Skip to main content

Advertisement

Log in

The dark side of Alzheimer’s disease: unstructured biology of proteins from the amyloid cascade signaling pathway

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a leading cause of age-related dementia worldwide. Despite more than a century of intensive research, we are not anywhere near the discovery of a cure for this disease or a way to prevent its progression. Among the various molecular mechanisms proposed for the description of the pathogenesis and progression of AD, the amyloid cascade hypothesis, according to which accumulation of a product of amyloid precursor protein (APP) cleavage, amyloid β (Aβ) peptide, induces pathological changes in the brain observed in AD, occupies a unique niche. Although multiple proteins have been implicated in this amyloid cascade signaling pathway, their structure–function relationships are mostly unexplored. However, it is known that two major proteins related to AD pathology, Aβ peptide, and microtubule-associated protein tau belong to the category of intrinsically disordered proteins (IDPs), which are the functionally important proteins characterized by a lack of fixed, ordered three-dimensional structure. IDPs and intrinsically disordered protein regions (IDPRs) play numerous vital roles in various cellular processes, such as signaling, cell cycle regulation, macromolecular recognition, and promiscuous binding. However, the deregulation and misfolding of IDPs may lead to disturbed signaling, interactions, and disease pathogenesis. Often, molecular recognition-related IDPs/IDPRs undergo disorder-to-order transition upon binding to their biological partners and contain specific disorder-based binding motifs, known as molecular recognition features (MoRFs). Knowing the intrinsic disorder status and disorder-based functionality of proteins associated with amyloid cascade signaling pathway may help to untangle the mechanisms of AD pathogenesis and help identify therapeutic targets. In this paper, we have used multiple computational tools to evaluate the presence of intrinsic disorder and MoRFs in 27 proteins potentially relevant to the amyloid cascade signaling pathway. Among these, BIN1, APP, APOE, PICALM, PSEN1 and CD33 were found to be highly disordered. Furthermore, their disorder-based binding regions and associated short linear motifs have also been identified. These findings represent important foundation for the future research, and experimental characterization of disordered regions in these proteins is required to better understand their roles in AD pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

AICD:

APP intracellular domain

APP:

Amyloid precursor protein

Aβ:

Amyloid-beta

CD:

Cumulative distribution function

CH:

Charge-hydropathy

CME:

Clathrin-mediated endocytosis

CSF:

Cerebrospinal fluid

D2P2 :

Database of disordered protein predictions

ELM:

Eukaryotic linear motifs

FAD:

Familial Alzheimer’s disease

GWAS:

Genome-wide association studies

HDL:

High-density lipoprotein

IDP:

Intrinsically disordered proteins

IDPRs:

Intrinsically disordered protein regions

ITAM:

Immunotyrosine inhibitory motif

LDLR:

Low-density lipoprotein receptor

LOAD:

Late onset of Alzheimer’s disease

MCI:

Mild cognitive impairment

MoRFs:

Molecular recognition features

NFT:

Neurofibrillary tangles

NMDA:

N-Methyl-d-aspartate

PONDR:

Predictor of natural disordered regions

PPID:

Predicted percentage of intrinsic disorder

PTM:

Post-translational modification

SIGLECs:

Sialic acid-binding Ig-like family

SLiM:

Short linear motifs

STRING:

Search tool for retrieval of interacting genes

TGN:

Trans-Golgi network

TNF:

Tumor necrotic factor

tPA:

Tissue plasminogen activator

uPA:

Urokinase PLG activator

References

  1. Alzheimer A (1906) Über einen eigenartigen schweren Erkrankungsprozeß der Hirnrinde. Neurologisches Centralblatt 23:1129–1136

    Google Scholar 

  2. Hippius H, Neundorfer G (2003) The discovery of Alzheimer's disease. Dialogues Clin Neurosci 5(1):101–108

    PubMed  PubMed Central  Google Scholar 

  3. Glenner GG, Wong CW (1984) Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120(3):885–890. https://doi.org/10.1016/s0006-291x(84)80190-4

    Article  CAS  PubMed  Google Scholar 

  4. O'Brien RJ, Wong PC (2011) Amyloid precursor protein processing and Alzheimer's disease. Annu Rev Neurosci 34:185–204. https://doi.org/10.1146/annurev-neuro-061010-113613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Robakis NK, Ramakrishna N, Wolfe G, Wisniewski HM (1987) Molecular cloning and characterization of a cDNA encoding the cerebrovascular and the neuritic plaque amyloid peptides. Proc Natl Acad Sci USA 84(12):4190–4194. https://doi.org/10.1073/pnas.84.12.4190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goldgaber D, Lerman MI, McBride OW, Saffiotti U, Gajdusek DC (1987) Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer's disease. Science 235(4791):877–880. https://doi.org/10.1126/science.3810169

    Article  CAS  PubMed  Google Scholar 

  7. Tanzi RE, Gusella JF, Watkins PC, Bruns GA, St George-Hyslop P, Van Keuren ML, Patterson D, Pagan S, Kurnit DM, Neve RL (1987) Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science 235(4791):880–884. https://doi.org/10.1126/science.2949367

    Article  CAS  PubMed  Google Scholar 

  8. Goyal D, Kaur A, Goyal B (2018) Benzofuran and indole: promising scaffolds for drug development in Alzheimer's disease. ChemMedChem 13(13):1275–1299. https://doi.org/10.1002/cmdc.201800156

    Article  CAS  PubMed  Google Scholar 

  9. Du X, Wang X, Geng M (2018) Alzheimer's disease hypothesis and related therapies. Transl Neurodegener 7:2. https://doi.org/10.1186/s40035-018-0107-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hardy JA, Higgins GA (1992) Alzheimer's disease: the amyloid cascade hypothesis. Science 256(5054):184–185. https://doi.org/10.1126/science.1566067

    Article  CAS  PubMed  Google Scholar 

  11. Mohamed T, Shakeri A, Rao PP (2016) Amyloid cascade in Alzheimer's disease: recent advances in medicinal chemistry. Eur J Med Chem 113:258–272. https://doi.org/10.1016/j.ejmech.2016.02.049

    Article  CAS  PubMed  Google Scholar 

  12. Karran E, Mercken M, De Strooper B (2011) The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10(9):698–712. https://doi.org/10.1038/nrd3505

    Article  CAS  PubMed  Google Scholar 

  13. Xu W, Tan L, Yu JT (2015) The role of PICALM in Alzheimer's disease. Mol Neurobiol 52(1):399–413. https://doi.org/10.1007/s12035-014-8878-3

    Article  CAS  PubMed  Google Scholar 

  14. Dourlen P, Kilinc D, Malmanche N, Chapuis J, Lambert JC (2019) The new genetic landscape of Alzheimer's disease: from amyloid cascade to genetically driven synaptic failure hypothesis? Acta Neuropathol 138(2):221–236. https://doi.org/10.1007/s00401-019-02004-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gadhave K, Bolshette N, Ahire A, Pardeshi R, Thakur K, Trandafir C, Istrate A, Ahmed S, Lahkar M, Muresanu DF, Balea M (2016) The ubiquitin proteasomal system: a potential target for the management of Alzheimer's disease. J Cell Mol Med 20(7):1392–1407. https://doi.org/10.1111/jcmm.12817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moss ML, Powell G, Miller MA, Edwards L, Qi B, Sang QX, De Strooper B, Tesseur I, Lichtenthaler SF, Taverna M, Zhong JL, Dingwall C, Ferdous T, Schlomann U, Zhou P, Griffith LG, Lauffenburger DA, Petrovich R, Bartsch JW (2011) ADAM9 inhibition increases membrane activity of ADAM10 and controls alpha-secretase processing of amyloid precursor protein. J Biol Chem 286(47):40443–40451. https://doi.org/10.1074/jbc.M111.280495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Seegar TCM, Killingsworth LB, Saha N, Meyer PA, Patra D, Zimmerman B, Janes PW, Rubinstein E, Nikolov DB, Skiniotis G, Kruse AC, Blacklow SC (2017) Structural basis for regulated proteolysis by the alpha-secretase ADAM10. Cell 171(7):1638 e1637–1648 e1637. https://doi.org/10.1016/j.cell.2017.11.014

