Skip to main content
Log in

Drugging the “undruggable” microRNAs

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

As a naturally occurring class of gene regulators, microRNAs (miRNAs) have attracted much attention as promising targets for therapeutic development. However, RNAs including miRNAs have long been considered undruggable, and most efforts have been devoted to using synthetic oligonucleotides to regulate miRNAs. Encouragingly, recent findings have revealed that miRNAs can also be drugged with small molecules that directly target miRNAs. In this review paper, we give a summary of recently emerged small-molecule inhibitors (SMIs) and small-molecule degraders (SMDs) for miRNAs. SMIs are small molecules that directly bind to miRNAs to inhibit their biogenesis, and SMDs are bifunctional small molecules that upon binding to miRNAs induce miRNA degradation. Strategies for discovering SMIs and developing SMDs were summarized. Applications of SMIs and SMDs in miRNA inhibition and cancer therapy were also introduced. Overall, SMIs and SMDs introduced here have high potency and specificity in miRNA inhibition. We envision that these small molecules will pave the way for developing novel therapeutics toward miRNAs that were previously considered undruggable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bartel DP (2018) Metazoan MicroRNAs. Cell 173(1):20–51. https://doi.org/10.1016/j.cell.2018.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47(D1):D155–D162. https://doi.org/10.1093/nar/gky1141

    Article  CAS  PubMed  Google Scholar 

  3. Gorski SA, Vogel J, Doudna JA (2017) RNA-based recognition and targeting: sowing the seeds of specificity. Nat Rev Mol Cell Biol 18(4):215–228. https://doi.org/10.1038/nrm.2016.174

    Article  CAS  PubMed  Google Scholar 

  4. Lin S, Gregory RI (2015) MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 15(6):321–333. https://doi.org/10.1038/nrc3932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lujambio A, Lowe SW (2012) The microcosmos of cancer. Nature 482(7385):347–355. https://doi.org/10.1038/nature10888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rinaldi C, Wood MJA (2018) Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat Rev Neurol 14(1):9–21. https://doi.org/10.1038/nrneurol.2017.148

    Article  CAS  PubMed  Google Scholar 

  7. Fan R, Xiao C, Wan X, Cha W, Miao Y, Zhou Y, Qin C, Cui T, Su F, Shan X (2019) Small molecules with big roles in microRNA chemical biology and microRNA-targeted therapeutics. RNA Biol 16(6):707–718. https://doi.org/10.1080/15476286.2019.1593094

    Article  PubMed  PubMed Central  Google Scholar 

  8. Li J, Tan S, Kooger R, Zhang C, Zhang Y (2014) MicroRNAs as novel biological targets for detection and regulation. Chem Soc Rev 43(2):506–517. https://doi.org/10.1039/c3cs60312a

    Article  CAS  PubMed  Google Scholar 

  9. Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1(9):727–730. https://doi.org/10.1038/nrd892

    Article  CAS  PubMed  Google Scholar 

  10. Tor Y (2003) Targeting RNA with small molecules. ChemBioChem 4(10):998–1007. https://doi.org/10.1002/cbic.200300680

    Article  CAS  PubMed  Google Scholar 

  11. Costales MG, Childs-Disney JL, Haniff HS, Disney MD (2020) How we think about targeting RNA with small molecules. J Med Chem. https://doi.org/10.1021/acs.jmedchem.9b01927

    Article  PubMed  PubMed Central  Google Scholar 

  12. Velagapudi SP, Vummidi BR, Disney MD (2015) Small molecule chemical probes of microRNA function. Curr Opin Chem Biol 24:97–103. https://doi.org/10.1016/j.cbpa.2014.10.024

    Article  CAS  PubMed  Google Scholar 

  13. Di Giorgio A, Duca M (2019) Synthetic small-molecule RNA ligands: future prospects as therapeutic agents. MedChemComm 10(8):1242–1255. https://doi.org/10.1039/c9md00195f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Donlic A, Hargrove AE (2018) Targeting RNA in mammalian systems with small molecules. Wiley Interdiscip Rev RNA 9(4):e1477. https://doi.org/10.1002/wrna.1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Di Giorgio A, Tran TP, Duca M (2016) Small-molecule approaches toward the targeting of oncogenic miRNAs: roadmap for the discovery of RNA modulators. Future Med Chem 8(7):803–816. https://doi.org/10.4155/fmc-2016-0018

    Article  CAS  PubMed  Google Scholar 

  16. Connelly CM, Moon MH, Schneekloth JS Jr (2016) The emerging role of RNA as a therapeutic target for small molecules. Cell Chem Biol 23(9):1077–1090. https://doi.org/10.1016/j.chembiol.2016.05.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15(8):509–524. https://doi.org/10.1038/nrm3838

