Skip to main content

Advertisement

Log in

Purpurin modulates Tau-derived VQIVYK fibrillization and ameliorates Alzheimer’s disease-like symptoms in animal model

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Neurofibrillary tangles of the Tau protein and plaques of the amyloid β peptide are hallmarks of Alzheimer’s disease (AD), which is characterized by the conversion of monomeric proteins/peptides into misfolded β-sheet rich fibrils. Halting the fibrillation process and disrupting the existing aggregates are key challenges for AD drug development. Previously, we performed in vitro high-throughput screening for the identification of potent inhibitors of Tau aggregation using a proxy model, a highly aggregation-prone hexapeptide fragment 306VQIVYK311 (termed PHF6) derived from Tau. Here we have characterized a hit molecule from that screen as a modulator of Tau aggregation using in vitro, in silico, and in vivo techniques. This molecule, an anthraquinone derivative named Purpurin, inhibited ~ 50% of PHF6 fibrillization in vitro at equimolar concentration and disassembled pre-formed PHF6 fibrils. In silico studies showed that Purpurin interacted with key residues of PHF6, which are responsible for maintaining its β-sheets conformation. Isothermal titration calorimetry and surface plasmon resonance experiments with PHF6 and full-length Tau (FL-Tau), respectively, indicated that Purpurin interacted with PHF6 predominantly via hydrophobic contacts and displayed a dose-dependent complexation with FL-Tau. Purpurin was non-toxic when fed to Drosophila and it significantly ameliorated the AD-related neurotoxic symptoms of transgenic flies expressing WT-FL human Tau (hTau) plausibly by inhibiting Tau accumulation and reducing Tau phosphorylation. Purpurin also reduced hTau accumulation in cell culture overexpressing hTau. Importantly, Purpurin efficiently crossed an in vitro human blood–brain barrier model. Our findings suggest that Purpurin could be a potential lead molecule for AD therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Maccioni RB, Munoz JP, Barbeito L (2001) The molecular bases of Alzheimer’s disease and other neurodegenerative disorders. Arch Med Res 32:367–381

    Article  CAS  PubMed  Google Scholar 

  2. Walsh DM, Selkoe DJ (2004) Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44:181–193. https://doi.org/10.1016/j.neuron.2004.09.010

    Article  CAS  PubMed  Google Scholar 

  3. Bloom GS (2014) Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2013.5847

    Article  PubMed  Google Scholar 

  4. Van Cauwenberghe C, Van Broeckhoven C, Sleegers K (2016) The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med 18:421–430. https://doi.org/10.1038/gim.2015.117

    Article  PubMed  Google Scholar 

  5. Gotz J, Halliday G, Nisbet RM (2019) Molecular pathogenesis of the tauopathies. Annu Rev Pathol 14:239–261. https://doi.org/10.1146/annurev-pathmechdis-012418-012936

    Article  CAS  PubMed  Google Scholar 

  6. Mietelska-Porowska A, Wasik U, Goras M et al (2014) Tau protein modifications and interactions: their role in function and dysfunction. Int J Mol Sci 15:4671–4713. https://doi.org/10.3390/ijms15034671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dehmelt L, Halpain S (2005) The MAP2/Tau family of microtubule-associated proteins. Genome Biol 6:204. https://doi.org/10.1186/gb-2004-6-1-204

    Article  PubMed  Google Scholar 

  8. Kadavath H, Hofele RV, Biernat J et al (2015) Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. Proc Natl Acad Sci U S A 112:7501–7506. https://doi.org/10.1073/pnas.1504081112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alonso A, Zaidi T, Novak M et al (2001) Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci U S A 98:6923–6928. https://doi.org/10.1073/pnas.121119298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barghorn S, Davies P, Mandelkow E (2004) Tau paired helical filaments from Alzheimer’s disease brain and assembled in vitro are based on beta-structure in the core domain. Biochemistry 43:1694–1703. https://doi.org/10.1021/bi0357006