    Article  CAS  Google Scholar 

  18. Hartl D, May P, Gu W, Mayhaus M, Pichler S, Spaniol C, Glaab E, Bobbili DR, Antony P, Koegelsberger S, Kurz A, Grimmer T, Morgan K, Vardarajan BN, Reitz C, Hardy J, Bras J, Guerreiro R, Balling R, Schneider JG, Riemenschneider M (2018) A rare loss-of-function variant of ADAM17 is associated with late-onset familial Alzheimer disease. Mol Psychiatry. https://doi.org/10.1038/s41380-018-0091-8

    Article  PubMed  PubMed Central  Google Scholar 

  19. Deuss M, Reiss K, Hartmann D (2008) Part-time alpha-secretases: the functional biology of ADAM 9, 10 and 17. Curr Alzheimer Res 5(2):187–201

    Article  CAS  PubMed  Google Scholar 

  20. Asai M, Hattori C, Szabo B, Sasagawa N, Maruyama K, Tanuma S, Ishiura S (2003) Putative function of ADAM9, ADAM10, and ADAM17 as APP alpha-secretase. Biochem Biophys Res Commun 301(1):231–235. https://doi.org/10.1016/s0006-291x(02)02999-6

    Article  CAS  PubMed  Google Scholar 

  21. Yan R, Vassar R (2014) Targeting the beta secretase BACE1 for Alzheimer's disease therapy. Lancet Neurol 13(3):319–329. https://doi.org/10.1016/S1474-4422(13)70276-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pardeshi R, Bolshette N, Gadhave K, Ahire A, Ahmed S, Cassano T, Gupta VB, Lahkar M (2017) Insulin signaling: an opportunistic target to minify the risk of Alzheimer's disease. Psychoneuroendocrinology 83:159–171. https://doi.org/10.1016/j.psyneuen.2017.05.004

    Article  CAS  PubMed  Google Scholar 

  23. Serneels L, Dejaegere T, Craessaerts K, Horre K, Jorissen E, Tousseyn T, Hebert S, Coolen M, Martens G, Zwijsen A, Annaert W, Hartmann D, De Strooper B (2005) Differential contribution of the three Aph1 genes to gamma-secretase activity in vivo. Proc Natl Acad Sci USA 102(5):1719–1724. https://doi.org/10.1073/pnas.0408901102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. De Strooper B (2003) Aph-1, Pen-2, and nicastrin with presenilin generate an active gamma-Secretase complex. Neuron 38(1):9–12. https://doi.org/10.1016/s0896-6273(03)00205-8

    Article  PubMed  Google Scholar 

  25. Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, Bird TD, Hardy J, Hutton M, Kukull W, Larson E, Levy-Lahad E, Viitanen M, Peskind E, Poorkaj P, Schellenberg G, Tanzi R, Wasco W, Lannfelt L, Selkoe D, Younkin S (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nat Med 2(8):864–870

    Article  CAS  PubMed  Google Scholar 

  26. Holtzman DM, Bales KR, Tenkova T, Fagan AM, Parsadanian M, Sartorius LJ, Mackey B, Olney J, McKeel D, Wozniak D, Paul SM (2000) Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer's disease. Proc Natl Acad Sci USA 97(6):2892–2897. https://doi.org/10.1073/pnas.050004797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Barker R, Love S, Kehoe PG (2010) Plasminogen and plasmin in Alzheimer's disease. Brain Res 1355:7–15. https://doi.org/10.1016/j.brainres.2010.08.025

    Article  CAS  PubMed  Google Scholar 

  28. Miners JS, Baig S, Palmer J, Palmer LE, Kehoe PG, Love S (2008) Abeta-degrading enzymes in Alzheimer's disease. Brain Pathol 18(2):240–252. https://doi.org/10.1111/j.1750-3639.2008.00132.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Satoh K, Abe-Dohmae S, Yokoyama S, St George-Hyslop P, Fraser PE (2015) ATP-binding cassette transporter A7 (ABCA7) loss of function alters Alzheimer amyloid processing. J Biol Chem 290(40):24152–24165. https://doi.org/10.1074/jbc.M115.655076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Miyagawa T, Ebinuma I, Morohashi Y, Hori Y, Young Chang M, Hattori H, Maehara T, Yokoshima S, Fukuyama T, Tsuji S, Iwatsubo T, Prendergast GC, Tomita T (2016) BIN1 regulates BACE1 intracellular trafficking and amyloid-beta production. Hum Mol Genet 25(14):2948–2958. https://doi.org/10.1093/hmg/ddw146

    Article  CAS  PubMed  Google Scholar 

  31. Moreau K, Fleming A, Imarisio S, Lopez Ramirez A, Mercer JL, Jimenez-Sanchez M, Bento CF, Puri C, Zavodszky E, Siddiqi F, Lavau CP, Betton M, O'Kane CJ, Wechsler DS, Rubinsztein DC (2014) PICALM modulates autophagy activity and tau accumulation. Nat Commun 5:4998. https://doi.org/10.1038/ncomms5998

    Article  CAS  PubMed  Google Scholar 

  32. Tian Y, Chang JC, Fan EY, Flajolet M, Greengard P (2013) Adaptor complex AP2/PICALM, through interaction with LC3, targets Alzheimer's APP-CTF for terminal degradation via autophagy. Proc Natl Acad Sci USA 110(42):17071–17076. https://doi.org/10.1073/pnas.1315110110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao L (2019) CD33 in Alzheimer's disease—biology, pathogenesis, and therapeutics: a mini-review. Gerontology 65(4):323–331. https://doi.org/10.1159/000492596

    Article  CAS  PubMed  Google Scholar 

  34. Jiang T, Yu JT, Hu N, Tan MS, Zhu XC, Tan L (2014) CD33 in Alzheimer's disease. Mol Neurobiol 49(1):529–535. https://doi.org/10.1007/s12035-013-8536-1

    Article  CAS  PubMed  Google Scholar 

  35. Wu ZC, Yu JT, Li Y, Tan L (2012) Clusterin in Alzheimer's disease. Adv Clin Chem 56:155–173

    Article  CAS  PubMed  Google Scholar 

  36. Nuutinen T, Suuronen T, Kauppinen A, Salminen A (2009) Clusterin: a forgotten player in Alzheimer's disease. Brain Res Rev 61(2):89–104. https://doi.org/10.1016/j.brainresrev.2009.05.007