    Article  CAS  PubMed  Google Scholar 

  18. Van Meter EN, Onyango JA, Teske KA (2020) A review of currently identified small molecule modulators of microRNA function. Eur J Med Chem 188:112008. https://doi.org/10.1016/j.ejmech.2019.112008

    Article  CAS  PubMed  Google Scholar 

  19. Monroig Pdel C, Chen L, Zhang S, Calin GA (2015) Small molecule compounds targeting miRNAs for cancer therapy. Adv Drug Deliv Rev 81:104–116. https://doi.org/10.1016/j.addr.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  20. Shi Z, Zhang J, Qian X, Han L, Zhang K, Chen L, Liu J, Ren Y, Yang M, Zhang A, Pu P, Kang C (2013) AC1MMYR2, an inhibitor of dicer-mediated biogenesis of Oncomir miR-21, reverses epithelial-mesenchymal transition and suppresses tumor growth and progression. Cancer Res 73(17):5519–5531. https://doi.org/10.1158/0008-5472.CAN-13-0280

    Article  CAS  PubMed  Google Scholar 

  21. Bose D, Jayaraj G, Suryawanshi H, Agarwala P, Pore SK, Banerjee R, Maiti S (2012) The tuberculosis drug streptomycin as a potential cancer therapeutic: inhibition of miR-21 function by directly targeting its precursor. Angew Chem Int Ed 51(4):1019–1023. https://doi.org/10.1002/anie.201106455

    Article  CAS  Google Scholar 

  22. Bose D, Jayaraj GG, Kumar S, Maiti S (2013) A molecular-beacon-based screen for small molecule inhibitors of miRNA maturation. ACS Chem Biol 8(5):930–938. https://doi.org/10.1021/cb300650y

    Article  CAS  PubMed  Google Scholar 

  23. Nahar S, Ranjan N, Ray A, Arya DP, Maiti S (2015) Potent inhibition of miR-27a by neomycin-bisbenzimidazole conjugates. Chem Sci 6(10):5837–5846. https://doi.org/10.1039/c5sc01969a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vo DD, Staedel C, Zehnacker L, Benhida R, Darfeuille F, Duca M (2014) Targeting the production of oncogenic microRNAs with multimodal synthetic small molecules. ACS Chem Biol 9(3):711–721. https://doi.org/10.1021/cb400668h

    Article  CAS  PubMed  Google Scholar 

  25. Yan H, Bhattarai U, Guo ZF, Liang FS (2017) Regulating miRNA-21 biogenesis by bifunctional small molecules. J Am Chem Soc 139(14):4987–4990. https://doi.org/10.1021/jacs.7b00610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vo DD, Becquart C, Tran TPA, Di Giorgio A, Darfeuille F, Staedel C, Duca M (2018) Building of neomycin-nucleobase-amino acid conjugates for the inhibition of oncogenic miRNAs biogenesis. Org Biomol Chem 16(34):6262–6274. https://doi.org/10.1039/c8ob01858h

    Article  CAS  PubMed  Google Scholar 

  27. Ghosh A, Degyatoreva N, Kukielski C, Story S, Bhaduri S, Maiti K, Nahar S, Ray A, Arya DP, Maiti S (2018) Targeting miRNA by tunable small molecule binders: peptidic aminosugar mediated interference in miR-21 biogenesis reverts epithelial to mesenchymal transition. MedChemComm 9(7):1147–1154. https://doi.org/10.1039/c8md00092a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vo DD, Tran TP, Staedel C, Benhida R, Darfeuille F, Di Giorgio A, Duca M (2016) Oncogenic micrornas biogenesis as a drug target: structure-activity relationship studies on new aminoglycoside conjugates. Chem Eur J 22(15):5350–5362. https://doi.org/10.1002/chem.201505094

    Article  CAS  PubMed  Google Scholar 

  29. Bhattarai U, Hsieh WC, Yan H, Guo ZF, Shaikh AY, Soltani A, Song Y, Ly DH, Liang FS (2020) Bifunctional small molecule-oligonucleotide hybrid as microRNA inhibitor. Bioorg Med Chem 28(7):115394. https://doi.org/10.1016/j.bmc.2020.115394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Murata A, Otabe T, Zhang J, Nakatani K (2016) BzDANP, a small-molecule modulator of Pre-miR-29a maturation by dicer. ACS Chem Biol 11(10):2790–2796. https://doi.org/10.1021/acschembio.6b00214

