Skip to main content
Log in

Evolutionary gain of highly divergent tRNA specificities by two isoforms of human histidyl-tRNA synthetase

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The discriminator base N73 is a key identity element of tRNAHis. In eukaryotes, N73 is an “A” in cytoplasmic tRNAHis and a “C” in mitochondrial tRNAHis. We present evidence herein that yeast histidyl-tRNA synthetase (HisRS) recognizes both A73 and C73, but somewhat prefers A73 even within the context of mitochondrial tRNAHis. In contrast, humans possess two distinct yet closely related HisRS homologues, with one encoding the cytoplasmic form (with an extra N-terminal WHEP domain) and the other encoding its mitochondrial counterpart (with an extra N-terminal mitochondrial targeting signal). Despite these two isoforms sharing high sequence similarities (81% identity), they strongly preferred different discriminator bases (A73 or C73). Moreover, only the mitochondrial form recognized the anticodon as a strong identity element. Most intriguingly, swapping the discriminator base between the cytoplasmic and mitochondrial tRNAHis isoacceptors conveniently switched their enzyme preferences. Similarly, swapping seven residues in the active site between the two isoforms readily switched their N73 preferences. This study suggests that the human HisRS genes, while descending from a common ancestor with dual function for both types of tRNAHis, have acquired highly specialized tRNA recognition properties through evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

AaRS:

Aminoacyl-tRNA synthetase

cDNA:

Complementary DNA

DAPI:

4′,6-Diamidino-2-phenylindole

5-FOA:

5-Fluoroorotic acid

GFP:

Green fluorescence protein

HisRS:

Histidyl-tRNA synthetase

MTS:

Mitochondrial targeting signal

ORF:

Open-reading frame

PCR:

Polymerase chain reaction

PGK:

Phosphoglycerate kinase

Thg1:

tRNAHis guanylyltransferase

WT:

Wild-type

YPG:

Yeast extract peptone glycerol.

References

  1. Carter CW Jr (1993) Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu Rev Biochem 62:715–748. doi:10.1146/annurev.bi.62.070193.003435

    Article  CAS  PubMed  Google Scholar 

  2. Burbaum JJ, Schimmel P (1991) Structural relationships and the classification of aminoacyl-tRNA synthetases. J Biol Chem 266(26):16965–16968

    CAS  PubMed  Google Scholar 

  3. Giege R (2006) The early history of tRNA recognition by aminoacyl-tRNA synthetases. J Biosci 31(4):477–488

    Article  CAS  PubMed  Google Scholar 

  4. Natsoulis G, Hilger F, Fink GR (1986) The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Cell 46(2):235–243

    Article  CAS  PubMed  Google Scholar 

  5. Chatton B, Walter P, Ebel JP, Lacroute F, Fasiolo F (1988) The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. J Biol Chem 263(1):52–57

    CAS  PubMed  Google Scholar 

  6. Chang KJ, Wang CC (2004) Translation initiation from a naturally occurring non-AUG codon in Saccharomyces cerevisiae. J Biol Chem 279(14):13778–13785. doi:10.1074/jbc.M311269200

    Article  CAS  PubMed  Google Scholar 

  7. Tang HL, Yeh LS, Chen NK, Ripmaster T, Schimmel P, Wang CC (2004) Translation of a yeast mitochondrial tRNA synthetase initiated at redundant non-AUG codons. J Biol Chem 279(48):49656–49663. doi:10.1074/jbc.M408081200

    Article  CAS  PubMed  Google Scholar 

  8. Chiu MI, Mason TL, Fink GR (1992) HTS1 encodes both the cytoplasmic and mitochondrial histidyl-tRNA synthetase of Saccharomyces cerevisiae: mutations alter the specificity of compartmentation. Genetics 132(4):987–1001

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Juhling F, Morl M, Hartmann RK, Sprinzl M, Stadler PF, Putz J (2009) tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Res 37(Database issue):D159–D162. doi:10.1093/nar/gkn772

    Article  PubMed  Google Scholar 

  10. Orellana O, Cooley L, Soll D (1986) The additional guanylate at the 5′ terminus of Escherichia coli tRNAHis is the result of unusual processing by RNase P. Mol Cell Biol 6(2):525–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cooley L, Appel B, Soll D (1982) Post-transcriptional nucleotide addition is responsible for the formation of the 5′ terminus of histidine tRNA. Proc Natl Acad Sci USA 79(21):6475–6479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gu W, Jackman JE, Lohan AJ, Gray MW, Phizicky EM (2003) tRNAHis maturation: an essential yeast protein catalyzes addition of a guanine nucleotide to the 5′ end of tRNAHis. Genes Dev 17(23):2889–2901. doi:10.1101/gad.1148603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Abad MG, Rao BS, Jackman JE (2010) Template-dependent 3′-5′ nucleotide addition is a shared feature of tRNAHis guanylyltransferase enzymes from multiple domains of life. Proc Natl Acad Sci USA 107(2):674–679. doi:10.1073/pnas.0910961107

