Abstract
In mammalian ovaries, the theca layers of growing follicles are critical for maintaining their structural integrity and supporting androgen synthesis. Through combining the postnatal monitoring of ovaries by abdominal magnetic resonance imaging, endocrine profiling, hormonal analysis of the follicular fluid of growing follicles, and transcriptomic analysis of follicular theca cells, we provide evidence that the exposure of ovine fetuses to testosterone excess activates postnatal follicular growth and strongly affects the functions of follicular theca in adulthood. Prenatal exposure to testosterone impaired androgen synthesis in the small antral follicles of adults and affected the expression in their theca cells of a wide array of genes encoding extracellular matrix components, their membrane receptors, and signaling pathways. Most expression changes were uncorrelated with the concentrations of gonadotropins, steroids, and anti-Müllerian hormone in the recent hormonal environment of theca cells, suggesting that these changes rather result from the long-term developmental effects of testosterone on theca cell precursors in fetal ovaries. Disruptions of the extracellular matrix structure and signaling in the follicular theca and ovarian cortex can explain the acceleration of follicle growth through altering the stiffness of ovarian tissue. We propose that these mechanisms participate in the etiology of the polycystic ovarian syndrome, a major reproductive pathology in woman.








Similar content being viewed by others
Data availability
Raw Fastq files have been deposited in the NCBI sequenced Read archive under accession numbers SRR8776922-SRR8776937.
Abbreviations
- AMH:
-
Anti-Müllerian hormone
- DEGs:
-
Differentially expressed genes
- ECM:
-
Extracellular matrix
- ELISA:
-
Enzyme-linked immunosorbent assay
- FSH:
-
Follicle stimulating hormone
- GO:
-
Gene ontology
- GnRH:
-
Gonadotropin-releasing hormone
- IPA:
-
Ingenuity pathway analysis
- LH:
-
Luteinizing hormone
- MRI:
-
Magnetic resonance imaging
- PCOS:
-
Polycystic ovarian syndrome
- RT-qPCR:
-
Real-time quantitative PCR
- sPLS:
-
Sparse partial least squares
References
McAllister JM, Legro RS, Modi BP, Strauss JF 3rd (2015) Functional genomics of PCOS: from GWAS to molecular mechanisms. Trends Endocrinol Metab 26:118–124. https://doi.org/10.1016/j.tem.2014.12.004
Dumesic DA, Richards JS (2013) Ontogeny of the ovary in polycystic ovary syndrome. Fertil Steril 100:23–38. https://doi.org/10.1016/j.fertnstert.2013.02.011
Tata B, Mimouni NEH, Barbotin AL, Malone SA, Loyens A, Pigny P, Dewailly D, Catteau-Jonard S, Sundstrom-Poromaa I, Piltonen TT, Dal Bello F, Medana C, Prevot V, Clasadonte J, Giacobini P (2018) Elevated prenatal anti-Mullerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood. Nat Med 24:834–846. https://doi.org/10.1038/s41591-018-0035-5
Franks S, McCarthy MI, Hardy K (2006) Development of polycystic ovary syndrome: involvement of genetic and environmental factors. Int J Androl 29:278–285. https://doi.org/10.1111/j.1365-2605.2005.00623.x
Dumesic DA, Abbott DH, Padmanabhan V (2007) Polycystic ovary syndrome and its developmental origins. Rev Endocr Metab Disord 8:127–141. https://doi.org/10.1007/s11154-007-9046-0
Luque-Ramirez M, Escobar-Morreale HF (2016) Adrenal hyperandrogenism and polycystic ovary syndrome. Curr Pharm Des 22:5588–5602. https://doi.org/10.2174/1381612822666160720150625
Filippou P, Homburg R (2017) Is foetal hyperexposure to androgens a cause of PCOS? Hum Reprod Update 23:421–432. https://doi.org/10.1093/humupd/dmx013