    Article  CAS  PubMed  Google Scholar 

  31. Connelly CM, Boer RE, Moon MH, Gareiss P, Schneekloth JS (2017) Discovery of inhibitors of MicroRNA-21 processing using small molecule microarrays. ACS Chem Biol 12(2):435–443. https://doi.org/10.1021/acschembio.6b00945

    Article  CAS  PubMed  Google Scholar 

  32. Garner AL, Lorenz DA, Sandoval J, Gallagher EE, Kerk SA, Kaur T, Menon A (2019) Tetracyclines as inhibitors of Pre-microRNA maturation: a disconnection between rna binding and inhibition. ACS Med Chem Lett 10(5):816–821. https://doi.org/10.1021/acsmedchemlett.9b00091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pai J, Hyun S, Hyun JY, Park SH, Kim WJ, Bae SH, Kim NK, Yu J, Shin I (2016) Screening of pre-miRNA-155 binding peptides for apoptosis inducing activity using peptide microarrays. J Am Chem Soc 138(3):857–867. https://doi.org/10.1021/jacs.5b09216

    Article  CAS  PubMed  Google Scholar 

  34. Shortridge MD, Walker MJ, Pavelitz T, Chen Y, Yang W, Varani G (2017) A macrocyclic peptide ligand binds the oncogenic MicroRNA-21 precursor and suppresses dicer processing. ACS Chem Biol 12(6):1611–1620. https://doi.org/10.1021/acschembio.7b00180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yan H, Zhou M, Bhattarai U, Song Y, Zheng M, Cai J, Liang FS (2019) Cyclic Peptidomimetics as Inhibitor for miR-155 Biogenesis. Mol Pharm 16(2):914–920. https://doi.org/10.1021/acs.molpharmaceut.8b01247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Angelbello AJ, Chen JL, Childs-Disney JL, Zhang P, Wang ZF, Disney MD (2018) Using genome sequence to enable the design of medicines and chemical probes. Chem Rev 118(4):1599–1663. https://doi.org/10.1021/acs.chemrev.7b00504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Costales MG, Haga CL, Velagapudi SP, Childs-Disney JL, Phinney DG, Disney MD (2017) Small molecule inhibition of microRNA-210 reprograms an oncogenic hypoxic circuit. J Am Chem Soc 139(9):3446–3455. https://doi.org/10.1021/jacs.6b11273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Velagapudi SP, Costales MG, Vummidi BR, Nakai Y, Angelbello AJ, Tran T, Haniff HS, Matsumoto Y, Wang ZF, Chatterjee AK, Childs-Disney JL, Disney MD (2018) Approved anti-cancer drugs target oncogenic non-coding RNAs. Cell Chem Biol 25(9):1086–1094. https://doi.org/10.1016/j.chembiol.2018.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Velagapudi SP, Gallo SM, Disney MD (2014) Sequence-based design of bioactive small molecules that target precursor microRNAs. Nat Chem Biol 10(4):291–297. https://doi.org/10.1038/nchembio.1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Costales MG, Hoch DG, Abegg D, Childs-Disney JL, Velagapudi SP, Adibekian A, Disney MD (2019) A designed small molecule inhibitor of a non-coding RNA sensitizes HER2 negative cancers to Herceptin. J Am Chem Soc 141(7):2960–2974. https://doi.org/10.1021/jacs.8b10558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Velagapudi SP, Cameron MD, Haga CL, Rosenberg LH, Lafitte M, Duckett DR, Phinney DG, Disney MD (2016) Design of a small molecule against an oncogenic noncoding RNA. Proc Natl Acad Sci U S A 113(21):5898–5903. https://doi.org/10.1073/pnas.1523975113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu X, Haniff HS, Childs-Disney JL, Shuster A, Aikawa H, Adibekian A, Disney MD (2020) Targeted degradation of the oncogenic MicroRNA 17–92 cluster by structure-targeting ligands. J Am Chem Soc 142(15):6970–6982. https://doi.org/10.1021/jacs.9b13159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Costales MG, Aikawa H, Li Y, Childs-Disney JL, Abegg D, Hoch DG, Pradeep Velagapudi S, Nakai Y, Khan T, Wang KW, Yildirim I, Adibekian A, Wang ET, Disney MD (2020) Small-molecule targeted recruitment of a nuclease to cleave an oncogenic RNA in a mouse model of metastatic cancer. Proc Natl Acad Sci U S A 117(5):2406–2411. https://doi.org/10.1073/pnas.1914286117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu T, Yoon H, Xiong Y, Dixon-Clarke SE, Nowak RP, Fischer ES (2020) Targeted protein degradation as a powerful research tool in basic biology and drug target discovery. Nat Struct Mol Biol 27(7):605–614. https://doi.org/10.1038/s41594-020-0438-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vogelmann A, Robaa D, Sippl W, Jung M (2020) Proteolysis targeting chimeras (PROTACs) for epigenetics research. Curr Opin Chem Biol 57:8–16. https://doi.org/10.1016/j.cbpa.2020.01.010