    Article  CAS  PubMed  Google Scholar 

  14. Rao BS, Jackman JE (2015) Life without post-transcriptional addition of G-1: two alternatives for tRNAHis identity in Eukarya. RNA 21 (2):243–253. doi:10.1261/rna.048389.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rao BS, Mohammad F, Gray MW, Jackman JE (2013) Absence of a universal element for tRNAHis identity in Acanthamoeba castellanii. Nucleic Acids Res 41(3):1885–1894. doi:10.1093/nar/gks1242

    Article  CAS  PubMed  Google Scholar 

  16. Wang C, Sobral BW, Williams KP (2007) Loss of a universal tRNA feature. J Bacteriol 189(5):1954–1962. doi:10.1128/JB.01203-06

    Article  CAS  PubMed  Google Scholar 

  17. Francklyn C, Schimmel P (1990) Enzymatic aminoacylation of an eight-base-pair microhelix with histidine. Proc Natl Acad Sci USA 87(21):8655–8659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Connolly SA, Rosen AE, Musier-Forsyth K, Francklyn CS (2004) G-1:C73 recognition by an arginine cluster in the active site of Escherichia coli histidyl-tRNA synthetase. Biochemistry 43(4):962–969. doi:10.1021/bi035708f

    Article  CAS  PubMed  Google Scholar 

  19. Gu W, Hurto RL, Hopper AK, Grayhack EJ, Phizicky EM (2005) Depletion of Saccharomyces cerevisiae tRNA(His) guanylyltransferase Thg1p leads to uncharged tRNAHis with additional m(5)C. Mol Cell Biol 25(18):8191–8201. doi:10.1128/MCB.25.18.8191-8201.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jackman JE, Gott JM, Gray MW (2012) Doing it in reverse: 3′-to-5′ polymerization by the Thg1 superfamily. RNA 18(5):886–899. doi:10.1261/rna.032300.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nameki N, Asahara H, Shimizu M, Okada N, Himeno H (1995) Identity elements of Saccharomyces cerevisiae tRNA(His). Nucleic Acids Res 23(3):389–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. O’Hanlon TP, Miller FW (2002) Genomic organization, transcriptional mapping, and evolutionary implications of the human bi-directional histidyl-tRNA synthetase locus (HARS/HARSL). Biochem Biophys Res Commun 294(3):609–614. doi:10.1016/S0006-291X(02)00525-9

    Article  PubMed  Google Scholar 

  23. Hawko SA, Francklyn CS (2001) Covariation of a specificity-determining structural motif in an aminoacyl-tRNA synthetase and a tRNA identity element. Biochemistry 40(7):1930–1936

    Article  CAS  PubMed  Google Scholar 

  24. Chang CP, Chang CY, Lee YH, Lin YS, Wang CC (2015) Divergent alanyl-tRNA synthetase genes of Vanderwaltozyma polyspora descended from a common ancestor through whole-genome duplication followed by asymmetric evolution. Mol Cell Biol 35(13):2242–2253. doi:10.1128/MCB.00018-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wolf YI, Aravind L, Grishin NV, Koonin EV (1999) Evolution of aminoacyl-tRNA synthetases–analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Res 9(8):689–710

    CAS  PubMed  Google Scholar 

  26. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302(1):205–217. doi:10.1006/jmbi.2000.4042

    Article  CAS  PubMed  Google Scholar 

  27. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Puffenberger EG, Jinks RN, Sougnez C, Cibulskis K, Willert RA, Achilly NP, Cassidy RP, Fiorentini CJ, Heiken KF, Lawrence JJ, Mahoney MH, Miller CJ, Nair DT, Politi KA, Worcester KN, Setton RA, Dipiazza R, Sherman EA, Eastman JT, Francklyn C, Robey-Bond S, Rider NL, Gabriel S, Morton DH, Strauss KA (2012) Genetic mapping and exome sequencing identify variants associated with five novel diseases. PLoS One 7(1):e28936. doi:10.1371/journal.pone.0028936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pierce SB, Chisholm KM, Lynch ED, Lee MK, Walsh T, Opitz JM, Li W, Klevit RE, King MC (2011) Mutations in mitochondrial histidyl tRNA synthetase HARS2 cause ovarian dysgenesis and sensorineural hearing loss of Perrault syndrome. Proc Natl Acad Sci USA 108(16):6543–6548. doi:10.1073/pnas.1103471108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou JJ, Wang F, Xu Z, Lo WS, Lau CF, Chiang KP, Nangle LA, Ashlock MA, Mendlein JD, Yang XL, Zhang M, Schimmel P (2014) Secreted histidyl-tRNA synthetase splice variants elaborate major epitopes for autoantibodies in inflammatory myositis. J Biol Chem 289(28):19269–19275. doi:10.1074/jbc.C114.571026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mathews MB, Bernstein RM (1983) Myositis autoantibody inhibits histidyl-tRNA synthetase: a model for autoimmunity. Nature 304(5922):177–179

