Abstract
Growing number of studies provide strong evidence that the mitochondrial permeability transition pore (PTP), a non-selective channel in the inner mitochondrial membrane, is involved in the pathogenesis of cardiac ischemia–reperfusion and can be targeted to attenuate reperfusion-induced damage to the myocardium. The molecular identity of the PTP remains unknown and cyclophilin D is the only protein commonly accepted as a major regulator of the PTP opening. Therefore, cyclophilin D is an attractive target for pharmacological or genetic therapies to reduce ischemia–reperfusion injury in various animal models and humans. Most animal studies demonstrated cardioprotective effects of PTP inhibition; however, a recent large clinical trial conducted by international groups demonstrated that cyclosporine A, a cyclophilin D inhibitor, failed to protect the heart in patients with myocardial infarction. These studies, among others, raise the question of whether cyclophilin D, which plays an important physiological role in the regulation of cell metabolism and mitochondrial bioenergetics, is a viable target for cardioprotection. This review discusses previous studies to provide comprehensive information on the physiological role of cyclophilin D as well as PTP opening in the cell that can be taken into consideration for the development of new PTP inhibitors.




Similar content being viewed by others
Abbreviations
- ANT:
-
Adenine nucleotide translocase
- CRC:
-
Ca2+ retention capacity
- CsA:
-
Cyclosporine A
- CypD:
-
Cyclophilin D
- ETC:
-
Electron transport chain
- FAO:
-
Fatty acid oxidation
- Hsp60:
-
Heat-shock protein 60
- IFM:
-
Interfibrillar mitochondria
- IMM:
-
Inner mitochondrial membrane
- IR:
-
Ischemia–reperfusion
- KO:
-
Knockout
- ΔΨm :
-
Mitochondrial membrane potential
- MEFs:
-
Mouse embryonic fibroblasts
- MI:
-
Myocardial infarction
- mtDNA:
-
Mitochondrial DNA
- NO:
-
Nitric oxide
- PCI:
-
Percutaneous coronary intervention
- Pi :
-
Inorganic phosphate
- PiC:
-
Phosphate carrier
- PPARα:
-
Peroxisome proliferator-activated receptor alpha
- PPIase:
-
Peptidyl-prolyl cis-trans isomerase
- Ppif :
-
CypD gene
- PTM:
-
Post-translational modification
- PTP:
-
Permeability transition pore
- ROS:
-
Reactive oxygen species
- SfA:
-
Sanglifehrin A
- SPG7:
-
Spastic paraplegia 7
- SSM:
-
Subsarcolemmal mitochondria
- TCA:
-
Tricarboxylic acid
- TRAP1:
-
Tumor necrosis factor receptor-associated protein 1
- VDAC:
-
Voltage-dependent anion channel
- WT:
-
Wild type
References
Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ et al (2016) Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation 133:e38–e360
Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135
Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88:581–609
Kloner RA, Schwartz Longacre L (2011) State of the science of cardioprotection: challenges and opportunities–proceedings of the 2010 NHLBI Workshop on Cardioprotection. J Cardiovasc Pharmacol Ther 16:223–232
Ertracht O, Malka A, Atar S, Binah O (2014) The mitochondria as a target for cardioprotection in acute myocardial ischemia. Pharmacol Ther 142:33–40
Hausenloy DJ, Yellon DM (2013) Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest 123:92–100
Walters AM, Porter GA Jr, Brookes PS (2012) Mitochondria as a drug target in ischemic heart disease and cardiomyopathy. Circ Res 111:1222–1236
Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardioprotection. Cardiovasc Res 61:372–385
Bernardi P, Di Lisa F (2015) The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol 78:100–106
Griffiths EJ, Halestrap AP (1995) Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 307(Pt 1):93–98
Kerr PM, Suleiman MS, Halestrap AP (1999) Reversal of permeability transition during recovery of hearts from ischemia and its enhancement by pyruvate. Am J Physiol 276:H496–H502
Kitakaze M, Takashima S, Funaya H, Minamino T, Node K et al (1997) Temporary acidosis during reperfusion limits myocardial infarct size in dogs. Am J Physiol 272:H2071–H2078
Javadov S, Huang C, Kirshenbaum L, Karmazyn M (2005) NHE-1 inhibition improves impaired mitochondrial permeability transition and respiratory function during postinfarction remodelling in the rat. J Mol Cell Cardiol 38:135–143
Javadov S, Purdham DM, Zeidan A, Karmazyn M (2006) NHE-1 inhibition improves cardiac mitochondrial function through regulation of mitochondrial biogenesis during postinfarction remodeling. Am J Physiol Heart Circ Physiol 291:H1722–H1730