    Article  CAS  PubMed  Google Scholar 

  37. Narayan P, Orte A, Clarke RW, Bolognesi B, Hook S, Ganzinger KA, Meehan S, Wilson MR, Dobson CM, Klenerman D (2011) The extracellular chaperone clusterin sequesters oligomeric forms of the amyloid-beta(1–40) peptide. Nat Struct Mol Biol 19(1):79–83. https://doi.org/10.1038/nsmb.2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Storck SE, Pietrzik CU (2017) Endothelial LRP1—a potential target for the treatment of Alzheimer's disease : theme: drug discovery, development and delivery in Alzheimer's disease guest editor: Davide Brambilla. Pharm Res 34(12):2637–2651. https://doi.org/10.1007/s11095-017-2267-3

    Article  CAS  PubMed  Google Scholar 

  39. Shinohara M, Tachibana M, Kanekiyo T, Bu G (2017) Role of LRP1 in the pathogenesis of Alzheimer's disease: evidence from clinical and preclinical studies. J Lipid Res 58(7):1267–1281. https://doi.org/10.1194/jlr.R075796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Blacker D, Wilcox MA, Laird NM, Rodes L, Horvath SM, Go RC, Perry R, Watson B Jr, Bassett SS, McInnis MG, Albert MS, Hyman BT, Tanzi RE (1998) Alpha-2 macroglobulin is genetically associated with Alzheimer disease. Nat Genet 19(4):357–360. https://doi.org/10.1038/1243

    Article  CAS  PubMed  Google Scholar 

  41. Palmer JC, Baig S, Kehoe PG, Love S (2009) Endothelin-converting enzyme-2 is increased in Alzheimer's disease and up-regulated by Abeta. Am J Pathol 175(1):262–270. https://doi.org/10.2353/ajpath.2009.081054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Deming Y, Li Z, Benitez BA, Cruchaga C (2018) Triggering receptor expressed on myeloid cells 2 (TREM2): a potential therapeutic target for Alzheimer disease? Expert Opin Ther Targets 22(7):587–598. https://doi.org/10.1080/14728222.2018.1486823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones DT, Kim PM, Kriwacki RW, Oldfield CJ, Pappu RV, Tompa P, Uversky VN, Wright PE, Babu MM (2014) Classification of intrinsically disordered regions and proteins. Chem Rev 114(13):6589–6631. https://doi.org/10.1021/cr400525m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Habchi J, Tompa P, Longhi S, Uversky VN (2014) Introducing protein intrinsic disorder. Chem Rev 114(13):6561–6588. https://doi.org/10.1021/cr400514h

    Article  CAS  PubMed  Google Scholar 

  45. Mishra PM, Uversky VN, Giri R (2018) Molecular recognition features in Zika virus proteome. J Mol Biol 430(16):2372–2388. https://doi.org/10.1016/j.jmb.2017.10.018

    Article  CAS  PubMed  Google Scholar 

  46. Toto A, Camilloni C, Giri R, Brunori M, Vendruscolo M, Gianni S (2016) Molecular recognition by templated folding of an intrinsically disordered protein. Sci Rep 6:21994. https://doi.org/10.1038/srep21994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gianni S, Morrone A, Giri R, Brunori M (2012) A folding-after-binding mechanism describes the recognition between the transactivation domain of c-Myb and the KIX domain of the CREB-binding protein. Biochem Biophys Res Commun 428(2):205–209. https://doi.org/10.1016/j.bbrc.2012.09.112

    Article  CAS  PubMed  Google Scholar 

  48. Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z (2002) Intrinsic disorder and protein function. Biochemistry 41(21):6573–6582. https://doi.org/10.1021/bi012159+

    Article  CAS  PubMed  Google Scholar 

  49. Dunker AK, Brown CJ, Obradovic Z (2002) Identification and functions of usefully disordered proteins. Adv Protein Chem 62:25–49

    Article  CAS  PubMed  Google Scholar 

  50. Wright PE, Dyson HJ (2009) Linking folding and binding. Curr Opin Struct Biol 19(1):31–38. https://doi.org/10.1016/j.sbi.2008.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Toto A, Giri R, Brunori M, Gianni S (2014) The mechanism of binding of the KIX domain to the mixed lineage leukemia protein and its allosteric role in the recognition of c-Myb. Protein Sci 23(7):962–969. https://doi.org/10.1002/pro.2480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Giri R, Morrone A, Toto A, Brunori M, Gianni S (2013) Structure of the transition state for the binding of c-Myb and KIX highlights an unexpected order for a disordered system. Proc Natl Acad Sci USA 110(37):14942–14947. https://doi.org/10.1073/pnas.1307337110

    Article  PubMed  PubMed Central  Google Scholar 

  53. Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z (2001) Intrinsically disordered protein. J Mol Graph Model 19(1):26–59

    Article  CAS  PubMed  Google Scholar 

  54. Oldfield CJ, Dunker AK (2014) Intrinsically disordered proteins and intrinsically disordered protein regions. Annu Rev Biochem 83:553–584. https://doi.org/10.1146/annurev-biochem-072711-164947

    Article  CAS  PubMed  Google Scholar 

  55. Uversky VN (2013) Unusual biophysics of intrinsically disordered proteins. Biochim Biophys Acta 1834(5):932–951. https://doi.org/10.1016/j.bbapap.2012.12.008

    Article  CAS  PubMed  Google Scholar 

  56. Uversky VN, Dunker AK (2010) Understanding protein non-folding. Biochim Biophys Acta 1804(6):1231–1264. https://doi.org/10.1016/j.bbapap.2010.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Uversky VN (2011) Multitude of binding modes attainable by intrinsically disordered proteins: a portrait gallery of disorder-based complexes. Chem Soc Rev 40(3):1623–1634. https://doi.org/10.1039/c0cs00057d

    Article  CAS  PubMed  Google Scholar 

  58. Uversky VN (2013) Intrinsic disorder-based protein interactions and their modulators. Curr Pharm Des 19(23):4191–4213

    Article  CAS  PubMed  Google Scholar 

  59. Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37:215–246. https://doi.org/10.1146/annurev.biophys.37.032807.125924

    Article  CAS  PubMed  Google Scholar 

  60. Uversky VN, Dave V, Iakoucheva LM, Malaney P, Metallo SJ, Pathak RR, Joerger AC (2014) Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Chem Rev 114(13):6844–6879. https://doi.org/10.1021/cr400713r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kumar D, Sharma N, Giri R (2017) Therapeutic interventions of cancers using intrinsically disordered proteins as drug targets: c-Myc as model system. Cancer Inform 16:1176935117699408. https://doi.org/10.1177/1176935117699408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Uversky VN (2012) Intrinsically disordered proteins and novel strategies for drug discovery. Expert Opin Drug Discov 7(6):475–488. https://doi.org/10.1517/17460441.2012.686489

    Article  CAS  PubMed  Google Scholar 

  63. Uversky VN (2009) Intrinsic disorder in proteins associated with neurodegenerative diseases. Front Biosci (Landmark Ed) 14:5188–5238

    Article  CAS  Google Scholar 

  64. Uversky VN (2017) The roles of intrinsic disorder-based liquid-liquid phase transitions in the "Dr. Jekyll-Mr. Hyde" behavior of proteins involved in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Autophagy 13(12):2115–2162. https://doi.org/10.1080/15548627.2017.1384889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Uversky VN (2014) The triple power of D(3): protein intrinsic disorder in degenerative diseases. Front Biosci (Landmark Ed) 19:181–258