    Article  CAS  PubMed  Google Scholar 

  11. Brunden KR, Ballatore C, Crowe A et al (2010) Tau-directed drug discovery for Alzheimer’s disease and related tauopathies: a focus on tau assembly inhibitors. Exp Neurol 223:304–310. https://doi.org/10.1016/j.expneurol.2009.08.031

    Article  CAS  PubMed  Google Scholar 

  12. Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42:631–639

    Article  CAS  PubMed  Google Scholar 

  13. Kametani F, Hasegawa M (2018) Reconsideration of amyloid hypothesis and Tau hypothesis in Alzheimer’s disease. Front Neurosci 12:25. https://doi.org/10.3389/fnins.2018.00025

    Article  PubMed  PubMed Central  Google Scholar 

  14. Irwin DJ (2016) Tauopathies as clinicopathological entities. Parkinsonism Relat Disord 22(Suppl 1):S29–S33. https://doi.org/10.1016/j.parkreldis.2015.09.020

    Article  PubMed  Google Scholar 

  15. Yamada K (2017) Extracellular tau and its potential role in the propagation of tau pathology. Front Neurosci 11:667. https://doi.org/10.3389/fnins.2017.00667

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shafiei SS, Guerrero-Muñoz MJ, Castillo-Carranza DL (2017) Tau oligomers: cytotoxicity, propagation, and mitochondrial damage. Front Aging Neurosci 9:83. https://doi.org/10.3389/fnagi.2017.00083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ganguly P, Do TD, Larini L et al (2015) Tau assembly: the dominant role of PHF6 (VQIVYK) in microtubule binding region repeat R3. J Phys Chem B 119:4582–4593. https://doi.org/10.1021/acs.jpcb.5b00175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. von Bergen M, Friedhoff P, Biernat J et al (2000) Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif [(306)VQIVYK(311)] forming beta structure. Proc Natl Acad Sci U S A 97:5129–5134

    Article  Google Scholar 

  19. Seidler PM, Boyer DR, Rodriguez JA et al (2018) Structure-based inhibitors of tau aggregation. Nat Chem 10:170–176. https://doi.org/10.1038/nchem.2889

    Article  CAS  PubMed  Google Scholar 

  20. Fitzpatrick AWP, Falcon B, He S et al (2017) Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 547:185–190. https://doi.org/10.1038/nature23002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goux WJ, Kopplin L, Nguyen AD et al (2004) The formation of straight and twisted filaments from short tau peptides. J Biol Chem 279:26868–26875. https://doi.org/10.1074/jbc.M402379200

    Article  CAS  PubMed  Google Scholar 

  22. Plumley JA, Dannenberg JJ (2010) The importance of hydrogen bonding between the glutamine side chains to the formation of amyloid VQIVYK parallel beta-sheets: an ONIOM DFT/AM1 study. J Am Chem Soc 132:1758–1759. https://doi.org/10.1021/ja909690a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li DW, Mohanty S, Irbäck A, Huo S (2008) Formation and growth of oligomers: a monte carlo study of an amyloid tau fragment. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1000238

    Article  PubMed  PubMed Central  Google Scholar 

  24. Frenkel-Pinter M, Tal S, Scherzer-Attali R et al (2016) Naphthoquinone-tryptophan hybrid inhibits aggregation of the tau-derived peptide PHF6 and reduces neurotoxicity. J Alzheimers Dis 51:165–178. https://doi.org/10.3233/JAD-150927

    Article  CAS  PubMed  Google Scholar 

  25. Frenkel-Pinter M, Tal S, Scherzer-Attali R et al (2017) Cl-NQTrp alleviates tauopathy symptoms in a model organism through the inhibition of tau aggregation-engendered toxicity. Neurodegener Dis 17:73–82. https://doi.org/10.1159/000448518

