal cell lines via the TLR4-NLRP3 inflammasome and PI3K/Akt signaling pathway. Arthritis Res Ther 20(1):20. https://doi.org/10.1186/s13075-018-1512-4
Samanta S, Pursell B, Mercurio AM (2013) IMP3 protein promotes chemoresistance in breast cancer cells by regulating breast cancer resistance protein (ABCG2) expression. J Biol Chem 288(18):12569–12573. https://doi.org/10.1074/jbc.C112.442319
Sugiyama T, Shuto T, Suzuki S, Sato T, Koga T, Suico MA, Kusuhara H et al (2011) Posttranslational negative regulation of glycosylated and non-glycosylated BCRP expression by Derlin-1. Biochem Biophys Res Commun 404(3):853–858. https://doi.org/10.1016/j.bbrc.2010.12.074
Niu Q, Wang W, Li Y, Ruden DM, Wang F, Li Y, Wang F et al (2012) Low molecular weight heparin ablates lung cancer cisplatin-resistance by inducing proteasome-mediated ABCG2 protein degradation. PLoS One 7(7):e41035. https://doi.org/10.1371/journal.pone.0041035
Ding R, Shi J, Pabon K, Scotto KW (2012) Xanthines downregulate the drug transporter ABCG2 and reverse multidrug resistance. Mol Pharmacol 81(3):328–337. https://doi.org/10.1124/mol.111.075556
Hu YP, Tao LY, Wang F, Zhang JY, Liang YJ, Fu LW (2013) Secalonic acid D reduced the percentage of side populations by down-regulating the expression of ABCG2. Biochem Pharmacol 85(11):1619–1625. https://doi.org/10.1016/j.bcp.2013.04.003
Homolya L (2021) Medically important alterations in transport function and trafficking of ABCG2. Int J Mol Sci 22:278
Dehghan A, Kottgen A, Yang Q, Hwang S-J, Kao WHL, Rivadeneira F, Boerwinkle E et al (2008) Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. The Lancet 372(9654):1953–1961. https://doi.org/10.1016/s0140-6736(08)61343-4
Nakayama A, Matsuo H, Nakaoka H, Nakamura T, Nakashima H, Takada Y, Oikawa Y et al (2014) Common dysfunctional variants of ABCG2 have stronger impact on hyperuricemia progression than typical environmental risk factors. Sci Rep 4:5227. https://doi.org/10.1038/srep05227
Li R, Miao L, Qin L, Xiang Y, Zhang X, Peng H, Mailamuguli, et al (2015) A meta-analysis of the associations between the Q141K and Q126X ABCG2 gene variants and gout risk. Int J Clin Exp Pathol 8(9):9812–9823
Cleophas MC, Joosten LA, Stamp LK, Dalbeth N, Woodward OM, Merriman TR (2017) ABCG2 polymorphisms in gout:insights into disease susceptibility and treatment approaches. Pharmgenomics Pers Med 10:129–142. https://doi.org/10.2147/PGPM.S105854
Wrigley R, Phipps-Green AJ, Topless RK, Major TJ, Cadzow M, Riches P, Tausche AK et al (2020) Pleiotropic effect of the ABCG2 gene in gout: involvement in serum urate levels and progression from hyperuricemia to gout. Arthritis Res Ther 22(1):45. https://doi.org/10.1186/s13075-020-2136-z
Stiburkova B, Pavelcova K, Zavada J, Petru L, Simek P, Cepek P, Pavlikova M et al (2017) Functional non-synonymous variants of ABCG2 and gout risk. Rheumatology 56(11):1982–1992. https://doi.org/10.1093/rheumatology/kex295
Stiburkova B, Pavelcova K, Pavlikova M, Jesina P, Pavelka K (2019) The impact of dysfunctional variants of ABCG2 onhyperuricemia and gout in pediatric-onset patients. Arthritis Res Ther 21(1):77. https://doi.org/10.1186/s13075-019-1860-8
Horvathova V, Bohata J, Pavlikova M, Pavelcova K, Pavelka K, Senolt L, Stiburkova B (2019) Interaction of the p. Q141K variantof the ABCG2 gene with clinical data and cytokine levels in primary hyperuricemia and gout. J Clin Med. https://doi.org/10.3390/jcm8111965
Zhang K, Li C (2019) ABCG2 gene polymorphism rs2231142 is associated with gout comorbidities but not allopurinol response in primary gout patients of a Chinese Han male population. Hereditas. https://doi.org/10.1186/s41065-019-0103-y
Mizuarai S, Aozasa N, Kotani H (2004) Single nucleotide polymorphisms result in impaired membrane localization and reduced atpase activity in multidrug transporter ABCG2. Int J Cancer 109(2):238–246. https://doi.org/10.1002/ijc.11669