    Article  CAS  Google Scholar 

  66. Uversky VN (2010) Targeting intrinsically disordered proteins in neurodegenerative and protein dysfunction diseases: another illustration of the D(2) concept. Expert Rev Proteom 7(4):543–564. https://doi.org/10.1586/epr.10.36

    Article  CAS  Google Scholar 

  67. Martinelli AHS, Lopes FC, John EBO, Carlini CR, Ligabue-Braun R (2019) Modulation of disordered proteins with a focus on neurodegenerative diseases and other pathologies. Int J Mol Sci. https://doi.org/10.3390/ijms20061322

    Article  PubMed  PubMed Central  Google Scholar 

  68. Skrabana R, Skrabanova M, Csokova N, Sevcik J, Novak M (2006) Intrinsically disordered tau protein in Alzheimer's tangles: a coincidence or a rule? Bratisl Lek Listy 107(9–10):354–358

    CAS  PubMed  Google Scholar 

  69. Dunker AK, Obradovic Z, Romero P, Garner EC, Brown CJ (2000) Intrinsic protein disorder in complete genomes. Genome Inform 11:161–171

    CAS  Google Scholar 

  70. Uversky VN (2010) The mysterious unfoldome: structureless, underappreciated, yet vital part of any given proteome. J Biomed Biotechnol 2010:568068. https://doi.org/10.1155/2010/568068

    Article  CAS  PubMed  Google Scholar 

  71. Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337(3):635–645. https://doi.org/10.1016/j.jmb.2004.02.002

    Article  CAS  PubMed  Google Scholar 

  72. Xue B, Dunker AK, Uversky VN (2012) Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J Biomol Struct Dyn 30(2):137–149. https://doi.org/10.1080/07391102.2012.675145

    Article  CAS  PubMed  Google Scholar 

  73. Peng Z, Yan J, Fan X, Mizianty MJ, Xue B, Wang K, Hu G, Uversky VN, Kurgan L (2015) Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in all domains of life. Cell Mol Life Sci 72(1):137–151. https://doi.org/10.1007/s00018-014-1661-9

    Article  CAS  PubMed  Google Scholar 

  74. Singh A, Kumar A, Yadav R, Uversky VN, Giri R (2018) Deciphering the dark proteome of Chikungunya virus. Sci Rep 8(1):5822. https://doi.org/10.1038/s41598-018-23969-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Giri R, Kumar D, Sharma N, Uversky VN (2016) Intrinsically disordered side of the Zika virus proteome. Front Cell Infect Microbiol 6:144. https://doi.org/10.3389/fcimb.2016.00144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chouard T (2011) Structural biology: breaking the protein rules. Nature 471(7337):151–153. https://doi.org/10.1038/471151a

    Article  CAS  PubMed  Google Scholar 

  77. Tanzi RE, Bertram L (2005) Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell 120(4):545–555. https://doi.org/10.1016/j.cell.2005.02.008

    Article  CAS  PubMed  Google Scholar 

  78. Tanzi RE (2012) The genetics of Alzheimer disease. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a006296

    Article  PubMed  PubMed Central  Google Scholar 

  79. Rosenberg RN, Lambracht-Washington D, Yu G, Xia W (2016) Genomics of Alzheimer disease: a review. JAMA Neurol 73(7):867–874. https://doi.org/10.1001/jamaneurol.2016.0301

    Article  PubMed  PubMed Central  Google Scholar 

  80. Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O'Donovan C, Phan I, Pilbout S, Schneider M (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 31(1):365–370. https://doi.org/10.1093/nar/gkg095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Vucetic S, Obradovic Z, Vacic V, Radivojac P, Peng K, Iakoucheva LM, Cortese MS, Lawson JD, Brown CJ, Sikes JG, Newton CD, Dunker AK (2005) DisProt: a database of protein disorder. Bioinformatics 21(1):137–140. https://doi.org/10.1093/bioinformatics/bth476

    Article  CAS  PubMed  Google Scholar 

  82. Piovesan D, Tabaro F, Micetic I, Necci M, Quaglia F, Oldfield CJ, Aspromonte MC, Davey NE, Davidovic R, Dosztanyi Z, Elofsson A, Gasparini A, Hatos A, Kajava AV, Kalmar L, Leonardi E, Lazar T, Macedo-Ribeiro S, Macossay-Castillo M, Meszaros A, Minervini G, Murvai N, Pujols J, Roche DB, Salladini E, Schad E, Schramm A, Szabo B, Tantos A, Tonello F, Tsirigos KD, Veljkovic N, Ventura S, Vranken W, Warholm P, Uversky VN, Dunker AK, Longhi S, Tompa P, Tosatto SC (2017) DisProt 7.0: a major update of the database of disordered proteins. Nucleic Acids Res 45(D1):D219–D227. https://doi.org/10.1093/nar/gkw1056

    Article  CAS  PubMed  Google Scholar 

  83. Sickmeier M, Hamilton JA, LeGall T, Vacic V, Cortese MS, Tantos A, Szabo B, Tompa P, Chen J, Uversky VN, Obradovic Z, Dunker AK (2007) DisProt: the database of disordered proteins. Nucleic Acids Res 35(Database issue):D786–D793. https://doi.org/10.1093/nar/gkl893

    Article  CAS  PubMed  Google Scholar 

  84. Peng K, Radivojac P, Vucetic S, Dunker AK, Obradovic Z (2006) Length-dependent prediction of protein intrinsic disorder. BMC Bioinform 7:208. https://doi.org/10.1186/1471-2105-7-208

    Article  CAS  Google Scholar 

  85. Peng K, Vucetic S, Radivojac P, Brown CJ, Dunker AK, Obradovic Z (2005) Optimizing long intrinsic disorder predictors with protein evolutionary information. J Bioinform Comput Biol 3(1):35–60

    Article  CAS  PubMed  Google Scholar 

  86. Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK (2001) Sequence complexity of disordered protein. Proteins 42(1):38–48

    Article  CAS  PubMed  Google Scholar 

  87. Xue B, Dunbrack RL, Williams RW, Dunker AK (1804) Uversky VN (2010) PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta 4:996–1010. https://doi.org/10.1016/j.bbapap.2010.01.011

    Article  CAS  Google Scholar 

  88. He B, Wang K, Liu Y, Xue B, Uversky VN, Dunker AK (2009) Predicting intrinsic disorder in proteins: an overview. Cell Res 19(8):929–949. https://doi.org/10.1038/cr.2009.87

    Article  CAS  PubMed  Google Scholar 

  89. Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21(16):3433–3434. https://doi.org/10.1093/bioinformatics/bti541

    Article  CAS  PubMed  Google Scholar 

  90. Piovesan D, Tabaro F, Paladin L, Necci M, Micetic I, Camilloni C, Davey N, Dosztanyi Z, Meszaros B, Monzon AM, Parisi G, Schad E, Sormanni P, Tompa P, Vendruscolo M, Vranken WF, Tosatto SCE (2018) MobiDB 3.0: more annotations for intrinsic disorder, conformational diversity and interactions in proteins. Nucleic Acids Res 46(D1):D471–D476. https://doi.org/10.1093/nar/gkx1071

    Article  CAS  PubMed  Google Scholar 

  91. Uversky VN, Gillespie JR, Fink AL (2000) Why are "natively unfolded" proteins unstructured under physiologic conditions? Proteins 41(3):415–427