    Article  CAS  PubMed  Google Scholar 

  26. KrishnaKumar VG, Paul A, Gazit E, Segal D (2018) Mechanistic insights into remodeled Tau-derived PHF6 peptide fibrils by Naphthoquinone-Tryptophan hybrids. Sci Rep 8:71. https://doi.org/10.1038/s41598-017-18443-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. KrishnaKumar VG, Gupta S (2017) Simplified method to obtain enhanced expression of tau protein from E. coli and one-step purification by direct boiling. Prep Biochem Biotechnol 47:530–538. https://doi.org/10.1080/10826068.2016.1275012

    Article  CAS  PubMed  Google Scholar 

  28. Frenkel-Pinter M, Richman M, Belostozky A et al (2016) Selective inhibition of aggregation and toxicity of a tau-derived peptide using its glycosylated analogues. Chemistry 22:5945–5952. https://doi.org/10.1002/chem.201504950

    Article  CAS  PubMed  Google Scholar 

  29. Mohamed T, Hoang T, Jelokhani-Niaraki M, Rao PPN (2013) Tau-derived-hexapeptide (306)VQIVYK(311) aggregation inhibitors: nitrocatechol moiety as a pharmacophore in drug design. ACS Chem Neurosci 4:1559–1570. https://doi.org/10.1021/cn400151a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Haj E, Losev Y, Guru KrishnaKumar V et al (2018) Integrating in vitro and in silico approaches to evaluate the “dual functionality” of palmatine chloride in inhibiting and disassembling Tau-derived VQIVYK peptide fibrils. Biochim Biophys Acta 1862:1565–1575. https://doi.org/10.1016/j.bbagen.2018.04.001

    Article  CAS  Google Scholar 

  31. KrishnaKumar VG, Baweja L, Ralhan K, Gupta S (2018) Carbamylation promotes amyloidogenesis and induces structural changes in Tau-core hexapeptide fibrils. Biochim Biophys Acta Gen Subj 1862:2590–2604. https://doi.org/10.1016/j.bbagen.2018.07.030

    Article  CAS  Google Scholar 

  32. Zheng J, Liu C, Sawaya MR et al (2011) Macrocyclic beta-sheet peptides that inhibit the aggregation of a tau-protein-derived hexapeptide. J Am Chem Soc 133:3144–3157. https://doi.org/10.1021/ja110545h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Calcul L, Zhang B, Jinwal UK et al (2012) Natural products as a rich source of tau-targeting drugs for Alzheimer’s disease. Future Med Chem 4:1751–1761. https://doi.org/10.4155/fmc.12.124

    Article  CAS  PubMed  Google Scholar 

  34. Hussain G, Rasul A, Anwar H et al (2018) Role of plant derived alkaloids and their mechanism in neurodegenerative disorders. Int J Biol Sci 14:341–357. https://doi.org/10.7150/ijbs.23247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chua SW, Cornejo A, van Eersel J et al (2017) The polyphenol altenusin inhibits in vitro fibrillization of tau and reduces induced tau pathology in primary neurons. ACS Chem Neurosci 8:743–751. https://doi.org/10.1021/acschemneuro.6b00433

    Article  CAS  PubMed  Google Scholar 

  36. Dammers C, Yolcu D, Kukuk L et al (2016) Selection and characterization of tau binding d-enantiomeric peptides with potential for therapy of alzheimer disease. PLoS One 11:e0167432

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sievers SA, Karanicolas J, Chang HW et al (2011) Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Nature 475:96–100. https://doi.org/10.1038/nature10154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Scherzer-Attali R, Farfara D, Cooper I et al (2012) Naphthoquinone-tyrptophan reduces neurotoxic Abeta*56 levels and improves cognition in Alzheimer’s disease animal model. Neurobiol Dis 46:663–672. https://doi.org/10.1016/j.nbd.2012.03.005

    Article  CAS  PubMed  Google Scholar 

  39. Cecchelli R, Aday S, Sevin E et al (2014) A stable and reproducible human blood-brain barrier model derived from hematopoietic stem cells. PLoS One 9:e99733. https://doi.org/10.1371/journal.pone.0099733