Javadov S, Choi A, Rajapurohitam V, Zeidan A, Basnakian AG et al (2008) NHE-1 inhibition-induced cardioprotection against ischaemia/reperfusion is associated with attenuation of the mitochondrial permeability transition. Cardiovasc Res 77:416–424
Halestrap AP, Richardson AP (2015) The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. J Mol Cell Cardiol 78:129–141
Javadov S, Karmazyn M, Escobales N (2009) Mitochondrial permeability transition pore opening as a promising therapeutic target in cardiac diseases. J Pharmacol Exp Ther 330:670–678
Ong SB, Samangouei P, Kalkhoran SB, Hausenloy DJ (2015) The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. J Mol Cell Cardiol 78:23–34
Alam MR, Baetz D, Ovize M (2015) Cyclophilin D and myocardial ischemia-reperfusion injury: a fresh perspective. J Mol Cell Cardiol 78:80–89
Cung TT, Morel O, Cayla G, Rioufol G, Garcia-Dorado D et al (2015) Cyclosporine before PCI in patients with acute myocardial infarction. N Engl J Med 373:1021–1031
Paillard M, Tubbs E, Thiebaut PA, Gomez L, Fauconnier J et al (2013) Depressing mitochondria-reticulum interactions protects cardiomyocytes from lethal hypoxia-reoxygenation injury. Circulation 128:1555–1565
Smaili SS, Stellato KA, Burnett P, Thomas AP, Gaspers LD (2001) Cyclosporin A inhibits inositol 1,4,5-trisphosphate-dependent Ca2+ signals by enhancing Ca2+ uptake into the endoplasmic reticulum and mitochondria. J Biol Chem 276:23329–23340
Tavecchio M, Lisanti S, Lam A, Ghosh JC, Martin NM et al (2013) Cyclophilin D extramitochondrial signaling controls cell cycle progression and chemokine-directed cell motility. J Biol Chem 288:5553–5561
Radhakrishnan J, Bazarek S, Chandran B, Gazmuri RJ (2015) Cyclophilin-D: a resident regulator of mitochondrial gene expression. Faseb J 29:2734–2748
Elrod JW, Wong R, Mishra S, Vagnozzi RJ, Sakthievel B et al (2010) Cyclophilin D controls mitochondrial pore-dependent Ca(2+) exchange, metabolic flexibility, and propensity for heart failure in mice. J Clin Invest 120:3680–3687
Tavecchio M, Lisanti S, Bennett MJ, Languino LR, Altieri DC (2015) Deletion of Cyclophilin D impairs beta-oxidation and promotes glucose metabolism. Sci Rep 5:15981
Giorgio V, Bisetto E, Soriano ME, Dabbeni-Sala F, Basso E et al (2009) Cyclophilin D modulates mitochondrial F0F1-ATP synthase by interacting with the lateral stalk of the complex. J Biol Chem 284:33982–33988
Chinopoulos C, Konrad C, Kiss G, Metelkin E, Torocsik B et al (2011) Modulation of F0F1-ATP synthase activity by cyclophilin D regulates matrix adenine nucleotide levels. Febs J 278:1112–1125
Tubbs E, Theurey P, Vial G, Bendridi N, Bravard A et al (2014) Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes 63:3279–3294
Taddeo EP, Laker RC, Breen DS, Akhtar YN, Kenwood BM et al (2014) Opening of the mitochondrial permeability transition pore links mitochondrial dysfunction to insulin resistance in skeletal muscle. Mol Metab 3:124–134
Feng D, Tang Y, Kwon H, Zong H, Hawkins M et al (2011) High-fat diet-induced adipocyte cell death occurs through a cyclophilin D intrinsic signaling pathway independent of adipose tissue inflammation. Diabetes 60:2134–2143
Wang DZ, Jones AW, Wang WZ, Wang M, Korthuis RJ (2016) Soluble guanylate cyclase activation during ischemic injury in mice protects against postischemic inflammation at the mitochondrial level. Am J Physiol Gastrointest Liver Physiol 310:G747–G756
Haworth RA, Hunter DR (1979) The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Arch Biochem Biophys 195:460–467
Le Quoc K, Le Quoc D (1988) Involvement of the ADP/ATP carrier in calcium-induced perturbations of the mitochondrial inner membrane permeability: importance of the orientation of the nucleotide binding site. Arch Biochem Biophys 265:249–257
Halestrap AP, Davidson AM (1990) Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J 268:153–160
Brustovetsky N, Klingenberg M (1996) Mitochondrial ADP/ATP carrier can be reversibly converted into a large channel by Ca2+. BioChemistry 35:8483–8488
Beutner G, Ruck A, Riede B, Welte W, Brdiczka D (1996) Complexes between kinases, mitochondrial porin and adenylate translocator in rat brain resemble the permeability transition pore. FEBS Lett 396:189–195
Szabo I, Zoratti M (1993) The mitochondrial permeability transition pore may comprise VDAC molecules. I. Binary structure and voltage dependence of the pore. FEBS Lett 330:201–205
Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J et al (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427:461–465
Basso E, Fante L, Fowlkes J, Petronilli V, Forte MA et al (2005) Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J Biol Chem 280:18558–18561
Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K et al (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434:652–658
Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9:550–555
Morciano G, Giorgi C, Bonora M, Punzetti S, Pavasini R et al (2015) Molecular identity of the mitochondrial permeability transition pore and its role in ischemia-reperfusion injury. J Mol Cell Cardiol 78:142–153
Leung AW, Varanyuwatana P, Halestrap AP (2008) The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition. J Biol Chem 283:26312–26323
Varanyuwatana P, Halestrap AP (2012) The roles of phosphate and the phosphate carrier in the mitochondrial permeability transition pore. Mitochondrion 12:120–125
Gutierrez-Aguilar M, Douglas DL, Gibson AK, Domeier TL, Molkentin JD et al (2014) Genetic manipulation of the cardiac mitochondrial phosphate carrier does not affect permeability transition. J Mol Cell Cardiol 72:316–325
Kwong JQ, Davis J, Baines CP, Sargent MA, Karch J et al (2014) Genetic deletion of the mitochondrial phosphate carrier desensitizes the mitochondrial permeability transition pore and causes cardiomyopathy. Cell Death Differ 21:1209–1217
Shanmughapriya S, Rajan S, Hoffman NE, Higgins AM, Tomar D et al (2015) SPG7 Is an Essential and Conserved Component of the Mitochondrial Permeability Transition Pore. Mol Cell 60:47–62
Bernardi P, Forte M (2015) Commentary: SPG7 is an essential and conserved component of the mitochondrial permeability transition pore. Front Physiol 6:320
Jonckheere AI, Smeitink JA, Rodenburg RJ (2012) Mitochondrial ATP synthase: architecture, function and pathology. J Inherit Metab Dis 35:211–225
Ko YH, Delannoy M, Hullihen J, Chiu W, Pedersen PL (2003) Mitochondrial ATP synthasome. Cristae-enriched membranes and a multiwell detergent screening assay yield dispersed single complexes containing the ATP synthase and carriers for Pi and ADP/ATP. J Biol Chem 278:12305–12309
Wittig I, Schagger H (2008) Structural organization of mitochondrial ATP synthase. Biochim Biophys Acta 1777: 592–598
Bonora M, Bononi A, De Marchi E, Giorgi C, Lebiedzinska M et al (2013) Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle 12:674–683
Alavian KN, Beutner G, Lazrove E, Sacchetti S, Park HA et al (2014) An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proc Natl Acad Sci U S A 111:10580–10585
Azarashvili T, Odinokova I, Bakunts A, Ternovsky V, Krestinina O et al (2014) Potential role of subunit c of F0F1-ATPase and subunit c of storage body in the mitochondrial permeability transition. Effect of the phosphorylation status of subunit c on pore opening. Cell Calcium 55:69–77
Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F et al (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci USA 110:5887–5892
Masgras I, Rasola A, Bernardi P (2012) Induction of the permeability transition pore in cells depleted of mitochondrial DNA. Biochim Biophys Acta 1817:1860–1866
Lee J, Kim SS (2010) An overview of cyclophilins in human cancers. J Int Med Res 38:1561–1574
Gutierrez-Aguilar M, Baines CP (2015) Structural mechanisms of cyclophilin D-dependent control of the mitochondrial permeability transition pore. Biochim Biophys Acta 1850:2041–2047
Johnson N, Khan A, Virji S, Ward JM, Crompton M (1999) Import and processing of heart mitochondrial cyclophilin D. Eur J Biochem 263:353–359
Galat A (1993) Peptidylproline cis-trans-isomerases: immunophilins. Eur J Biochem 216:689–707
Lodish HF, Kong N (1991) Cyclosporin A inhibits an initial step in folding of transferrin within the endoplasmic reticulum. J Biol Chem 266:14835–14838
Tanveer A, Virji S, Andreeva L, Totty NF, Hsuan JJ et al (1996) Involvement of cyclophilin D in the activation of a mitochondrial pore by Ca2 + and oxidant stress. Eur J Biochem 238:166–172
Altschuld RA, Hohl CM, Castillo LC, Garleb AA, Starling RC et al (1992) Cyclosporin inhibits mitochondrial calcium efflux in isolated adult rat ventricular cardiomyocytes. Am J Physiol 262:H1699–H1704
Ichas F, Mazat JP (1998) From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. Biochim Biophys Acta 1366:33–50
Bernardi P, Petronilli V (1996) The permeability transition pore as a mitochondrial calcium release channel: a critical appraisal. J Bioenerg Biomembr 28:131–138