    Article  CAS  PubMed  Google Scholar 

  92. Oldfield CJ, Cheng Y, Cortese MS, Brown CJ, Uversky VN, Dunker AK (2005) Comparing and combining predictors of mostly disordered proteins. Biochemistry 44(6):1989–2000. https://doi.org/10.1021/bi047993o

    Article  CAS  PubMed  Google Scholar 

  93. Huang F, Oldfield CJ, Xue B, Hsu WL, Meng J, Liu X, Shen L, Romero P, Uversky VN, Dunker A (2014) Improving protein order-disorder classification using charge-hydropathy plots. BMC Bioinform 15(Suppl 17):S4. https://doi.org/10.1186/1471-2105-15-S17-S4

    Article  Google Scholar 

  94. Huang F, Oldfield C, Meng J, Hsu WL, Xue B, Uversky VN, Romero P, Dunker AK (2012) Subclassifying disordered proteins by the CH-CDF plot method. Pac Symp Biocomput 128–139

  95. Oates ME, Romero P, Ishida T, Ghalwash M, Mizianty MJ, Xue B, Dosztanyi Z, Uversky VN, Obradovic Z, Kurgan L, Dunker AK, Gough J (2013) D(2)P(2): database of disordered protein predictions. Nucleic Acids Res 41(Database issue):D508–D516. https://doi.org/10.1093/nar/gks1226

    Article  CAS  PubMed  Google Scholar 

  96. Dosztanyi Z, Meszaros B, Simon I (2009) ANCHOR: web server for predicting protein binding regions in disordered proteins. Bioinformatics 25(20):2745–2746. https://doi.org/10.1093/bioinformatics/btp518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV (2019) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–D613. https://doi.org/10.1093/nar/gky1131

    Article  CAS  PubMed  Google Scholar 

  98. Gouw M, Samano-Sanchez H, Van Roey K, Diella F, Gibson TJ, Dinkel H (2017) Exploring short linear motifs using the ELM database and tools. Curr Protoc Bioinform 58:8 22 21–28 22 35. https://doi.org/10.1002/cpbi.26

    Article  Google Scholar 

  99. Rajagopalan K, Mooney SM, Parekh N, Getzenberg RH, Kulkarni P (2011) A majority of the cancer/testis antigens are intrinsically disordered proteins. J Cell Biochem 112(11):3256–3267. https://doi.org/10.1002/jcb.23252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mohan A, Sullivan WJ Jr, Radivojac P, Dunker AK, Uversky VN (2008) Intrinsic disorder in pathogenic and non-pathogenic microbes: discovering and analyzing the unfoldomes of early-branching eukaryotes. Mol Biosyst 4(4):328–340. https://doi.org/10.1039/b719168e

    Article  CAS  PubMed  Google Scholar 

  101. Xue B, Oldfield CJ, Dunker AK, Uversky VN (2009) CDF it all: consensus prediction of intrinsically disordered proteins based on various cumulative distribution functions. FEBS Lett 583(9):1469–1474. https://doi.org/10.1016/j.febslet.2009.03.070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gotz J, Chen F, van Dorpe J, Nitsch RM (2001) Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science 293(5534):1491–1495. https://doi.org/10.1126/science.1062097

    Article  CAS  PubMed  Google Scholar 

  103. Masliah E, Rockenstein E, Veinbergs I, Sagara Y, Mallory M, Hashimoto M, Mucke L (2001) beta-amyloid peptides enhance alpha-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer's disease and Parkinson's disease. Proc Natl Acad Sci USA 98(21):12245–12250. https://doi.org/10.1073/pnas.211412398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Giasson BI, Forman MS, Higuchi M, Golbe LI, Graves CL, Kotzbauer PT, Trojanowski JQ, Lee VM (2003) Initiation and synergistic fibrillization of tau and alpha-synuclein. Science 300(5619):636–640. https://doi.org/10.1126/science.1082324

    Article  CAS  PubMed  Google Scholar 

  105. Clinton LK, Blurton-Jones M, Myczek K, Trojanowski JQ, LaFerla FM (2010) Synergistic Interactions between Abeta, tau, and alpha-synuclein: acceleration of neuropathology and cognitive decline. J Neurosci 30(21):7281–7289. https://doi.org/10.1523/JNEUROSCI.0490-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zou WQ, Xiao X, Yuan J, Puoti G, Fujioka H, Wang X, Richardson S, Zhou X, Zou R, Li S, Zhu X, McGeer PL, McGeehan J, Kneale G, Rincon-Limas DE, Fernandez-Funez P, Lee HG, Smith MA, Petersen RB, Guo JP (2011) Amyloid-beta42 interacts mainly with insoluble prion protein in the Alzheimer brain. J Biol Chem 286(17):15095–15105. https://doi.org/10.1074/jbc.M110.199356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Luo J, Warmlander SK, Graslund A, Abrahams JP (2016) Cross-interactions between the Alzheimer disease amyloid-beta peptide and other amyloid proteins: a further aspect of the amyloid cascade hypothesis. J Biol Chem 291(32):16485–16493. https://doi.org/10.1074/jbc.R116.714576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. van der Kant R, Goldstein LS (2015) Cellular functions of the amyloid precursor protein from development to dementia. Dev Cell 32(4):502–515. https://doi.org/10.1016/j.devcel.2015.01.022

    Article  CAS  PubMed  Google Scholar 

  109. Botelho MG, Gralle M, Oliveira CL, Torriani I, Ferreira ST (2003) Folding and stability of the extracellular domain of the human amyloid precursor protein. J Biol Chem 278(36):34259–34267. https://doi.org/10.1074/jbc.M303189200

    Article  CAS  PubMed  Google Scholar 

  110. Kim HS, Park CH, Cha SH, Lee JH, Lee S, Kim Y, Rah JC, Jeong SJ, Suh YH (2000) Carboxyl-terminal fragment of Alzheimer's APP destabilizes calcium homeostasis and renders neuronal cells vulnerable to excitotoxicity. FASEB J 14(11):1508–1517. https://doi.org/10.1096/fj.14.11.1508

    Article  CAS  PubMed  Google Scholar 

  111. Gorman PM, Kim S, Guo M, Melnyk RA, McLaurin J, Fraser PE, Bowie JU, Chakrabartty A (2008) Dimerization of the transmembrane domain of amyloid precursor proteins and familial Alzheimer's disease mutants. BMC Neurosci 9:17. https://doi.org/10.1186/1471-2202-9-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mok SS, Sberna G, Heffernan D, Cappai R, Galatis D, Clarris HJ, Sawyer WH, Beyreuther K, Masters CL, Small DH (1997) Expression and analysis of heparin-binding regions of the amyloid precursor protein of Alzheimer's disease. FEBS Lett 415(3):303–307. https://doi.org/10.1016/s0014-5793(97)01146-0

    Article  CAS  PubMed  Google Scholar 

  113. Gooz M (2010) ADAM-17: the enzyme that does it all. Crit Rev Biochem Mol Biol 45(2):146–169. https://doi.org/10.3109/10409231003628015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ingram RN, Orth P, Strickland CL, Le HV, Madison V, Beyer BM (2006) Stabilization of the autoproteolysis of TNF-alpha converting enzyme (TACE) results in a novel crystal form suitable for structure-based drug design studies. Protein Eng Des Sel 19(4):155–161. https://doi.org/10.1093/protein/gzj014