Padmanabhan V, Veiga-Lopez A (2013) Sheep models of polycystic ovary syndrome phenotype. Mol Cell Endocrinol 373:8–20. https://doi.org/10.1016/j.mce.2012.10.005
Clarke IJ, Scaramuzzi RJ, Short RV (1977) Ovulation in prenatally androgenized ewes. J Endocrinol 73:385–389
Birch RA, Padmanabhan V, Foster DL, Unsworth WP, Robinson JE (2003) Prenatal programming of reproductive neuroendocrine function: fetal androgen exposure produces progressive disruption of reproductive cycles in sheep. Endocrinology 144:1426–1434. https://doi.org/10.1210/en.2002-220965
Cardoso RC, Puttabyatappa M, Padmanabhan V (2015) Steroidogenic versus metabolic programming of reproductive neuroendocrine, ovarian and metabolic dysfunctions. Neuroendocrinology 102:226–237. https://doi.org/10.1159/000381830
Steckler T, Wang J, Bartol FF, Roy SK, Padmanabhan V (2005) Fetal programming: prenatal testosterone treatment causes intrauterine growth retardation, reduces ovarian reserve and increases ovarian follicular recruitment. Endocrinology 146:3185–3193. https://doi.org/10.1210/en.2004-1444
Forsdike RA, Hardy K, Bull L, Stark J, Webber LJ, Stubbs S, Robinson JE, Franks S (2007) Disordered follicle development in ovaries of prenatally androgenized ewes. J Endocrinol 192:421–428. https://doi.org/10.1677/joe.1.07097
Smith P, Steckler TL, Veiga-Lopez A, Padmanabhan V (2009) Developmental programming: differential effects of prenatal testosterone and dihydrotestosterone on follicular recruitment, depletion of follicular reserve, and ovarian morphology in sheep. Biol Reprod 80:726–736. https://doi.org/10.1095/biolreprod.108.072801
Scaramuzzi RJ, Baird DT, Campbell BK, Driancourt MA, Dupont J, Fortune JE, Gilchrist RB, Martin GB, McNatty KP, McNeilly AS, Monget P, Monniaux D, Vinoles C, Webb R (2011) Regulation of folliculogenesis and the determination of ovulation rate in ruminants. Reprod Fertil Dev 23:444–467. https://doi.org/10.1071/RD09161
McNatty KP, Smith P, Hudson NL, Heath DA, Tisdall OWSDJ, Braw-Tal R (1995) Development of the sheep ovary during fetal and early neonatal life and the effect of fecundity genes. J Reprod Fertil Suppl 49:123–135
Juengel JL, Sawyer HR, Smith PR, Quirke LD, Heath DA, Lun S, Wakefield SJ, McNatty KP (2002) Origins of follicular cells and ontogeny of steroidogenesis in ovine fetal ovaries. Mol Cell Endocrinol 191:1–10. https://doi.org/10.1016/S0303-7207(02)00045-X
Veiga-Lopez A, Steckler TL, Abbott DH, Welch KB, MohanKumar PS, Phillips DJ, Refsal K, Padmanabhan V (2011) Developmental programming: impact of excess prenatal testosterone on intrauterine fetal endocrine milieu and growth in sheep. Biol Reprod 84:87–96. https://doi.org/10.1095/biolreprod.110.086686
Nieschlag E, Behre H (2010) Testosterone therapy. In: Nieschlag E, Behre HM, Nieschlag S (eds) Andrology: male reproductive health and dysfunction, 3rd edn. Springer, Berlin, pp 437–456
Juengel JL, Heath DA, Quirke LD, McNatty KP (2006) Oestrogen receptor alpha and beta, androgen receptor and progesterone receptor mRNA and protein localisation within the developing ovary and in small growing follicles of sheep. Reproduction 131:81–92. https://doi.org/10.1530/rep.1.00704
Young JM, McNeilly AS (2010) Theca: the forgotten cell of the ovarian follicle. Reproduction 140:489–504. https://doi.org/10.1530/REP-10-0094
Richards JS, Ren YA, Candelaria N, Adams JE, Rajkovic A (2018) Ovarian follicular theca cell recruitment, differentiation, and impact on fertility: 2017 Update. Endocr Rev 39:1–20. https://doi.org/10.1210/er.2017-00164