Furukawa T, Wakabayashi K, Tamura A, Nakagawa H, Morishima Y, Osawa Y, Ishikawa T (2009) Major SNP (Q141K) variant of human ABC transporter ABCG2 undergoes lysosomal and proteasomal degradations. Pharm Res 26(2):469–479. https://doi.org/10.1007/s11095-008-9752-7
Woodward OM, Kottgen A, Coresh J, Boerwinkle E, Guggino WB, Kottgen M (2009) Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci USA 106(25):10338–10342. https://doi.org/10.1073/pnas.0901249106
Woodward OM, Tukaye DN, Cui J, Greenwell P, Constantoulakis LM, Parker BS, Rao A et al (2013) Gout-causing Q141K mutation in ABCG2 leads to instability of the nucleotide-binding domain and can be corrected with small molecules. Proc Natl Acad Sci 110(13):5223–5228. https://doi.org/10.1073/pnas.1214530110
Keskitalo JE, Zolk O, Fromm MF, Kurkinen KJ, Neuvonen PJ, Niemi M (2009) ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther 86(2):197–203. https://doi.org/10.1038/clpt.2009.79
Tomlinson B, Hu M, Lee VW, Lui SS, Chu TT, Poon EW, Ko GT et al (2010) ABCG2 polymorphism is associated with the low-density lipoprotein cholesterol response to rosuvastatin. Clin Pharmacol Ther 87(5):558–562. https://doi.org/10.1038/clpt.2009.232
Birmingham BK, Bujac SR, Elsby R, Azumaya CT, Zalikowski J, Chen Y, Kim K et al (2015) Rosuvastatin pharmacokinetics andpharmacogenetics in Caucasian and Asian subjects residing in the United States. Eur J Clin Pharmacol 71(3):329–340. https://doi.org/10.1007/s00228-014-1800-0
Sobek KM, Cummings JL, Bacich DJ, O’Keefe DS (2017) Contrasting roles of the ABCG2 Q141K variant in prostate cancer. Exp Cell Res 354(1):40–47. https://doi.org/10.1016/j.yexcr.2017.03.020
Hu LL, Wang XX, Chen X, Chang J, Li C, Zhang Y, Yang J et al (2007) BCRP gene polymorphisms are associated with susceptibility and survival of diffuse large B-cell lymphoma. Carcinogenesis 28(8):1740–1744. https://doi.org/10.1093/carcin/bgm113
Zhai X, Wang H, Zhu X, Miao H, Qian X, Li J, Gao Y et al (2012) Gene polymorphisms of ABC transporters are associated with clinical outcomes in children with acute lymphoblastic leukemia. Arch Med Sci 8(4):659–671. https://doi.org/10.5114/aoms.2012.30290
Zambo B, Mozner O, Bartos Z, Torok G, Varady G, Telbisz A, Homolya L et al (2020) Cellular expression and function of naturally occurring variants of the human ABCG2 multidrug transporter. Cell Mol Life Sci 77(2):365–378. https://doi.org/10.1007/s00018-019-03186-2
Vethanayagam RR, Wang H, Gupta A, Zhang Y, Lewis F, Unadkat JD, Mao Q (2005) Functional analysis of the human variants of breast cancer resistance protein: I206L, N590Y, and D620N. Drug Metab Dispos 33(6):697–705. https://doi.org/10.1124/dmd.105.003657
Tamura A, Onishi Y, An R, Koshiba S, Wakabayashi K, Hoshijima K, Priebe W et al (2007) In vitro evaluation of photosensitivity risk related to genetic polymorphisms of human ABC transporter ABCG2 and inhibition by drugs. Drug Metab Pharmacokinet 22(6):428–440. https://doi.org/10.2133/dmpk.22.428
Deppe S, Ripperger A, Weiss J, Ergun S, Benndorf RA (2014) Impact of genetic variability in the ABCG2 gene on ABCG2 expression, function, and interaction with AT1 receptor antagonist telmisartan. Biochem Biophys Res Commun 443(4):1211–1217. https://doi.org/10.1016/j.bbrc.2013.12.119
Skoglund K, Boiso Moreno S, Jonsson JI, Vikingsson S, Carlsson B, Green H (2014) Single-nucleotide polymorphisms of ABCG2 increase the efficacy of tyrosine kinase inhibitors in the K562 chronic myeloid leukemia cell line. Pharmacogenet Genomics 24(1):52–61. https://doi.org/10.1097/FPC.0000000000000022
Rudin CM, Liu W, Desai A, Karrison T, Jiang X, Janisch L, Das S et al (2008) Pharmacogenomic and pharmacokinetic determinants of erlotinib toxicity. J Clin Oncol 26(7):1119–1127. https://doi.org/10.1200/JCO.2007.13.1128