    Article  CAS  PubMed  Google Scholar 

  115. Qian M, Shen X, Wang H (2016) The distinct role of ADAM17 in APP proteolysis and microglial activation related to Alzheimer's disease. Cell Mol Neurobiol 36(4):471–482. https://doi.org/10.1007/s10571-015-0232-4

    Article  CAS  PubMed  Google Scholar 

  116. Togashi N, Ura N, Higashiura K, Murakami H, Shimamoto K (2002) Effect of TNF-alpha-converting enzyme inhibitor on insulin resistance in fructose-fed rats. Hypertension 39(2 Pt 2):578–580. https://doi.org/10.1161/hy0202.103290

    Article  CAS  PubMed  Google Scholar 

  117. Richards WG, Sweeney WE, Yoder BK, Wilkinson JE, Woychik RP, Avner ED (1998) Epidermal growth factor receptor activity mediates renal cyst formation in polycystic kidney disease. J Clin Investig 101(5):935–939. https://doi.org/10.1172/JCI2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Dusterhoft S, Hobel K, Oldefest M, Lokau J, Waetzig GH, Chalaris A, Garbers C, Scheller J, Rose-John S, Lorenzen I, Grotzinger J (2014) A disintegrin and metalloprotease 17 dynamic interaction sequence, the sweet tooth for the human interleukin 6 receptor. J Biol Chem 289(23):16336–16348. https://doi.org/10.1074/jbc.M114.557322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Johansson P, Kaspersson K, Gurrell IK, Back E, Eketjall S, Scott CW, Cebers G, Thorne P, McKenzie MJ, Beaton H, Davey P, Kolmodin K, Holenz J, Duggan ME, Budd Haeberlein S, Burli RW (2018) Toward beta-secretase-1 inhibitors with improved isoform selectivity. J Med Chem 61(8):3491–3502. https://doi.org/10.1021/acs.jmedchem.7b01716

    Article  CAS  PubMed  Google Scholar 

  120. Das B, Yan R (2017) Role of BACE1 in Alzheimer's synaptic function. Transl Neurodegener 6:23. https://doi.org/10.1186/s40035-017-0093-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Shimizu H, Tosaki A, Kaneko K, Hisano T, Sakurai T, Nukina N (2008) Crystal structure of an active form of BACE1, an enzyme responsible for amyloid beta protein production. Mol Cell Biol 28(11):3663–3671. https://doi.org/10.1128/MCB.02185-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hu X, Das B, Hou H, He W, Yan R (2018) BACE1 deletion in the adult mouse reverses preformed amyloid deposition and improves cognitive functions. J Exp Med 215(3):927–940. https://doi.org/10.1084/jem.20171831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. De Simone A, Mancini F, Real Fernandez F, Rovero P, Bertucci C, Andrisano V (2013) Surface plasmon resonance, fluorescence, and circular dichroism studies for the characterization of the binding of BACE-1 inhibitors. Anal Bioanal Chem 405(2–3):827–835. https://doi.org/10.1007/s00216-012-6312-0

    Article  CAS  PubMed  Google Scholar 

  124. Checler F, Goiran T, Alves da Costa C (2017) Presenilins at the crossroad of a functional interplay between PARK2/PARKIN and PINK1 to control mitophagy: implication for neurodegenerative diseases. Autophagy 13(11):2004–2005. https://doi.org/10.1080/15548627.2017.1363950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pardeshi R, Bolshette N, Gadhave K, Arfeen M, Ahmed S, Jamwal R, Hammock BD, Lahkar M, Goswami SK (2019) Docosahexaenoic acid increases the potency of soluble epoxide hydrolase inhibitor in alleviating streptozotocin-induced Alzheimer's disease-like complications of diabetes. Front Pharmacol 10:288. https://doi.org/10.3389/fphar.2019.00288

    Article  PubMed  PubMed Central  Google Scholar 

  126. Zhou R, Yang G, Guo X, Zhou Q, Lei J, Shi Y (2019) Recognition of the amyloid precursor protein by human gamma-secretase. Science. https://doi.org/10.1126/science.aaw0930

    Article  PubMed  PubMed Central  Google Scholar 

  127. Kelleher RJ 3rd, Shen J (2017) Presenilin-1 mutations and Alzheimer's disease. Proc Natl Acad Sci USA 114(4):629–631. https://doi.org/10.1073/pnas.1619574114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sun L, Zhou R, Yang G, Shi Y (2017) Analysis of 138 pathogenic mutations in presenilin-1 on the in vitro production of Abeta42 and Abeta40 peptides by gamma-secretase. Proc Natl Acad Sci USA 114(4):E476–E485. https://doi.org/10.1073/pnas.1618657114

    Article  CAS  PubMed  Google Scholar 

  129. Yang G, Yu K, Kaitatzi CS, Singh A, Labahn J (2017) Influence of solubilization and AD-mutations on stability and structure of human presenilins. Sci Rep 7(1):17970. https://doi.org/10.1038/s41598-017-18313-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cai Y, An SS, Kim S (2015) Mutations in presenilin 2 and its implications in Alzheimer's disease and other dementia-associated disorders. Clin Interv Aging 10:1163–1172. https://doi.org/10.2147/CIA.S85808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Vito P, Wolozin B, Ganjei JK, Iwasaki K, Lacana E, D'Adamio L (1996) Requirement of the familial Alzheimer's disease gene PS2 for apoptosis. Opposing effect of ALG-3. J Biol Chem 271(49):31025–31028. https://doi.org/10.1074/jbc.271.49.31025

    Article  CAS  PubMed  Google Scholar 

  132. Wolozin B, Iwasaki K, Vito P, Ganjei JK, Lacana E, Sunderland T, Zhao B, Kusiak JW, Wasco W, D'Adamio L (1996) Participation of presenilin 2 in apoptosis: enhanced basal activity conferred by an Alzheimer mutation. Science 274(5293):1710–1713. https://doi.org/10.1126/science.274.5293.1710

    Article  CAS  PubMed  Google Scholar 

  133. De Strooper B (2005) Nicastrin: gatekeeper of the gamma-secretase complex. Cell 122(3):318–320. https://doi.org/10.1016/j.cell.2005.07.021

    Article  CAS  PubMed  Google Scholar 

  134. Shah S, Lee SF, Tabuchi K, Hao YH, Yu C, LaPlant Q, Ball H, Dann CE 3rd, Sudhof T, Yu G (2005) Nicastrin functions as a gamma-secretase-substrate receptor. Cell 122(3):435–447. https://doi.org/10.1016/j.cell.2005.05.022

    Article  CAS  PubMed  Google Scholar 

  135. Xie T, Yan C, Zhou R, Zhao Y, Sun L, Yang G, Lu P, Ma D, Shi Y (2014) Crystal structure of the gamma-secretase component nicastrin. Proc Natl Acad Sci USA 111(37):13349–13354. https://doi.org/10.1073/pnas.1414837111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yu K, Yang G, Labahn J (2017) High-efficient production and biophysical characterisation of nicastrin and its interaction with APPC100. Sci Rep 7:44297. https://doi.org/10.1038/srep44297