Hummitzsch K, Anderson RA, Wilhelm D, Wu J, Telfer EE, Russell DL, Robertson SA, Rodgers RJ (2015) Stem cells, progenitor cells, and lineage decisions in the ovary. Endocr Rev 36:65–91. https://doi.org/10.1210/er.2014-1079
Hogg K, McNeilly AS, Duncan WC (2011) Prenatal androgen exposure leads to alterations in gene and protein expression in the ovine fetal ovary. Endocrinology 152:2048–2059. https://doi.org/10.1210/en.2010-1219
Padmanabhan V, Salvetti NR, Matiller V, Ortega HH (2014) Developmental programming: prenatal steroid excess disrupts key members of intraovarian steroidogenic pathway in sheep. Endocrinology 155:3649–3660. https://doi.org/10.1210/en.2014-1266
Hogg K, Young JM, Oliver EM, Souza CJ, McNeilly AS, Duncan WC (2012) Enhanced thecal androgen production is prenatally programmed in an ovine model of polycystic ovary syndrome. Endocrinology 153:450–461. https://doi.org/10.1210/en.2011-1607
Manikkam M, Thompson RC, Herkimer C, Welch KB, Flak J, Karsch FJ, Padmanabhan V (2008) Developmental programming: impact of prenatal testosterone excess on pre- and postnatal gonadotropin regulation in sheep. Biol Reprod 78:648–660. https://doi.org/10.1095/biolreprod.107.063347
Robinson JE, Forsdike RA, Taylor JA (1999) In utero exposure of female lambs to testosterone reduces the sensitivity of the gonadotropin-releasing hormone neuronal network to inhibition by progesterone. Endocrinology 140:5797–5805. https://doi.org/10.1210/endo.140.12.7205
Guignot F, Baril G, Dupont F, Cognie Y, Folch J, Alabart JL, Poulin N, Beckers JF, Bed’hom B, Babilliot JM, Mermillod P (2009) Determination of sex and scrapie resistance genotype in preimplantation ovine embryos. Mol Reprod Dev 76:183–190. https://doi.org/10.1002/mrd.20940
Estienne A, Pierre A, di Clemente N, Picard JY, Jarrier P, Mansanet C, Monniaux D, Fabre S (2015) Anti-Mullerian hormone regulation by the bone morphogenetic proteins in the sheep ovary: deciphering a direct regulatory pathway. Endocrinology 156:301–313. https://doi.org/10.1210/en.2014-1551
Hochereau-de Reviers MT, Perreau C, Pisselet C, Fontaine I, Monet-Kuntz C (1990) Comparisons of endocrinological and testis parameters in 18-month-old Ile de France and Romanov rams. Dom Anim Endocr 7:63–73
Canepa S, Lainé AL, Bluteau A, Fagu C, Flon C, Monniaux D (2008) Validation d’une méthode immunoenzymatique pour le dosage de la progestérone dans le plasma des ovins et des bovins. Cahier des Techniques de l’Inra 64:19–30
Cadoret V, Frapsauce C, Jarrier P, Maillard V, Bonnet A, Locatelli Y, Royere D, Monniaux D, Guerif F, Monget P (2017) Molecular evidence that follicle development is accelerated in vitro compared to in vivo. Reproduction 153:493–508. https://doi.org/10.1530/REP-16-0627
Faure MO, Nicol L, Fabre S, Fontaine J, Mohoric N, McNeilly A, Taragnat C (2005) BMP-4 inhibits follicle-stimulating hormone secretion in ewe pituitary. J Endocrinol 186:109–121. https://doi.org/10.1677/joe.1.05988
Talebi R, Ahmadi A, Afraz F, Sarry J, Plisson-Petit F, Genet C, Fabre S (2018) Transcriptome analysis of ovine granulosa cells reveals differences between small antral follicles collected during the follicular and luteal phases. Theriogenology 108:103–117. https://doi.org/10.1016/j.theriogenology.2017.11.027
Varet H, Brillet-Gueguen L, Coppee JY, Dillies MA (2016) SARTools: a DESeq2- and EdgeR-based R pipeline for comprehensive differential analysis of RNA-seq data. PLoS One 11:e0157022. https://doi.org/10.1371/journal.pone.0157022