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pickhardt M, Gazova Z, von Bergen M et al (2005) Anthraquinones inhibit tau aggregation and dissolve Alzheimer’s paired helical filaments in vitro and in cells. J Biol Chem 280:3628–3635. https://doi.org/10.1074/jbc.M410984200

    Article  PubMed  Google Scholar 

  41. Viswanathan GK, Mohapatra S, Paul A et al (2018) Inhibitory effect of naphthoquinone-tryptophan hybrid towards aggregation of PAP f39 semen amyloid. Molecules. https://doi.org/10.3390/molecules23123279

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sastry GM, Adzhigirey M, Day T et al (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27:221–234. https://doi.org/10.1007/s10822-013-9644-8

    Article  CAS  PubMed  Google Scholar 

  43. Friesner RA, Murphy RB, Repasky MP et al (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196. https://doi.org/10.1021/jm051256o

    Article  CAS  PubMed  Google Scholar 

  44. Friesner RA, Banks JL, Murphy RB et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. method and assessment of docking accuracy. J Med Chem 47:1739–1749. https://doi.org/10.1021/jm0306430

    Article  CAS  PubMed  Google Scholar 

  45. Halgren TA, Murphy RB, Friesner RA et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. enrichment factors in database screening. J Med Chem 47:1750–1759. https://doi.org/10.1021/jm030644s

    Article  CAS  PubMed  Google Scholar 

  46. Jacobson MP, Friesner RA, Xiang Z, Honig B (2002) On the role of the crystal environment in determining protein side-chain conformations. J Mol Biol 320:597–608

    Article  CAS  PubMed  Google Scholar 

  47. Jacobson MP, Pincus DL, Rapp CS et al (2004) A hierarchical approach to all-atom protein loop prediction. Proteins 55:351–367. https://doi.org/10.1002/prot.10613

    Article  CAS  PubMed  Google Scholar 

  48. Farid R, Day T, Friesner RA, Pearlstein RA (2006) New insights about HERG blockade obtained from protein modeling, potential energy mapping, and docking studies. Bioorg Med Chem 14:3160–3173. https://doi.org/10.1016/j.bmc.2005.12.032

    Article  CAS  PubMed  Google Scholar 

  49. Sherman W, Beard HS, Farid R (2006) Use of an induced fit receptor structure in virtual screening. Chem Biol Drug Des 67:83–84. https://doi.org/10.1111/j.1747-0285.2005.00327.x

    Article  CAS  PubMed  Google Scholar 

  50. Sherman W, Day T, Jacobson MP et al (2006) Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 49:534–553. https://doi.org/10.1021/jm050540c

    Article  CAS  PubMed  Google Scholar 

  51. Sawaya MR, Sambashivan S, Nelson R et al (2007) Atomic structures of amyloid cross-[beta] spines reveal varied steric zippers. Nature 447:453–457

    Article  CAS  PubMed  Google Scholar 

  52. Schuttelkopf AW, van Aalten DMF (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 60:1355–1363. https://doi.org/10.1107/S0907444904011679

    Article  CAS  PubMed  Google Scholar 

  53. Schmid N, Eichenberger AP, Choutko A et al (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J 40:843–856. https://doi.org/10.1007/s00249-011-0700-9

    Article  CAS  PubMed  Google Scholar 

  54. Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. Mol Model Annu 7:306–317. https://doi.org/10.1007/s008940100045

    Article  CAS  Google Scholar 

  55. Gerben SR, Lemkul JA, Brown AM, Bevan DR (2014) Comparing atomistic molecular mechanics force fields for a difficult target: a case study on the Alzheimer’s amyloid beta-peptide. J Biomol Struct Dyn 32:1817–1832. https://doi.org/10.1080/07391102.2013.838518

    Article  CAS  PubMed  Google Scholar 

  56. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3c1463:AID-JCC4%3e3.0.CO;2-H