    Article  PubMed  PubMed Central  Google Scholar 

  137. Pardossi-Piquard R, Yang SP, Kanemoto S, Gu Y, Chen F, Bohm C, Sevalle J, Li T, Wong PC, Checler F, Schmitt-Ulms G, St George-Hyslop P, Fraser PE (2009) APH1 polar transmembrane residues regulate the assembly and activity of presenilin complexes. J Biol Chem 284(24):16298–16307. https://doi.org/10.1074/jbc.M109.000067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Du M, Fan X, Hanada T, Gao H, Lutchman M, Brandsma JL, Chishti AH, Chen JJ (2005) Association of cottontail rabbit papillomavirus E6 oncoproteins with the hDlg/SAP97 tumor suppressor. J Cell Biochem 94(5):1038–1045. https://doi.org/10.1002/jcb.20383

    Article  CAS  PubMed  Google Scholar 

  139. Serneels L, Van Biervliet J, Craessaerts K, Dejaegere T, Horre K, Van Houtvin T, Esselmann H, Paul S, Schafer MK, Berezovska O, Hyman BT, Sprangers B, Sciot R, Moons L, Jucker M, Yang Z, May PC, Karran E, Wiltfang J, D'Hooge R, De Strooper B (2009) gamma-Secretase heterogeneity in the Aph1 subunit: relevance for Alzheimer's disease. Science 324(5927):639–642. https://doi.org/10.1126/science.1171176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Bammens L, Chavez-Gutierrez L, Tolia A, Zwijsen A, De Strooper B (2011) Functional and topological analysis of Pen-2, the fourth subunit of the gamma-secretase complex. J Biol Chem 286(14):12271–12282. https://doi.org/10.1074/jbc.M110.216978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ahn K, Shelton CC, Tian Y, Zhang X, Gilchrist ML, Sisodia SS, Li YM (2010) Activation and intrinsic gamma-secretase activity of presenilin 1. Proc Natl Acad Sci USA 107(50):21435–21440. https://doi.org/10.1073/pnas.1013246107

    Article  PubMed  PubMed Central  Google Scholar 

  142. Kanekiyo T, Xu H, Bu G (2014) ApoE and Abeta in Alzheimer's disease: accidental encounters or partners? Neuron 81(4):740–754. https://doi.org/10.1016/j.neuron.2014.01.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chen J, Li Q, Wang J (2011) Topology of human apolipoprotein E3 uniquely regulates its diverse biological functions. Proc Natl Acad Sci USA 108(36):14813–14818. https://doi.org/10.1073/pnas.1106420108

    Article  PubMed  PubMed Central  Google Scholar 

  144. Yu JT, Tan L, Hardy J (2014) Apolipoprotein E in Alzheimer's disease: an update. Annu Rev Neurosci 37:79–100. https://doi.org/10.1146/annurev-neuro-071013-014300

    Article  CAS  PubMed  Google Scholar 

  145. Hatters DM, Zhong N, Rutenber E, Weisgraber KH (2006) Amino-terminal domain stability mediates apolipoprotein E aggregation into neurotoxic fibrils. J Mol Biol 361(5):932–944. https://doi.org/10.1016/j.jmb.2006.06.080

    Article  CAS  PubMed  Google Scholar 

  146. Liu CC, Zhao N, Fu Y, Wang N, Linares C, Tsai CW, Bu G (2017) ApoE4 accelerates early seeding of amyloid pathology. Neuron 96(5):1024 e1023–1032 e1023. https://doi.org/10.1016/j.neuron.2017.11.013

    Article  CAS  Google Scholar 

  147. Tsiolaki PL, Katsafana AD, Baltoumas FA, Louros NN, Iconomidou VA (2019) Hidden aggregation hot-spots on human apolipoprotein E: a structural study. Int J Mol Sci. https://doi.org/10.3390/ijms20092274

    Article  PubMed  PubMed Central  Google Scholar 

  148. Raulin AC, Kraft L, Al-Hilaly YK, Xue WF, McGeehan JE, Atack JR, Serpell L (2019) The molecular basis for apolipoprotein E4 as the major risk factor for late-onset Alzheimer's disease. J Mol Biol 431(12):2248–2265. https://doi.org/10.1016/j.jmb.2019.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Pande AH, Tripathy RK, Nankar SA (2009) Membrane surface charge modulates lipoprotein complex forming capability of peptides derived from the C-terminal domain of apolipoprotein E. Biochim Biophys Acta 1788(6):1366–1376. https://doi.org/10.1016/j.bbamem.2009.03.020

    Article  CAS  PubMed  Google Scholar 

  150. Tan MS, Yu JT, Tan L (2013) Bridging integrator 1 (BIN1): form, function, and Alzheimer's disease. Trends Mol Med 19(10):594–603. https://doi.org/10.1016/j.molmed.2013.06.004

    Article  CAS  PubMed  Google Scholar 

  151. Casal E, Federici L, Zhang W, Fernandez-Recio J, Priego EM, Miguel RN, DuHadaway JB, Prendergast GC, Luisi BF, Laue ED (2006) The crystal structure of the BAR domain from human Bin1/amphiphysin II and its implications for molecular recognition. Biochemistry 45(43):12917–12928. https://doi.org/10.1021/bi060717k

    Article  CAS  PubMed  Google Scholar 

  152. Pineda-Lucena A, Ho CS, Mao DY, Sheng Y, Laister RC, Muhandiram R, Lu Y, Seet BT, Katz S, Szyperski T, Penn LZ, Arrowsmith CH (2005) A structure-based model of the c-Myc/Bin1 protein interaction shows alternative splicing of Bin1 and c-Myc phosphorylation are key binding determinants. J Mol Biol 351(1):182–194. https://doi.org/10.1016/j.jmb.2005.05.046

    Article  CAS  PubMed  Google Scholar 

  153. Chapuis J, Hansmannel F, Gistelinck M, Mounier A, Van Cauwenberghe C, Kolen KV, Geller F, Sottejeau Y, Harold D, Dourlen P, Grenier-Boley B, Kamatani Y, Delepine B, Demiautte F, Zelenika D, Zommer N, Hamdane M, Bellenguez C, Dartigues JF, Hauw JJ, Letronne F, Ayral AM, Sleegers K, Schellens A, Broeck LV, Engelborghs S, De Deyn PP, Vandenberghe R, O'Donovan M, Owen M, Epelbaum J, Mercken M, Karran E, Bantscheff M, Drewes G, Joberty G, Campion D, Octave JN, Berr C, Lathrop M, Callaerts P, Mann D, Williams J, Buee L, Dewachter I, Van Broeckhoven C, Amouyel P, Moechars D, Dermaut B, Lambert JC, Consortium G (2013) Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Mol Psychiatry 18(11):1225–1234. https://doi.org/10.1038/mp.2013.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Beeg M, Stravalaci M, Romeo M, Carra AD, Cagnotto A, Rossi A, Diomede L, Salmona M, Gobbi M (2016) Clusterin binds to Abeta1-42 oligomers with high affinity and interferes with peptide aggregation by inhibiting primary and secondary nucleation. J Biol Chem 291(13):6958–6966. https://doi.org/10.1074/jbc.M115.689539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Matukumalli SR, Tangirala R, Rao CM (2017) Clusterin: full-length protein and one of its chains show opposing effects on cellular lipid accumulation. Sci Rep 7:41235. https://doi.org/10.1038/srep41235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Baig S, Joseph SA, Tayler H, Abraham R, Owen MJ, Williams J, Kehoe PG, Love S (2010) Distribution and expression of picalm in Alzheimer disease. J Neuropathol Exp Neurol 69(10):1071–1077. https://doi.org/10.1097/NEN.0b013e3181f52e01