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B (Methodological) 57:289–300
Smedley D, Haider S, Durinck S et al (2015) The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res 43:W589–W598. https://doi.org/10.1093/nar/gkv350
Louis A, Nguyen NT, Muffato M, Roest Crollius H (2015) Genomicus update 2015: karyoView and MatrixView provide a genome-wide perspective to multispecies comparative genomics. Nucleic Acids Res 43:D682–D689. https://doi.org/10.1093/nar/gku1112
Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma’ayan A (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform 14:128. https://doi.org/10.1186/1471-2105-14-128
Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, McDermott MG, Monteiro CD, Gundersen GW, Ma’ayan A (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44:W90–W97. https://doi.org/10.1093/nar/gkw377
Le Cao KA, Rossouw D, Robert-Granie C, Besse P (2008) A sparse PLS for variable selection when integrating omics data. Stat Appl Genet Mol Biol 7:35. https://doi.org/10.2202/1544-6115.1390
Rohart F, Gautier B, Singh A, Le Cao KA (2017) mixOmics: an R package for ‘omics feature selection and multiple data integration. PLoS Comput Biol 13:e1005752. https://doi.org/10.1371/journal.pcbi.1005752
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262
Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: bestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515
Drouilhet L, Mansanet C, Sarry J, Tabet K, Bardou P, Woloszyn F, Lluch J, Harichaux G, Viguie C, Monniaux D, Bodin L, Mulsant P, Fabre S (2013) The highly prolific phenotype of Lacaune sheep is associated with an ectopic expression of the B4GALNT2 gene within the ovary. PLoS Genet 9:e1003809. https://doi.org/10.1371/journal.pgen.1003809
Shumway RH, Stoffer DS (2011) Time series analysis and its applications with R examples. Springer, New York
Torres-Rovira L, Gonzalez-Bulnes A, Succu S, Spezzigu A, Manca ME, Leoni GG, Sanna M, Pirino S, Gallus M, Naitana S, Berlinguer F (2014) Predictive value of antral follicle count and anti-Mullerian hormone for follicle and oocyte developmental competence during the early prepubertal period in a sheep model. Reprod Fertil Dev 26:1094–1106. https://doi.org/10.1071/RD13190
Torres-Rovira L, Succu S, Pasciu V, Manca ME, Gonzalez-Bulnes A, Leoni GG, Pennino MG, Spezzigu A, Gallus M, Dattena M, Monniaux D, Naitana S, Berlinguer F (2016) Postnatal pituitary and follicular activation: a revisited hypothesis in a sheep model. Reproduction 151:215–225. https://doi.org/10.1530/REP-15-0316
Campbell BK, Clinton M, Webb R (2012) The role of anti-Mullerian hormone (AMH) during follicle development in a monovulatory species (sheep). Endocrinology 153:4533–4543. https://doi.org/10.1210/en.2012-1158
Cheon KY, Chung YJ, Cho HH, Kim MR, Cha JH, Kang CS, Lee JY, Kim JH (2018) Expression of mullerian-inhibiting substance/anti-mullerian hormone type ii receptor in the human theca cells. J Clin Endocrinol Metab 103:3376–3385. https://doi.org/10.1210/jc.2018-00549
Monniaux D, Cadoret V, Clément F, Dalbies-Tran R, Elis S, Fabre S, Maillard V, Monget P, Uzbekova S (2019) Folliculogenesis. In: Huhtaniemi I, Martini L (eds) Encyclopedia of Endocrine Diseases, 2nd edn. Elsevier, Oxford, pp 377–398
Knight PG, Glister C (2006) TGF-beta superfamily members and ovarian follicle development. Reproduction 132:191–206. https://doi.org/10.1530/rep.1.01074
Lamm CG, Hastie PM, Evans NP, Robinson JE (2012) Masculinization of the distal tubular and external genitalia in female sheep with prenatal androgen exposure. Vet Pathol 49:546–551. https://doi.org/10.1177/0300985811419533