Huser J, Blatter LA (1999) Fluctuations in mitochondrial membrane potential caused by repetitive gating of the permeability transition pore. Biochem J 343(Pt 2):311–317
Ichas F, Jouaville LS, Mazat JP (1997) Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell 89:1145–1153
De Marchi E, Bonora M, Giorgi C, Pinton P (2014) The mitochondrial permeability transition pore is a dispensable element for mitochondrial calcium efflux. Cell Calcium 56:1–13
Wei AC, Liu T, Cortassa S, Winslow RL, O’Rourke B (2011) Mitochondrial Ca2 + influx and efflux rates in guinea pig cardiac mitochondria: low and high affinity effects of cyclosporine A. Biochim Biophys Acta 1813:1373–1381
Olbrich HG, Geerts H, Waldmann U, Mutschler E, Ver Donck L et al (1991) The effect of cyclosporine on electrically paced isolated rat cardiomyocytes. Transplantation 51:972–976
Griffiths EJ, Halestrap AP (1993) Protection by Cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol 25:1461–1469
Montero M, Lobaton CD, Gutierrez-Fernandez S, Moreno A, Alvarez J (2004) Calcineurin-independent inhibition of mitochondrial Ca2 + uptake by cyclosporin A. Br J Pharmacol 141:263–268
Garcia-Dorado D, Ruiz-Meana M, Inserte J, Rodriguez-Sinovas A, Piper HM (2012) Calcium-mediated cell death during myocardial reperfusion. Cardiovasc Res 94:168–180
Reddy PA, Atreya CD (1999) Identification of simian cyclophilin A as a calreticulin-binding protein in yeast two-hybrid screen and demonstration of cyclophilin A interaction with calreticulin. Int J Biol Macromol 25:345–351
Fournier N, Ducet G, Crevat A (1987) Action of cyclosporine on mitochondrial calcium fluxes. J Bioenerg Biomembr 19:297–303
Shang W, Gao H, Lu F, Ma Q, Fang H et al (2016) Cyclophilin D regulates mitochondrial flashes and metabolism in cardiac myocytes. J Mol Cell Cardiol 91:63–71
Li K, Zhang W, Fang H, Xie W, Liu J et al (2012) Superoxide flashes reveal novel properties of mitochondrial reactive oxygen species excitability in cardiomyocytes. Biophys J 102:1011–1021
Fang H, Chen M, Ding Y, Shang W, Xu J et al (2011) Imaging superoxide flash and metabolism-coupled mitochondrial permeability transition in living animals. Cell Res 21:1295–1304
Tarasov AI, Griffiths EJ, Rutter GA (2012) Regulation of ATP production by mitochondrial Ca(2+). Cell Calcium 52:28–35
Menazza S, Wong R, Nguyen T, Wang G, Gucek M et al (2013) CypD(-/-) hearts have altered levels of proteins involved in Krebs cycle, branch chain amino acid degradation and pyruvate metabolism. J Mol Cell Cardiol 56:81–90
Jang S, Lewis TS, Powers C, Khuchua Z, Baines CP et al (2016) Elucidating mitochondrial electron transport chain supercomplexes in the heart during ischemia-reperfusion. Antioxid Redox Signal. doi:10.1089/ars.2016.6635
Halestrap AP (1994) Regulation of mitochondrial metabolism through changes in matrix volume. Biochem Soc Trans 22:522–529
Xi J, Wang H, Mueller RA, Norfleet EA, Xu Z (2009) Mechanism for resveratrol-induced cardioprotection against reperfusion injury involves glycogen synthase kinase 3beta and mitochondrial permeability transition pore. Eur J Pharmacol 604:111–116
Rasola A, Sciacovelli M, Chiara F, Pantic B, Brusilow WS et al (2010) Activation of mitochondrial ERK protects cancer cells from death through inhibition of the permeability transition. Proc Natl Acad Sci USA 107:726–731
Bao H, Ge Y, Zhuang S, Dworkin LD, Liu Z et al (2012) Inhibition of glycogen synthase kinase-3beta prevents NSAID-induced acute kidney injury. Kidney Int 81:662–673
Kohr MJ, Sun J, Aponte A, Wang G, Gucek M et al (2011) Simultaneous measurement of protein oxidation and S-nitrosylation during preconditioning and ischemia/reperfusion injury with resin-assisted capture. Circ Res 108:418–426
Sun J, Steenbergen C, Murphy E (2006) S-nitrosylation: NO-related redox signaling to protect against oxidative stress. Antioxid Redox Signal 8:1693–1705
Burwell LS, Brookes PS (2008) Mitochondria as a target for the cardioprotective effects of nitric oxide in ischemia-reperfusion injury. Antioxid Redox Signal 10:579–599
Pagliaro P, Moro F, Tullio F, Perrelli MG, Penna C (2011) Cardioprotective pathways during reperfusion: focus on redox signaling and other modalities of cell signaling. Antioxid Redox Signal 14:833–850
Sun J, Murphy E (2010) Protein S-nitrosylation and cardioprotection. Circ Res 106:285–296