    Article  CAS  Google Scholar 

  57. Goedert M, Spillantini MG, Jakes R et al (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3:519–526

    Article  CAS  PubMed  Google Scholar 

  58. Kolarova M, Garcia-Sierra F, Bartos A et al (2012) Structure and pathology of tau protein in Alzheimer disease. Int J Alzheimers Dis 2012:731526. https://doi.org/10.1155/2012/731526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chatterjee S, Sang T-K, Lawless GM, Jackson GR (2009) Dissociation of tau toxicity and phosphorylation: role of GSK-3beta, MARK and Cdk5 in a Drosophila model. Hum Mol Genet 18:164–177. https://doi.org/10.1093/hmg/ddn326

    Article  CAS  PubMed  Google Scholar 

  60. Scherzer-Attali R, Pellarin R, Convertino M et al (2010) Complete phenotypic recovery of an Alzheimer’s disease model by a quinone-tryptophan hybrid aggregation inhibitor. PLoS One 5:e11101. https://doi.org/10.1371/journal.pone.0011101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42

    Google Scholar 

  62. Luo H, Gauthier M, Tan X et al (2018) Sodium transporters are involved in lithium influx in brain endothelial cells. Mol Pharm 15:2528–2538. https://doi.org/10.1021/acs.molpharmaceut.8b00018

    Article  CAS  PubMed  Google Scholar 

  63. Loureiro JA, Andrade S, Duarte A et al (2017) Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimer’s disease. Molecules. https://doi.org/10.3390/molecules22020277

    Article  PubMed  PubMed Central  Google Scholar 

  64. Eigenmann DE, Durig C, Jahne EA et al (2016) In vitro blood-brain barrier permeability predictions for GABAA receptor modulating piperine analogs. Eur J Pharm Biopharm 103:118–126. https://doi.org/10.1016/j.ejpb.2016.03.029

    Article  CAS  PubMed  Google Scholar 

  65. Kuntz M, Candela P, Saint-Pol J et al (2015) Bexarotene promotes cholesterol efflux and restricts apical-to-basolateral transport of amyloid-beta peptides in an in vitro model of the human blood-brain barrier. J Alzheimers Dis 48:849–862. https://doi.org/10.3233/JAD-150469

    Article  CAS  PubMed  Google Scholar 

  66. Praca C, Rai A, Santos T et al (2018) A nanoformulation for the preferential accumulation in adult neurogenic niches. J Control Release 284:57–72. https://doi.org/10.1016/j.jconrel.2018.06.013

    Article  CAS  PubMed  Google Scholar 

  67. Cecchelli R, Dehouck B, Descamps L et al (1999) In vitro model for evaluating drug transport across the blood-brain barrier. Adv Drug Deliv Rev 36:165–178

    Article  CAS  PubMed  Google Scholar 

  68. Khurana R, Coleman C, Ionescu-Zanetti C et al (2005) Mechanism of thioflavin T binding to amyloid fibrils. J Struct Biol 151:229–238. https://doi.org/10.1016/j.jsb.2005.06.006

    Article  CAS  PubMed  Google Scholar 

  69. Groenning M (2010) Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils—current status. J Chem Biol 3:1–18. https://doi.org/10.1007/s12154-009-0027-5

    Article  PubMed  Google Scholar 

  70. Xue C, Lin TY, Chang D, Guo Z (2017) Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation. R Soc Open Sci 4:160696. https://doi.org/10.1098/rsos.160696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102

    Article  CAS  PubMed  Google Scholar 

  72. Wang S-H, Liu F-F, Dong X-Y, Sun Y (2010) Thermodynamic analysis of the molecular interactions between amyloid beta-peptide 42 and (-)-epigallocatechin-3-gallate. J Phys Chem B 114:11576–11583. https://doi.org/10.1021/jp1001435

    Article  CAS  PubMed  Google Scholar 

  73. Berhanu WM, Masunov AE (2015) Atomistic mechanism of polyphenol amyloid aggregation inhibitors: molecular dynamics study of Curcumin, Exifone, and Myricetin interaction with the segment of tau peptide oligomer. J Biomol Struct Dyn 33:1399–1411. https://doi.org/10.1080/07391102.2014.951689