Padmanabhan V, Veiga-Lopez A, Abbott DH, Recabarren SE, Herkimer C (2010) Developmental programming: impact of prenatal testosterone excess and postnatal weight gain on insulin sensitivity index and transfer of traits to offspring of overweight females. Endocrinology 151:595–605. https://doi.org/10.1210/en.2009-1015
Nada SE, Thompson RC, Padmanabhan V (2010) Developmental programming: differential effects of prenatal testosterone excess on insulin target tissues. Endocrinology 151:5165–5173. https://doi.org/10.1210/en.2010-0666
Hogg K, Wood C, McNeilly AS, Duncan WC (2011) The in utero programming effect of increased maternal androgens and a direct fetal intervention on liver and metabolic function in adult sheep. PLoS One 6:e24877. https://doi.org/10.1371/journal.pone.0024877
Cardoso RC, Veiga-Lopez A, Moeller J, Beckett E, Pease A, Keller E, Madrigal V, Chazenbalk G, Dumesic D, Padmanabhan V (2016) Developmental programming: impact of gestational steroid and metabolic milieus on adiposity and insulin sensitivity in prenatal testosterone-treated female sheep. Endocrinology 157:522–535. https://doi.org/10.1210/en.2015-1565
Dupont J, Scaramuzzi RJ (2016) Insulin signalling and glucose transport in the ovary and ovarian function during the ovarian cycle. Biochem J 473:1483–1501. https://doi.org/10.1042/BCJ20160124
Visser JA, de Jong FH, Laven JS, Themmen AP (2006) Anti-Mullerian hormone: a new marker for ovarian function. Reproduction 131:1–9. https://doi.org/10.1530/rep.1.00529
Anderson RA (2012) What does anti-Mullerian hormone tell you about ovarian function? Clin Endocrinol (Oxf) 77:652–655. https://doi.org/10.1111/j.1365-2265.2012.04451.x
Monniaux D, Drouilhet L, Rico C, Estienne A, Jarrier P, Touzé JL, Sapa J, Phocas F, Dupont J, Dalbies-Tran R, Fabre S (2013) Regulation of anti-mullerian hormone production in domestic animals. Reprod Fertil Dev 25:1–16. https://doi.org/10.1071/RD12270
Monniaux D, Caraty A, Clément F, Dalbies-Tran R, Dupont J, Fabre S, Gérard N, Mermillod P, Monget P, Uzbekova S (2009) Développement folliculaire ovarien et ovulation chez les mammifères. INRA Prod Anim 22:59–76
Rawlings NC, Evans AC, Honaramooz A, Bartlewski PM (2003) Antral follicle growth and endocrine changes in prepubertal cattle, sheep and goats. Anim Reprod Sci 78:259–270
Padmanabhan V, Manikkam M, Recabarren S, Foster D (2006) Prenatal testosterone excess programs reproductive and metabolic dysfunction in the female. Mol Cell Endocrinol 246:165–174. https://doi.org/10.1016/j.mce.2005.11.016
Marinkovich MP (2007) Tumour microenvironment: laminin 332 in squamous-cell carcinoma. Nat Rev Cancer 7:370–380. https://doi.org/10.1038/nrc2089
Cianfarani F, Zambruno G, Castiglia D, Odorisio T (2017) Pathomechanisms of altered wound healing in recessive dystrophic epidermolysis bullosa. Am J Pathol 187:1445–1453. https://doi.org/10.1016/j.ajpath.2017.03.003
Rattenholl A, Pappano WN, Koch M, Keene DR, Kadler KE, Sasaki T, Timpl R, Burgeson RE, Greenspan DS, Bruckner-Tuderman L (2002) Proteinases of the bone morphogenetic protein-1 family convert procollagen VII to mature anchoring fibril collagen. J Biol Chem 277:26372–26378. https://doi.org/10.1074/jbc.M203247200
Faletra F, D’Adamo AP, Bruno I, Athanasakis E, Biskup S, Esposito L, Gasparini P (2014) Autosomal recessive Stickler syndrome due to a loss of function mutation in the COL9A3 gene. Am J Med Genet A 164A:42–47. https://doi.org/10.1002/ajmg.a.36165