Vieira HL, Belzacq AS, Haouzi D, Bernassola F, Cohen I et al (2001) The adenine nucleotide translocator: a target of nitric oxide, peroxynitrite, and 4-hydroxynonenal. Oncogene 20:4305–4316
Martin LJ, Adams NA, Pan Y, Price A, Wong M (2011) The mitochondrial permeability transition pore regulates nitric oxide-mediated apoptosis of neurons induced by target deprivation. J Neurosci 31:359–370
Nguyen TT, Stevens MV, Kohr M, Steenbergen C, Sack MN et al (2011) Cysteine 203 of cyclophilin D is critical for cyclophilin D activation of the mitochondrial permeability transition pore. J Biol Chem 286:40184–40192
Linard D, Kandlbinder A, Degand H, Morsomme P, Dietz KJ et al (2009) Redox characterization of human cyclophilin D: identification of a new mammalian mitochondrial redox sensor? Arch Biochem Biophys 491:39–45
Lopez-Erauskin J, Galino J, Bianchi P, Fourcade S, Andreu AL et al (2012) Oxidative stress modulates mitochondrial failure and cyclophilin D function in X-linked adrenoleukodystrophy. Brain 135:3584–3598
Folda A, Citta A, Scalcon V, Cali T, Zonta F et al (2016) Mitochondrial Thioredoxin System as a Modulator of Cyclophilin D Redox State. Sci Rep 6:23071
Shulga N, Wilson-Smith R, Pastorino JG (2010) Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria. J Cell Sci 123:894–902
Shulga N, Pastorino JG (2010) Ethanol sensitizes mitochondria to the permeability transition by inhibiting deacetylation of cyclophilin-D mediated by sirtuin-3. J Cell Sci 123:4117–4127
Hafner AV, Dai J, Gomes AP, Xiao CY, Palmeira CM et al (2010) Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging 2:914–923
Parodi-Rullan R, Barreto-Torres G, Ruiz L, Casasnovas J, Javadov S (2012) Direct renin inhibition exerts an anti-hypertrophic effect associated with improved mitochondrial function in post-infarction heart failure in diabetic rats. Cell Physiol Biochem 29:841–850
Bochaton T, Crola-Da-Silva C, Pillot B, Villedieu C, Ferreras L et al (2015) Inhibition of myocardial reperfusion injury by ischemic postconditioning requires sirtuin 3-mediated deacetylation of cyclophilin D. J Mol Cell Cardiol 84:61–69
Nguyen TT, Wong R, Menazza S, Sun J, Chen Y et al (2013) Cyclophilin D modulates mitochondrial acetylome. Circ Res 113:1308–1319
Woodfield K, Ruck A, Brdiczka D, Halestrap AP (1998) Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the mitochondrial permeability transition. Biochem J 336(Pt 2):287–290
Crompton M, Virji S, Ward JM (1998) Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. Eur J Biochem 258:729–735
McStay GP, Clarke SJ, Halestrap AP (2002) Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore. Biochem J 367:541–548
Majima E, Koike H, Hong YM, Shinohara Y, Terada H (1993) Characterization of cysteine residues of mitochondrial ADP/ATP carrier with the SH-reagents eosin 5-maleimide and N-ethylmaleimide. J Biol Chem 268:22181–22187
Costantini P, Chernyak BV, Petronilli V, Bernardi P (1996) Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites. J Biol Chem 271:6746–6751
Halestrap AP, Woodfield KY, Connern CP (1997) Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J Biol Chem 272:3346–3354
Halestrap AP, Brennerb C (2003) The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death. Curr Med Chem 10:1507–1525
Kallen J, Sedrani R, Zenke G, Wagner J (2005) Structure of human cyclophilin A in complex with the novel immunosuppressant sanglifehrin A at 1.6 A resolution. J Biol Chem 280:21965–21971
Clarke SJ, McStay GP, Halestrap AP (2002) Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A. J Biol Chem 277:34793–34799
Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S et al (2012) p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149:1536–1548
Chen B, Xu M, Zhang H, Wang JX, Zheng P et al (2013) Cisplatin-induced non-apoptotic death of pancreatic cancer cells requires mitochondrial cyclophilin-D-p53 signaling. Biochem Biophys Res Commun 437:526–531
Zhao LP, Ji C, Lu PH, Li C, Xu B et al (2013) Oxygen glucose deprivation (OGD)/re-oxygenation-induced in vitro neuronal cell death involves mitochondrial cyclophilin-D/P53 signaling axis. Neurochem Res 38:705–713
Zhen YF, Wang GD, Zhu LQ, Tan SP, Zhang FY et al (2014) P53 dependent mitochondrial permeability transition pore opening is required for dexamethasone-induced death of osteoblasts. J Cell Physiol 229:1475–1483
Bergeaud M, Mathieu L, Guillaume A, Moll UM, Mignotte B et al (2013) Mitochondrial p53 mediates a transcription-independent regulation of cell respiration and interacts with the mitochondrial F(1)F0-ATP synthase. Cell Cycle 12:2781–2793