    Article  CAS  PubMed  Google Scholar 

  74. Zhao J-H, Liu H-L, Chuang C-K et al (2010) Molecular dynamics simulations to investigate the stability and aggregation behaviour of the amyloid-forming peptide VQIVYK from tau protein. Mol Simul 36:1013–1024. https://doi.org/10.1080/08927022.2010.499147

    Article  CAS  Google Scholar 

  75. Velander P, Wu L, Henderson F et al (2017) Natural product-based amyloid inhibitors. Biochem Pharmacol 139:40–55. https://doi.org/10.1016/j.bcp.2017.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Armstrong AH, Chen J, McKoy AF, Hecht MH (2011) Mutations that replace aromatic side chains promote aggregation of the Alzheimer’s Abeta peptide. Biochemistry 50:4058–4067. https://doi.org/10.1021/bi200268w

    Article  CAS  PubMed  Google Scholar 

  77. Sang T-K, Jackson GR (2005) Drosophila models of neurodegenerative disease. NeuroRx 2:438–446. https://doi.org/10.1602/neurorx.2.3.438

    Article  PubMed  PubMed Central  Google Scholar 

  78. Moloney A, Sattelle DB, Lomas DA, Crowther DC (2010) Alzheimer’s disease: insights from Drosophila melanogaster models. Trends Biochem Sci 35:228–235. https://doi.org/10.1016/j.tibs.2009.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wittmann CW, Wszolek MF, Shulman JM et al (2001) Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 293:711–714. https://doi.org/10.1126/science.1062382

    Article  CAS  PubMed  Google Scholar 

  80. Pandey UB, Nichols CD (2011) Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 63:411–436. https://doi.org/10.1124/pr.110.003293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Passarella D, Goedert M (2018) Beta-sheet assembly of Tau and neurodegeneration in Drosophila melanogaster. Neurobiol Aging 72:98–105. https://doi.org/10.1016/j.neurobiolaging.2018.07.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    CAS  PubMed  Google Scholar 

  83. Ephrussi B, Herold JL (1944) Studies of eye pigments of Drosophila. I. Methods of extraction and quantitative estimation of the pigment components. Genetics 29:148–175

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Bancher C, Brunner C, Lassmann H et al (1989) Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Res 477:90–99

    Article  CAS  PubMed  Google Scholar 

  85. Ravid O, Elhaik Goldman S, Macheto D et al (2018) Blood-brain barrier cellular responses toward organophosphates: natural compensatory processes and exogenous interventions to rescue barrier properties. Front Cell Neurosci 12:359. https://doi.org/10.3389/fncel.2018.00359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Alliance Family Foundation, and the Rosetrees Trust (to DS). This work was done in collaboration with the BLAVATNIK CENTER for Drug Discovery supported by the Blavatnik Family Foundation. GKV thanks TATA post-doctoral scholarship. Authors are grateful to the members of EG and DS research groups for fruitful discussions. We thank Donna Elyashiv Revivo for introduction and advice on fly work. Authors thank Dr. Vered Holdengreber for help with Electron Microscopy.

Author information

Authors and Affiliations

Authors

Contributions

GKV and DS conceived and designed the project. GKV and DSh conducted the lab experiments. LL contributed to the development of cell model and western blots. EA and RJ performed ITC and SPR assays. GKV, EP, and AR executed the high throughput screening assay. HE performed molecular docking. FG established the in vitro BBB model. CS and IC performed the BBB permeability assay. GKV, DSh, EG and DS prepared the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Daniel Segal.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6800 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viswanathan, G.K., Shwartz, D., Losev, Y. et al. Purpurin modulates Tau-derived VQIVYK fibrillization and ameliorates Alzheimer’s disease-like symptoms in animal model. Cell. Mol. Life Sci. 77, 2795–2813 (2020). https://doi.org/10.1007/s00018-019-03312-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03312-0

Keywords

Navigation