Poonkuzhali B, Lamba J, Strom S, Sparreboom A, Thummel K, Watkins P, Schuetz E (2008) Association of breast cancer resistance protein/ABCG2 phenotypes and novel promoter and intron 1 single nucleotide polymorphisms. Drug Metab Dispos 36(4):780–795. https://doi.org/10.1124/dmd.107.018366
Higashino T, Takada T, Nakaoka H, Toyoda Y, Stiburkova B, Miyata H, Ikebuchi Y et al (2017) Multiple common and rare variants of ABCG2 cause gout. RMD Open 3(2):e000464. https://doi.org/10.1136/rmdopen-2017-000464
Zhou D, Liu Y, Zhang X, Gu X, Wang H, Luo X, Zhang J et al (2014) Functional polymorphisms of the ABCG2 gene are associated with gout disease in the Chinese Han male population. Int J Mol Sci 15(5):9149–9159. https://doi.org/10.3390/ijms15059149
Toyoda Y, Mancikova A, Krylov V, Morimoto K, Pavelcova K, Bohata J, Pavelka K et al (2019) Functional characterization of clinically-relevant rare variants in ABCG2 identified in a gout and hyperuricemia cohort. Cells. https://doi.org/10.3390/cells8040363
Gotanda K, Tokumoto T, Hirota T, Fukae M, Ieiri I (2015) Sulfasalazine disposition in a subject with 376C>T (nonsense mutation) and 421C>A variants in the ABCG2 gene. Br J Clin Pharmacol 80(5):1236–1237. https://doi.org/10.1111/bcp.12654
Matsuo H, Ichida K, Takada T, Nakayama A, Nakashima H, Nakamura T, Kawamura Y et al (2013) Common dysfunctional variants in ABCG2 are a major cause of early-onset gout. Sci Rep 3:201. https://doi.org/10.1038/srep02014
Tamura A, Watanabe M, Saito H, Nakagawa H, Kamachi T, Okura I, Ishikawa T (2006) Functional validation of the geneticpolymorphisms of human ATP-binding cassette (ABC) transporter ABCG2: identification of alleles that are defective in porphyrin transport. Mol Pharmacol 70(1):287–296. https://doi.org/10.1124/mol.106.023556
Hue-Roye K, Lomas-Francis C, Coghlan G, Zelinski T, Reid ME (2013) The JR blood group system (ISBT 032): molecular characterization of three new null alleles. Transfusion 53(7):1575–1579. https://doi.org/10.1111/j.1537-2995.2012.03930.x
Tanaka M, Kamada I, Takahashi J, Kimura K, Matsukura H, Tani Y (2014) Defining the Jr(a-) phenotype in the Japanese population. Transfusion 54(2):412–417. https://doi.org/10.1111/trf.12277
Toyoda Y, Pavelcova K, Bohata J, Jesina P, Kubota Y, Suzuki H, Takada T et al (2021) Identification of two dysfunctional variants in the ABCG2 urate transporter associated with pediatric-onset of familial hyperuricemia and early-onset gout. Int J Mol Sci. https://doi.org/10.3390/ijms22041935
Roberts RL, Wallace MC, Phipps-Green AJ, Topless R, Drake JM, Tan P, Dalbeth N et al (2017) ABCG2 loss-of-function polymorphism predicts poor response to allopurinol in patients with gout. Pharmacogenomics J 17(2):201–203. https://doi.org/10.1038/tpj.2015.101
Limviphuvadh V, Tan CS, Konishi F, Jenjaroenpun P, Xiang JS, Kremenska Y, Mu YS et al (2018) Discovering novel SNPs that are correlated with patient outcome in a Singaporean cancer patient cohort treated with gemcitabine-based chemotherapy. BMC Cancer 18(1):555. https://doi.org/10.1186/s12885-018-4471-x
Yoshioka S, Katayama K, Okawa C, Takahashi S, Tsukahara S, Mitsuhashi J, Sugimoto Y (2007) The identification of two germ-line mutations in the human breast cancer resistance protein gene that result in the expression of a low/non-functionalprotein. Pharm Res 24(6):1108–1117. https://doi.org/10.1007/s11095-007-9235-2
Nakagawa H, Tamura A, Wakabayashi K, Hoshijima K, Komada M, Yoshida T, Kometani S et al (2008) Ubiquitin-mediated proteasomal degradation of non-synonymous SNP variants of human ABC transporter ABCG2. Biochem J 411(3):623–631. https://doi.org/10.1042/BJ20071229
Ishikawa T, Nakagawa H, Hagiya Y, Nonoguchi N, Miyatake S, Kuroiwa T (2010) Key role of human ABC transporter ABCG2 in photodynamic therapy and photodynamic diagnosis. Adv Pharmacol Sci 2010:587306. https://doi.org/10.1155/2010/587306
Zambo B, Bartos Z, Mozner O, Szabo E, Varady G, Poor G, Palinkas M et al (2018) Clinically relevant mutations in the ABCG2 transporter uncovered by genetic analysis linked to erythrocyte membrane protein expression. Sci Rep 8(1):7487. https://doi.org/10.1038/s41598-018-25695-z