Lamande SR, Bateman JF (2018) Collagen VI disorders: insights on form and function in the extracellular matrix and beyond. Matrix Biol 71–72:348–367. https://doi.org/10.1016/j.matbio.2017.12.008
Hatzirodos N, Hummitzsch K, Irving-Rodgers HF, Rodgers RJ (2014) Transcriptome profiling of the theca interna in transition from small to large antral ovarian follicles. PLoS One 9:e97489. https://doi.org/10.1371/journal.pone.0097489
Hatzirodos N, Irving-Rodgers HF, Hummitzsch K, Rodgers RJ (2014) Transcriptome profiling of the theca interna from bovine ovarian follicles during atresia. PLoS One 9:e99706. https://doi.org/10.1371/journal.pone.0099706
Sarma HN, Manikkam M, Herkimer C, Dell’Orco J, Welch KB, Foster DL, Padmanabhan V (2005) Fetal programming: excess prenatal testosterone reduces postnatal luteinizing hormone, but not follicle-stimulating hormone responsiveness, to estradiol negative feedback in the female. Endocrinology 146:4281–4291. https://doi.org/10.1210/en.2005-0322
Christenson LK, Gunewardena S, Hong X, Spitschak M, Baufeld A, Vanselow J (2013) Research resource: preovulatory LH surge effects on follicular theca and granulosa transcriptomes. Mol Endocrinol 27:1153–1171. https://doi.org/10.1210/me.2013-1093
Liu C, Peng J, Matzuk MM, Yao HH (2015) Lineage specification of ovarian theca cells requires multicellular interactions via oocyte and granulosa cells. Nat Commun 6:6934. https://doi.org/10.1038/ncomms7934
Rotgers E, Jorgensen A, Yao HH (2018) At the crossroads of fate-somatic cell lineage specification in the fetal gonad. Endocr Rev 39:739–759. https://doi.org/10.1210/er.2018-00010
Hummitzsch K, Hatzirodos N, Macpherson A, Schwartz J, Rodgers RJ, Irving-Rodgers HF (2019) Transcriptome analyses of ovarian stroma; tunica albuginea, interstitium and theca interna. Reproduction. https://doi.org/10.1530/REP-18-0323
Jordan CD, Bohling SD, Charbonneau NL, Sakai LY (2010) Fibrillins in adult human ovary and polycystic ovary syndrome: is fibrillin-3 affected in PCOS? J Histochem Cytochem 58:903–915. https://doi.org/10.1369/jhc.2010.956615
Hatzirodos N, Bayne RA, Irving-Rodgers HF, Hummitzsch K, Sabatier L, Lee S, Bonner W, Gibson MA, Rainey WE, Carr BR, Mason HD, Reinhardt DP, Anderson RA, Rodgers RJ (2011) Linkage of regulators of TGF-beta activity in the fetal ovary to polycystic ovary syndrome. FASEB J 25:2256–2265. https://doi.org/10.1096/fj.11-181099
Urbanek M, Sam S, Legro RS, Dunaif A (2007) Identification of a polycystic ovary syndrome susceptibility variant in fibrillin-3 and association with a metabolic phenotype. J Clin Endocrinol Metab 92:4191–4198. https://doi.org/10.1210/jc.2007-0761
Ewens KG, Stewart DR, Ankener W, Urbanek M, McAllister JM, Chen C, Baig KM, Parker SC, Margulies EH, Legro RS, Dunaif A, Strauss JF 3rd, Spielman RS (2010) Family-based analysis of candidate genes for polycystic ovary syndrome. J Clin Endocrinol Metab 95:2306–2315. https://doi.org/10.1210/jc.2009-2703
West ER, Shea LD, Woodruff TK (2007) Engineering the follicle microenvironment. Semin Reprod Med 25:287–299. https://doi.org/10.1055/s-2007-980222
Woodruff TK, Shea LD (2011) A new hypothesis regarding ovarian follicle development: ovarian rigidity as a regulator of selection and health. J Assist Reprod Genet 28:3–6. https://doi.org/10.1007/s10815-010-9478-4
Cheng Y, Feng Y, Jansson L, Sato Y, Deguchi M, Kawamura K, Hsueh AJ (2015) Actin polymerization-enhancing drugs promote ovarian follicle growth mediated by the Hippo signaling effector YAP. FASEB J 29:2423–2430. https://doi.org/10.1096/fj.14-267856