    Article  CAS  PubMed  Google Scholar 

  32. Ghirardello A, Bassi N, Palma L, Borella E, Domeneghetti M, Punzi L, Doria A (2013) Autoantibodies in polymyositis and dermatomyositis. Curr Rheumatol Rep 15(6):335. doi:10.1007/s11926-013-0335-1

    Article  PubMed  Google Scholar 

  33. Ray PS, Sullivan JC, Jia J, Francis J, Finnerty JR, Fox PL (2011) Evolution of function of a fused metazoan tRNA synthetase. Mol Biol Evol 28(1):437–447. doi:10.1093/molbev/msq246

    Article  CAS  PubMed  Google Scholar 

  34. Himeno H, Hasegawa T, Ueda T, Watanabe K, Miura K, Shimizu M (1989) Role of the extra G–C pair at the end of the acceptor stem of tRNA(His) in aminoacylation. Nucleic Acids Res 17(19):7855–7863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Preston MA, Phizicky EM (2010) The requirement for the highly conserved G-1 residue of Saccharomyces cerevisiae tRNAHis can be circumvented by overexpression of tRNAHis and its synthetase. RNA 16(5):1068–1077. doi:10.1261/rna.2087510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ardell DH, Andersson SG (2006) TFAM detects co-evolution of tRNA identity rules with lateral transfer of histidyl-tRNA synthetase. Nucleic Acids Res 34(3):893–904. doi:10.1093/nar/gkj449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chang CP, Tseng YK, Ko CY, Wang CC (2012) Alanyl-tRNA synthetase genes of Vanderwaltozyma polyspora arose from duplication of a dual-functional predecessor of mitochondrial origin. Nucleic Acids Res 40(1):314–322. doi:10.1093/nar/gkr724

    Article  CAS  PubMed  Google Scholar 

  38. Chiu WC, Chang CP, Wen WL, Wang SW, Wang CC (2010) Schizosaccharomyces pombe possesses two paralogous valyl-tRNA synthetase genes of mitochondrial origin. Mol Biol Evol 27(6):1415–1424. doi:10.1093/molbev/msq025

    Article  CAS  PubMed  Google Scholar 

  39. Chang KJ, Lin G, Men LC, Wang CC (2006) Redundancy of non-AUG initiators. A clever mechanism to enhance the efficiency of translation in yeast. J Biol Chem 281(12):7775–7783. doi:10.1074/jbc.M511265200

    Article  CAS  PubMed  Google Scholar 

  40. Chang CP, Lin G, Chen SJ, Chiu WC, Chen WH, Wang CC (2008) Promoting the formation of an active synthetase/tRNA complex by a nonspecific tRNA-binding domain. J Biol Chem 283(45):30699–30706. doi:10.1074/jbc.M805339200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sikorski RS, Boeke JD (1991) In vitro mutagenesis and plasmid shuffling: from cloned gene to mutant yeast. Methods Enzymol 194:302–318

    Article  CAS  PubMed  Google Scholar 

  42. Boeke JD, Trueheart J, Natsoulis G, Fink GR (1987) 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol 154:164–175

    Article  CAS  PubMed  Google Scholar 

  43. Yuan J, Gogakos T, Babina AM, Soll D, Randau L (2011) Change of tRNA identity leads to a divergent orthogonal histidyl-tRNA synthetase/tRNAHis pair. Nucleic Acids Res 39(6):2286–2293. doi:10.1093/nar/gkq1176

    Article  CAS  PubMed  Google Scholar 

  44. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    CAS  PubMed  Google Scholar 

  45. Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35 (Web Server issue):W585–587. doi:10.1093/nar/gkm259

  46. Fersht AR, Ashford JS, Bruton CJ, Jakes R, Koch GL, Hartley BS (1975) Active site titration and aminoacyl adenylate binding stoichiometry of aminoacyl-tRNA synthetases. Biochemistry 14(1):1–4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants MOST 103-2311-B-008-003-MY3, MOST 103-2923-B-008-001-MY3, and NSC 102-2311-B-008-004-MY3 (to C.C.W.) from the Ministry of Science and Technology (Taipei, Taiwan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Chia Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PHYLIP 131 KB)

Appendix

Appendix

See Figs. 7 and 8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YH., Chang, CP., Cheng, YJ. et al. Evolutionary gain of highly divergent tRNA specificities by two isoforms of human histidyl-tRNA synthetase. Cell. Mol. Life Sci. 74, 2663–2677 (2017). https://doi.org/10.1007/s00018-017-2491-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2491-3

Keywords