Toyoda Y, Pavelcova K, Klein M, Suzuki H, Takada T, Stiburkova B (2019) Familial early-onset hyperuricemia and gout associated with a newly identified dysfunctional variant in urate transporter ABCG2. Arthritis Res Ther 21(1):219. https://doi.org/10.1186/s13075-019-2007-7
Mozner O, Bartos Z, Zambo B, Homolya L, Hegedus T, Sarkadi B (2019) Cellular processing of the ABCG2 transporter-potential effects on gout and drug metabolism. Cells. https://doi.org/10.3390/cells8101215
Kawahara H, Noguchi K, Katayama K, Mitsuhashi J, Sugimoto Y (2010) Pharmacological interaction with sunitinib is abolished bya germ-line mutation (1291T>C) of BCRP/ABCG2 gene. CancerSci 101(6):1493–1500. https://doi.org/10.1111/j.1349-7006.2010.01539.x
Sjostedt N, van den Heuvel J, Koenderink JB, Kidron H (2017) Transmembrane domain single-nucleotide polymorphisms impair expression and transport activity of ABC transporter ABCG2. Pharm Res 34(8):1626–1636. https://doi.org/10.1007/s11095-017-2127-1
Lemos C, Giovannetti E, Zucali PA, Assaraf YG, Scheffer GL, van der Straaten T, D’Incecco A et al (2011) Impact of ABCG2 polymorphisms on the clinical outcome and toxicity of gefitinib in non-small-cell lung cancer patients. Pharmacogenomics 12(2):159–170. https://doi.org/10.2217/pgs.10.172
Maillard M, Chevreau C, Le Louedec F, Cassou M, Delmas C, Gourdain L, Blay JY et al (2020) Pharmacogenetic study of trabectedin- induced severe hepatotoxicity in patients with advanced soft tissue sarcoma. Cancers. https://doi.org/10.3390/cancers12123647
Acknowledgements
This work was supported by the Council of Scientific and Industrial Research (CSIR) under Grant OLP1154. We are thankful to the Director, CSIR- Institute of Genomics and Integrative Biology (IGIB), Dr. Anurag Agrawal, for his scientific vision and support. SK (Samiksha Kukal) acknowledge Department of Biotechnology (DBT) and CSIR, Govt. of India, DG and MKM acknowledge Indian Council of Medical Research (ICMR), Govt. of India, SB, PRP and NK acknowledge CSIR, Govt. of India and CR acknowledges University Grants Commission (UGC), Govt. of India, for their financial assistance. We thank the anonymous reviewers for their helpful suggestions in improving the manuscript. All authors have read and approve the journal’s authorship agreement and policy on disclosure of potential conflicts of interest. The authors declare no conflicts of interest. No sources of editorial support were used in the preparation of this manuscript.
Funding
This work was supported by Council of Scientific and Industrial Research (CSIR) under Grant OLP1154.
Author information
Authors and Affiliations
Contributions
RK devised the concept of the review, reviewed the manuscript and supervised the overall work till final manuscript preparation. SK (Samiksha Kukal) did the literature search, reviewed articles and prepared the original draft. SB and PS helped with the literature search and preparation of tables. DG and CR reviewed the manuscript. SK (Samiksha Kukal), DG and CR edited the manuscript. SK (Samiksha Kukal) and DG designed and prepared the figures. MKM helped with the designing of figures. RK, DG, CR, PRP, NK, GKG, SK (Shrikant Kukreti) and LS finally revised the figures, tables and the whole manuscript. All the authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
Not applicable.
Consent to participate
Not applicable.
Consent for publication
All authors agreed with the content and given their consent to publish the work.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Kukal, S., Guin, D., Rawat, C. et al. Multidrug efflux transporter ABCG2: expression and regulation. Cell. Mol. Life Sci. 78, 6887–6939 (2021). https://doi.org/10.1007/s00018-021-03901-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00018-021-03901-y