    Article  CAS  PubMed  Google Scholar 

  157. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A, Jones N, Thomas C, Stretton A, Morgan AR, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Morgan K, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Love S, Kehoe PG, Hardy J, Mead S, Fox N, Rossor M, Collinge J, Maier W, Jessen F, Schurmann B, Heun R, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frolich L, Hampel H, Hull M, Rujescu D, Goate AM, Kauwe JS, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Muhleisen TW, Nothen MM, Moebus S, Jockel KH, Klopp N, Wichmann HE, Carrasquillo MM, Pankratz VS, Younkin SG, Holmans PA, O'Donovan M, Owen MJ, Williams J (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat Genet 41(10):1088–1093. https://doi.org/10.1038/ng.440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Xiao Q, Gil SC, Yan P, Wang Y, Han S, Gonzales E, Perez R, Cirrito JR, Lee JM (2012) Role of phosphatidylinositol clathrin assembly lymphoid-myeloid leukemia (PICALM) in intracellular amyloid precursor protein (APP) processing and amyloid plaque pathogenesis. J Biol Chem 287(25):21279–21289. https://doi.org/10.1074/jbc.M111.338376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN, Mullin K, Hooli B, Choi SH, Hyman BT, Tanzi RE (2013) Alzheimer's disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 78(4):631–643. https://doi.org/10.1016/j.neuron.2013.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kitago Y, Nagae M, Nakata Z, Yagi-Utsumi M, Takagi-Niidome S, Mihara E, Nogi T, Kato K, Takagi J (2015) Structural basis for amyloidogenic peptide recognition by sorLA. Nat Struct Mol Biol 22(3):199–206. https://doi.org/10.1038/nsmb.2954

    Article  CAS  PubMed  Google Scholar 

  161. Cramer JF, Gustafsen C, Behrens MA, Oliveira CL, Pedersen JS, Madsen P, Petersen CM, Thirup SS (2010) GGA autoinhibition revisited. Traffic 11(2):259–273. https://doi.org/10.1111/j.1600-0854.2009.01017.x

    Article  CAS  PubMed  Google Scholar 

  162. Baker SK, Chen ZL, Norris EH, Revenko AS, MacLeod AR, Strickland S (2018) Blood-derived plasminogen drives brain inflammation and plaque deposition in a mouse model of Alzheimer's disease. Proc Natl Acad Sci USA 115(41):E9687–E9696. https://doi.org/10.1073/pnas.1811172115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Law RH, Caradoc-Davies T, Cowieson N, Horvath AJ, Quek AJ, Encarnacao JA, Steer D, Cowan A, Zhang Q, Lu BG, Pike RN, Smith AI, Coughlin PB, Whisstock JC (2012) The X-ray crystal structure of full-length human plasminogen. Cell Rep 1(3):185–190. https://doi.org/10.1016/j.celrep.2012.02.012

    Article  CAS  PubMed  Google Scholar 

  164. Shaw MA, Gao Z, McElhinney KE, Thornton S, Flick MJ, Lane A, Degen JL, Ryu JK, Akassoglou K, Mullins ES (2017) Plasminogen deficiency delays the onset and protects from demyelination and paralysis in autoimmune neuroinflammatory disease. J Neurosci 37(14):3776–3788. https://doi.org/10.1523/JNEUROSCI.2932-15.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Cook AD, De Nardo CM, Braine EL, Turner AL, Vlahos R, Way KJ, Beckman SK, Lenzo JC, Hamilton JA (2010) Urokinase-type plasminogen activator and arthritis progression: role in systemic disease with immune complex involvement. Arthritis Res Ther 12(2):R37. https://doi.org/10.1186/ar2946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Raghu H, Jone A, Cruz C, Rewerts CL, Frederick MD, Thornton S, Degen JL, Flick MJ (2014) Plasminogen is a joint-specific positive or negative determinant of arthritis pathogenesis in mice. Arthritis Rheumatol 66(6):1504–1516. https://doi.org/10.1002/art.38402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Uversky VN (2016) p53 Proteoforms and intrinsic disorder: an illustration of the protein structure-function continuum concept. Int J Mol Sci 17(11):1874. https://doi.org/10.3390/ijms17111874

    Article  CAS  PubMed Central  Google Scholar 

  168. Smith LM, Kelleher NL, Consortium for Top Down P (2013) Proteoform: a single term describing protein complexity. Nat Methods 10(3):186–187. https://doi.org/10.1038/nmeth.2369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Uversky VN (2019) Protein intrinsic disorder and structure-function continuum. Prog Mol Biol Transl Sci 166:1–17. https://doi.org/10.1016/bs.pmbts.2019.05.003

    Article  CAS  PubMed  Google Scholar 

  170. Fonin AV, Darling AL, Kuznetsova IM, Turoverov KK, Uversky VN (2019) Multi-functionality of proteins involved in GPCR and G protein signaling: making sense of structure-function continuum with intrinsic disorder-based proteoforms. Cell Mol Life Sci. https://doi.org/10.1007/s00018-019-03276-1

    Article  PubMed  Google Scholar 

  171. Uversky VN (2016) p53 Proteoforms and intrinsic disorder: an illustration of the protein structure-function continuum concept. Int J Mol Sci. https://doi.org/10.3390/ijms17111874

    Article  PubMed  PubMed Central  Google Scholar 

  172. Midic U, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN (2009) Unfoldomics of human genetic diseases: illustrative examples of ordered and intrinsically disordered members of the human diseasome. Protein Pept Lett 16(12):1533–1547

    Article  CAS  PubMed  Google Scholar 

  173. Uversky VN (2009) Intrinsic disorder in proteins associated with neurodegenerative diseases. Front Biosci 14:5188–5238

    Article  CAS  Google Scholar 

  174. Uversky VN, Oldfield CJ, Midic U, Xie H, Xue B, Vucetic S, Iakoucheva LM, Obradovic Z, Dunker AK (2009) Unfoldomics of human diseases: linking protein intrinsic disorder with diseases. BMC Genom 10(Suppl 1):S7. https://doi.org/10.1186/1471-2164-10-S1-S7

    Article  CAS  Google Scholar 

  175. Uversky VN (2014) Wrecked regulation of intrinsically disordered proteins in diseases: pathogenicity of deregulated regulators. Front Mol Biosci 1:6. https://doi.org/10.3389/fmolb.2014.00006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

RG and KG are supported by the DBT project (BT/PR16871/NER/95/329/201). BG is grateful to DBT-IUSSTF sponsored Khorana scholarship 2019. PK would like to thank DBT for funding (BT/IN/IC-Impacts/21/DS/2016-2017). VU and RG are thankful to MHRD-SPARC (SPARC/2018-2019/P37/SL).

Author information

Authors and Affiliations

Authors

Contributions

RG and VNU conception, design and study supervision; KG, PG, BG, BX, VNU, and RG produced and analyzed data; KG, BG, VNU, and RG wrote and edited the manuscript.

Corresponding authors

Correspondence to Vladimir N. Uversky or Rajanish Giri.

Ethics declarations

Conflict of interest

All authors declare that there are no conflicts.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 11192 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadhave, K., Gehi, B.R., Kumar, P. et al. The dark side of Alzheimer’s disease: unstructured biology of proteins from the amyloid cascade signaling pathway. Cell. Mol. Life Sci. 77, 4163–4208 (2020). https://doi.org/10.1007/s00018-019-03414-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03414-9

Keywords

Navigation