Hernandez JS, Barreto-Torres G, Kuznetsov AV, Khuchua Z, Javadov S (2014) Crosstalk between AMPK activation and angiotensin II-induced hypertrophy in cardiomyocytes: the role of mitochondria. J Cell Mol Med 18:709–720
Karch J, Molkentin JD (2012) Is p53 the long-sought molecular trigger for cyclophilin D-regulated mitochondrial permeability transition pore formation and necrosis? Circ Res 111:1258–1260
Starkov AA (2010) The molecular identity of the mitochondrial Ca2 + sequestration system. Febs J 277:3652–3663
McGee AM, Baines CP (2011) Complement 1q-binding protein inhibits the mitochondrial permeability transition pore and protects against oxidative stress-induced death. Biochem J 433:119–125
Barreto-Torres G, Hernandez JS, Jang S, Rodriguez-Munoz AR, Torres-Ramos CA et al (2015) The beneficial effects of AMP kinase activation against oxidative stress are associated with prevention of PPARalpha-cyclophilin D interaction in cardiomyocytes. Am J Physiol Heart Circ Physiol 308:H749–H758
Barreto-Torres G, Javadov S (2016) Possible role of interaction between PPARalpha and Cyclophilin D in cardioprotection of AMPK against in vivo ischemia-reperfusion in rats. PPAR Res 2016:9282087
Li Y, Johnson N, Capano M, Edwards M, Crompton M (2004) Cyclophilin-D promotes the mitochondrial permeability transition but has opposite effects on apoptosis and necrosis. Biochem J 383:101–109
Schubert A, Grimm S (2004) Cyclophilin D, a component of the permeability transition-pore, is an apoptosis repressor. Cancer Res 64:85–93
Javadov S, Hunter JC, Barreto-Torres G, Parodi-Rullan R (2011) Targeting the mitochondrial permeability transition: cardiac ischemia-reperfusion versus carcinogenesis. Cell Physiol Biochem 27:179–190
Machida K, Ohta Y, Osada H (2006) Suppression of apoptosis by cyclophilin D via stabilization of hexokinase II mitochondrial binding in cancer cells. J Biol Chem 281:14314–14320
Ghosh JC, Siegelin MD, Dohi T, Altieri DC (2010) Heat shock protein 60 regulation of the mitochondrial permeability transition pore in tumor cells. Cancer Res 70:8988–8993
Kang BH, Plescia J, Dohi T, Rosa J, Doxsey SJ et al (2007) Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 131:257–270
Schusdziarra C, Blamowska M, Azem A, Hell K (2013) Methylation-controlled J-protein MCJ acts in the import of proteins into human mitochondria. Hum Mol Genet 22:1348–1357
Sinha D, D’Silva P (2014) Chaperoning mitochondrial permeability transition: regulation of transition pore complex by a J-protein, DnaJC15. Cell Death Dis 5:e1101
Chen SH, Li DL, Yang F, Wu Z, Zhao YY et al (2014) Gemcitabine-induced pancreatic cancer cell death is associated with MST1/cyclophilin D mitochondrial complexation. Biochimie 103:71–79
Eliseev RA, Malecki J, Lester T, Zhang Y, Humphrey J et al (2009) Cyclophilin D interacts with Bcl2 and exerts an anti-apoptotic effect. J Biol Chem 284:9692–9699
Takahashi N, Hayano T, Suzuki M (1989) Peptidyl-prolyl cis-trans isomerase is the cyclosporin A-binding protein cyclophilin. Nature 337:473–475
Flanagan WM, Corthesy B, Bram RJ, Crabtree GR (1991) Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporin A. Nature 352:803–807
Calne RY, White DJ, Thiru S, Evans DB, McMaster P et al (1978) Cyclosporin A in patients receiving renal allografts from cadaver donors. The Lancet 2:1323–1327
Calne RY, Rolles K, White DJ, Thiru S, Evans DB et al (1979) Cyclosporin A initially as the only immunosuppressant in 34 recipients of cadaveric organs: 32 kidneys, 2 pancreases, and 2 livers. The Lancet 2:1033–1036
Thiel G, Brunner FP, Hermle M, Stahl RA, Mihatsch MJ (1986) Effect of cyclosporine A on ischemic renal failure in the rat. Clin Nephrol 25(Suppl 1):S155–S161
Jablonski P, Harrison C, Howden B, Rae D, Tavanlis G et al (1986) Cyclosporine and the ischemic rat kidney. Transplantation 41:147–151
Hayashi T, Nagasue N, Kohno H, Chang YC, Nakamura T (1988) Beneficial effect of cyclosporine pretreatment in preventing ischemic damage to the liver in dogs. Transplantation 46:923–924
Kawano K, Kim YI, Kaketani K, Kobayashi M (1989) The beneficial effect of cyclosporine on liver ischemia in rats. Transplantation 48:759–764
Griffiths EJ, Halestrap AP (1991) Further evidence that cyclosporin A protects mitochondria from calcium overload by inhibiting a matrix peptidyl-prolyl cis-trans isomerase. Implications for the immunosuppressive and toxic effects of cyclosporin. Biochem J 274(Pt 2):611–614