    Article  CAS  PubMed  Google Scholar 

  46. Disney MD, Suresh BM, Benhamou RI, Childs-Disney JL (2020) Progress toward the development of the small molecule equivalent of small interfering RNA. Curr Opin Chem Biol 56:63–71. https://doi.org/10.1016/j.cbpa.2020.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Costales MG, Matsumoto Y, Velagapudi SP, Disney MD (2018) Small molecule targeted recruitment of a nuclease to RNA. J Am Chem Soc 140(22):6741–6744. https://doi.org/10.1021/jacs.8b01233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Costales MG, Suresh B, Vishnu K, Disney MD (2019) Targeted degradation of a hypoxia-associated non-coding RNA enhances the selectivity of a small molecule interacting with RNA. Cell Chem Biol 26(8):1180–1186. https://doi.org/10.1016/j.chembiol.2019.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Burger RM (1998) Cleavage of nucleic acids by bleomycin. Chem Rev 98(3):1153–1170. https://doi.org/10.1021/cr960438a

    Article  CAS  PubMed  Google Scholar 

  50. Angelbello AJ, Disney MD (2018) Bleomycin can cleave an oncogenic noncoding RNA. ChemBioChem 19(1):43–47. https://doi.org/10.1002/cbic.201700581

    Article  CAS  PubMed  Google Scholar 

  51. Li Y, Disney MD (2018) Precise small molecule degradation of a noncoding RNA identifies cellular binding sites and modulates an oncogenic phenotype. ACS Chem Biol 13(11):3065–3071. https://doi.org/10.1021/acschembio.8b00827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Angelbello AJ, DeFeo ME, Glinkerman CM, Boger DL, Disney MD (2020) Precise targeted cleavage of a r(CUG) repeat expansion in cells by using a small-molecule-Deglycobleomycin conjugate. ACS Chem Biol 15(4):849–855. https://doi.org/10.1021/acschembio.0c00036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rzuczek SG, Colgan LA, Nakai Y, Cameron MD, Furling D, Yasuda R, Disney MD (2017) Precise small-molecule recognition of a toxic CUG RNA repeat expansion. Nat Chem Biol 13(2):188–193. https://doi.org/10.1038/nchembio.2251

    Article  CAS  PubMed  Google Scholar 

  54. Angelbello AJ, Rzuczek SG, McKee KK, Chen JL, Olafson H, Cameron MD, Moss WN, Wang ET, Disney MD (2019) Precise small-molecule cleavage of an r(CUG) repeat expansion in a myotonic dystrophy mouse model. Proc Natl Acad Sci U S A 116(16):7799–7804. https://doi.org/10.1073/pnas.1901484116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bondeson DP, Mares A, Smith IED, Ko E, Campos S, Miah AH, Mulholland KE, Routly N, Buckley DL, Gustafson JL, Zinn N, Grandi P, Shimamura S, Bergamini G, Faelth-Savitski M, Bantscheff M, Cox C, Gordon DA, Willard RR, Flanagan JJ, Casillas LN, Votta BJ, den Besten W, Famm K, Kruidenier L, Carter PS, Harling JD, Churcher I, Crews CM (2015) Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat Chem Biol 11(8):611–617. https://doi.org/10.1038/nchembio.1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, Karlsson A, Al-Lazikani B, Hersey A, Oprea TI, Overington JP (2017) A comprehensive map of molecular drug targets. Nat Rev Drug Discov 16(1):19–34. https://doi.org/10.1038/nrd.2016.230

    Article  CAS  PubMed  Google Scholar 

  57. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Roder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See LH, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan Y, Wold B, Carninci P, Guigo R, Gingeras TR (2012) Landscape of transcription in human cells. Nature 489(7414):101–108. https://doi.org/10.1038/nature11233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discovery 16(3):203–222. https://doi.org/10.1038/nrd.2016.246

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rengen Fan or Wenzhang Zha.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Wan, X., Shan, X. et al. Drugging the “undruggable” microRNAs. Cell. Mol. Life Sci. 78, 1861–1871 (2021). https://doi.org/10.1007/s00018-020-03676-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03676-8

Keywords

Navigation