Hsueh AJ, Kawamura K, Cheng Y, Fauser BC (2015) Intraovarian control of early folliculogenesis. Endocr Rev 36:1–24. https://doi.org/10.1210/er.2014-1020
Franks S, Stark J, Hardy K (2008) Follicle dynamics and anovulation in polycystic ovary syndrome. Hum Reprod Update 14:367–378. https://doi.org/10.1093/humupd/dmn015
Jansen E, Laven JS, Dommerholt HB, Polman J, van Rijt C, van den Hurk C, Westland J, Mosselman S, Fauser BC (2004) Abnormal gene expression profiles in human ovaries from polycystic ovary syndrome patients. Mol Endocrinol 18:3050–3063. https://doi.org/10.1210/me.2004-0074
Puttabyatappa M, Lu C, Martin JD, Chazenbalk G, Dumesic D, Padmanabhan V (2018) Developmental programming: impact of prenatal testosterone excess on steroidal machinery and cell differentiation markers in visceral adipocytes of female sheep. Reprod Sci 25:1010–1023. https://doi.org/10.1177/1933719117746767
Tonellotto Dos Santos J, da Nobrega EJJ, Serrano Mujica LK, Amaral CDS, Machado FA, Manta MW, Rizzetti TM, Zanella R, Fighera R, Antoniazzi AQ, Goncalves PBD, Comim FV (2018) Prenatal androgenization of ewes as a model of hirsutism in polycystic ovary syndrome. Endocrinology 159:4056–4064. https://doi.org/10.1210/en.2018-00781
Acknowledgements
The authors acknowledge Damien Capo, Olivier Lasserre and the “ruminant” team of the “Unité Expérimentale de Physiologie Animale de l’Orfrasière” (UEPAO) for animal management and participation in the experimental design, Ramon Rubio (SIO ADM) for the gift of sesame oil used to dilute testosterone propionate before injections to ewes, Jean-Luc Touzé for ultrasonography scanning of lamb ovaries and Dominique Gennetay for her technical participation in hormonal assays. We acknowledge also the team of the “Chirurgie et Imagerie pour la Recherche et l’Enseignement” (CIRE) platform, particularly Gilles Gomot, Dominique Girardeau, Emilie Bled for abdominal magnetic resonance imaging analysis of sheep, and Jean-Philippe Dubois for animal slaughtering. The authors thank Julien Sarry for technical assistance in RNA library preparation, the staff of the GeT-Genotoul genomic platform (https//get/genotoul.fr/) for RNA sequencing, and Sarah Maman of the INRA Sigenae bioinformatics team for Galaxy support. We address special thanks to Kim-Anh le Cao and Sebastien Dejean for mixOmics training. We are also very grateful to Frédérique Robin and Frédérique Clément for their help in statistical analyses of endocrine data and their invaluable inputs in writing the manuscript.
Funding
This work was supported by Grants from France via the “Agence Nationale pour la Recherche” (https://anr.fr/) (ANR-12-BSV1-0034-02, AMHAROC). Anthony Estienne was supported by a French Fellowship from the Région Centre and INRA.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
All experimental procedures were approved by the French Agricultural and Scientific Research Government Committee (Approval number E37-175-2) and the Val de Loire ethics committee for animal experimentation (Referral 2012-12-21, n°19), in accordance with the guidelines for Care and Use of Agricultural Animals in Agricultural Research and Teaching.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Monniaux, D., Genêt, C., Maillard, V. et al. Prenatal programming by testosterone of follicular theca cell functions in ovary. Cell. Mol. Life Sci. 77, 1177–1196 (2020). https://doi.org/10.1007/s00018-019-03230-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00018-019-03230-1