Nazareth W, Yafei N, Crompton M (1991) Inhibition of anoxia-induced injury in heart myocytes by cyclosporin A. J Mol Cell Cardiol 23:1351–1354
Gomez L, Chavanis N, Argaud L, Chalabreysse L, Gateau-Roesch O et al (2005) Fas-independent mitochondrial damage triggers cardiomyocyte death after ischemia-reperfusion. Am J Physiol Heart Circ Physiol 289:H2153–H2158
Boengler K, Hilfiker-Kleiner D, Heusch G, Schulz R (2010) Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion. Basic Res Cardiol 105:771–785
Hausenloy DJ, Maddock HL, Baxter GF, Yellon DM (2002) Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning? Cardiovasc Res 55:534–543
Javadov SA, Clarke S, Das M, Griffiths EJ, Lim KH et al (2003) Ischaemic preconditioning inhibits opening of mitochondrial permeability transition pores in the reperfused rat heart. J Physiol 549:513–524
Weinbrenner C, Liu GS, Downey JM, Cohen MV (1998) Cyclosporine A limits myocardial infarct size even when administered after onset of ischemia. Cardiovasc Res 38:676–684
Argaud L, Gateau-Roesch O, Muntean D, Chalabreysse L, Loufouat J et al (2005) Specific inhibition of the mitochondrial permeability transition prevents lethal reperfusion injury. J Mol Cell Cardiol 38:367–374
Leshnower BG, Kanemoto S, Matsubara M, Sakamoto H, Hinmon R et al (2008) Cyclosporine preserves mitochondrial morphology after myocardial ischemia/reperfusion independent of calcineurin inhibition. Ann Thorac Surg 86:1286–1292
Skyschally A, Schulz R, Heusch G (2010) Cyclosporine A at reperfusion reduces infarct size in pigs. Cardiovasc Drugs Ther 24:85–87
Zalewski J, Claus P, Bogaert J, Driessche NV, Driesen RB et al (2015) Cyclosporine A reduces microvascular obstruction and preserves left ventricular function deterioration following myocardial ischemia and reperfusion. Basic Res Cardiol 110:18
Kay JE, Moore AL, Doe SE, Benzie CR, Schonbrunner R et al (1990) The mechanism of action of FK 506. Transplant Proc 22:96–99
Sloan RC, Moukdar F, Frasier CR, Patel HD, Bostian PA et al (2012) Mitochondrial permeability transition in the diabetic heart: contributions of thiol redox state and mitochondrial calcium to augmented reperfusion injury. J Mol Cell Cardiol 52:1009–1018
Gomez L, Thibault H, Gharib A, Dumont JM, Vuagniaux G et al (2007) Inhibition of mitochondrial permeability transition improves functional recovery and reduces mortality following acute myocardial infarction in mice. Am J Physiol Heart Circ Physiol 293:H1654–H1661
Lim WY, Messow CM, Berry C (2012) Cyclosporin variably and inconsistently reduces infarct size in experimental models of reperfused myocardial infarction: a systematic review and meta-analysis. Br J Pharmacol 165:2034–2043
Karlsson LO, Zhou AX, Larsson E, Astrom-Olsson K, Mansson C et al (2010) Cyclosporine does not reduce myocardial infarct size in a porcine ischemia-reperfusion model. J Cardiovasc Pharmacol Ther 15:182–189
Lie RH, Stoettrup N, Sloth E, Hasenkam JM, Kroyer R et al (2010) Post-conditioning with cyclosporine A fails to reduce the infarct size in an in vivo porcine model. Acta Anaesthesiol Scand 54:804–813
Kuznetsov AV, Margreiter R (2009) Heterogeneity of mitochondria and mitochondrial function within cells as another level of mitochondrial complexity. Int J Mol Sci 10:1911–1929
Hollander JM, Thapa D, Shepherd DL (2014) Physiological and structural differences in spatially distinct subpopulations of cardiac mitochondria: influence of cardiac pathologies. Am J Physiol Heart Circ Physiol 307:H1–H14
Palmer JW, Tandler B, Hoppel CL (1986) Heterogeneous response of subsarcolemmal heart mitochondria to calcium. Am J Physiol 250:H741–H748
Kuznetsov AV, Troppmair J, Sucher R, Hermann M, Saks V, et al. (2006) Mitochondrial subpopulations and heterogeneity revealed by confocal imaging: possible physiological role? Biochim Biophys Acta 1757: 686–691
Arieli Y, Gursahani H, Eaton MM, Hernandez LA, Schaefer S (2004) Gender modulation of Ca(2+) uptake in cardiac mitochondria. J Mol Cell Cardiol 37:507–513
Milerova M, Drahota Z, Chytilova A, Tauchmannova K, Houstek J et al (2016) Sex difference in the sensitivity of cardiac mitochondrial permeability transition pore to calcium load. Mol Cell Biochem 412:147–154
Colom B, Oliver J, Roca P, Garcia-Palmer FJ (2007) Caloric restriction and gender modulate cardiac muscle mitochondrial H2O2 production and oxidative damage. Cardiovasc Res 74:456–465
Vijay V, Han T, Moland CL, Kwekel JC, Fuscoe JC et al (2015) Sexual dimorphism in the expression of mitochondria-related genes in rat heart at different ages. PLoS One 10:e0117047
Milerova M, Charvatova Z, Skarka L, Ostadalova I, Drahota Z et al (2010) Neonatal cardiac mitochondria and ischemia/reperfusion injury. Mol Cell Biochem 335:147–153
Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H et al (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662
Roy S, Sileikyte J, Neuenswander B, Hedrick MP, Chung TD et al (2016) N-Phenylbenzamides as Potent Inhibitors of the Mitochondrial Permeability Transition Pore. ChemMedChem 11:283–288
Fancelli D, Abate A, Amici R, Bernardi P, Ballarini M et al (2014) Cinnamic anilides as new mitochondrial permeability transition pore inhibitors endowed with ischemia-reperfusion injury protective effect in vivo. J Med Chem 57:5333–5347
Martin LJ, Fancelli D, Wong M, Niedzwiecki M, Ballarini M, et al. (2014) GNX-4728, a novel small molecule drug inhibitor of mitochondrial permeability transition, is therapeutic in a mouse model of amyotrophic lateral sclerosis. Front Cell Neurosci 8: 433
Richardson AP, Halestrap AP (2016) Quantification of active mitochondrial permeability transition pores using GNX-4975 inhibitor titrations provides insights into molecular identity. Biochem J 473:1129–1140
Roy S, Sileikyte J, Schiavone M, Neuenswander B, Argenton F et al (2015) Discovery, Synthesis, and Optimization of Diarylisoxazole-3-carboxamides as Potent Inhibitors of the Mitochondrial Permeability Transition Pore. ChemMedChem 10:1655–1671
Ibanez B, Heusch G, Ovize M, Van de Werf F (2015) Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol 65:1454–1471
Bell RM, Botker HE, Carr RD, Davidson SM, Downey JM et al (2016) 9th Hatter Biannual Meeting: position document on ischaemia/reperfusion injury, conditioning and the ten commandments of cardioprotection. Basic Res Cardiol 111:41
Miura T, Miki T (2008) Limitation of myocardial infarct size in the clinical setting: current status and challenges in translating animal experiments into clinical therapy. Basic Res Cardiol 103:501–513
Downey JM, Cohen MV (2009) Why do we still not have cardioprotective drugs? Circ J 73:1171–1177
Magid DJ, Wang Y, Herrin J, McNamara RL, Bradley EH et al (2005) Relationship between time of day, day of week, timeliness of reperfusion, and in-hospital mortality for patients with acute ST-segment elevation myocardial infarction. JAMA 294:803–812
Schneider A, Ad N, Izhar U, Khaliulin I, Borman JB et al (2003) Protection of myocardium by cyclosporin A and insulin: in vitro simulated ischemia study in human myocardium. Ann Thorac Surg 76:1240–1245
Shanmuganathan S, Hausenloy DJ, Duchen MR, Yellon DM (2005) Mitochondrial permeability transition pore as a target for cardioprotection in the human heart. Am J Physiol Heart Circ Physiol 289:H237–H242
Piot C, Croisille P, Staat P, Thibault H, Rioufol G et al (2008) Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med 359:473–481
Hausenloy D, Kunst G, Boston-Griffiths E, Kolvekar S, Chaubey S et al (2014) The effect of cyclosporin-A on peri-operative myocardial injury in adult patients undergoing coronary artery bypass graft surgery: a randomised controlled clinical trial. Heart 100:544–549
Chiari P, Angoulvant D, Mewton N, Desebbe O, Obadia JF et al (2014) Cyclosporine protects the heart during aortic valve surgery. Anesthesiology 121:232–238
Ghaffari S, Kazemi B, Toluey M, Sepehrvand N (2013) The effect of prethrombolytic cyclosporine-A injection on clinical outcome of acute anterior ST-elevation myocardial infarction. Cardiovasc Ther 31:e34–e39
Mewton N, Cung TT, Morel O, Cayla G, Bonnefoy-Cudraz E et al (2015) Rationale and design of the Cyclosporine to ImpRove Clinical oUtcome in ST-elevation myocardial infarction patients (the CIRCUS trial). Am Heart J 169(758–766):e756
Acknowledgements
The authors apologize that they could not cite all important studies in this field due to space restriction. This study was supported by the NHLBI NIH Grants SC1HL118669 (to SJ).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Javadov, S., Jang, S., Parodi-Rullán, R. et al. Mitochondrial permeability transition in cardiac ischemia–reperfusion: whether cyclophilin D is a viable target for cardioprotection?. Cell. Mol. Life Sci. 74, 2795–2813 (2017). https://doi.org/10.1007/s00018-017-2502-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00018-017-2502-4