Abstract
Collective cell movement is one of the strategies for achieving the complex shapes of tissues and organs. In this process, multiple cells within a group held together by cell–cell adhesion acquire mobility and move together in the same direction. In some well-studied models of collective cell movement, the mobility depends strongly on traction generated at the leading edge by cells located at the front. However, recent advances in live-imaging techniques have led to the discovery of other types of collective cell movement lacking a leading edge or even a free edge at the front, in a diverse array of morphological events, including tubule elongation, epithelial sheet extension, and tissue rotation. We herein review some of the developmental events that are organized by collective cell movement and attempt to elucidate the underlying cellular and molecular mechanisms, which include membrane protrusions, guidance cues, cell intercalation, and planer cell polarity, or chirality pathways.



Similar content being viewed by others
References
Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10:445–457. doi:10.1038/nrm2720
Mayor R, Etienne-Manneville S (2016) The front and rear of collective cell migration. Nat Rev Mol Cell Biol 17:97–109. doi:10.1038/nrm.2015.14
Scarpa E, Mayor R (2016) Collective cell migration in development. J Cell Biol 212:143–155. doi:10.1083/jcb.201508047
Ewald AJ, Brenot A, Duong M et al (2008) Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Dev Cell 14:570–581. doi:10.1016/j.devcel.2008.03.003
Sato K, Hiraiwa T, Maekawa E et al (2015) Left–right asymmetric cell intercalation drives directional collective cell movement in epithelial morphogenesis. Nat Commun 6:10074. doi:10.1038/ncomms10074
Bilder D, Haigo SL (2012) Expanding the morphogenetic repertoire: perspectives from the Drosophila egg. Dev Cell 22:12–23. doi:10.1016/j.devcel.2011.12.003
Harris TJC, Tepass U (2010) Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol 11:502–514. doi:10.1038/nrm2927
Affolter M, Zeller R, Caussinus E (2009) Tissue remodelling through branching morphogenesis. Nat Rev Mol Cell Biol 10:831–842. doi:10.1038/nrm2797
Lebreton G, Casanova J, Aman A et al (2014) Specification of leading and trailing cell features during collective migration in the Drosophila trachea. J Cell Sci 127:465–474. doi:10.1242/jcs.142737
Ghabrial AS, Krasnow MA (2006) Social interactions among epithelial cells during tracheal branching morphogenesis. Nature 441:746–749. doi:10.1038/nature04829
Gerhardt H, Golding M, Fruttiger M et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177. doi:10.1083/jcb.200302047
Gerhardt H (2008) VEGF and endothelial guidance in angiogenic sprouting. Organogenesis 4:241–246. doi:10.4161/org.4.4.7414
Prasad M, Montell DJ (2007) Cellular and molecular mechanisms of border cell migration analyzed using time-lapse live-cell imaging. Dev Cell 12:997–1005. doi:10.1016/j.devcel.2007.03.021
McLennan R, Schumacher LJ, Morrison JA et al (2015) Neural crest migration is driven by a few trailblazer cells with a unique molecular signature narrowly confined to the invasive front. Development 142:2014–2025. doi:10.1242/dev.117507
Theveneau E, Marchant L, Kuriyama S et al (2010) Collective chemotaxis requires contact-dependent cell polarity. Dev Cell 19:39–53. doi:10.1016/j.devcel.2010.06.012
Carmona-Fontaine C, Matthews HK, Kuriyama S et al (2008) Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature 456:957–961. doi:10.1038/nature07441
Haas P, Gilmour D (2006) Chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line. Dev Cell 10:673–680. doi:10.1016/j.devcel.2006.02.019
Sutherland D, Samakovlis C, Krasnow MA (1996) Branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching. Cell 87:1091–1101. doi:10.1016/S0092-8674(00)81803-6
Klämbt C, Glazer L, Shilo BZ (1992) Breathless, a Drosophila FGF receptor homolog, is essential for migration of tracheal and specific midline glial cells. Genes Dev 6:1668–1678. doi:10.1101/GAD.6.9.1668
Ruhrberg C, Gerhardt H, Golding M et al (2002) Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16:2684–2698. doi:10.1101/gad.242002
Duchek P, Rørth P (2001) Guidance of cell migration by EGF receptor signaling during Drosophila oogenesis. Science 291:131–133. doi:10.1126/science.291.5501.131
Duchek P, Somogyi K, Jékely G et al (2001) Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell 107:17–26. doi:10.1016/S0092-8674(01)00502-5
Belmadani A, Tran PB, Ren D et al (2005) The chemokine stromal cell-derived factor-1 regulates the migration of sensory neuron progenitors. J Neurosci 25:3995–4003. doi:10.1523/JNEUROSCI.4631-04.2005
Chihara T, Kato K, Taniguchi M et al (2003) Rac promotes epithelial cell rearrangement during tracheal tubulogenesis in Drosophila. Development 130:1419–1428. doi:10.1242/dev.00361
Tan W, Palmby TR, Gavard J et al (2008) An essential role for Rac1 in endothelial cell function and vascular development. FASEB J 22:1829–1838. doi:10.1096/fj.07-096438
Abraham S, Scarcia M, Bagshaw RD et al (2015) A Rac/Cdc42 exchange factor complex promotes formation of lateral filopodia and blood vessel lumen morphogenesis. Nat Commun 6:7286. doi:10.1038/ncomms8286
Murphy AM, Montell DJ (1996) Cell type-specific roles for Cdc42, Rac, and RhoL in Drosophila oogenesis. J Cell Biol 133:617–630. doi:10.1083/JCB.133.3.617
Ridley AJ, Schwartz MA, Burridge K et al (2003) Cell migration: Integrating signals from front to back. Science 302:1704–1710. doi:10.1126/science.1092053
Alfandari D, Cousin H, Gaultier A et al (2003) Integrin α5β1 supports the migration of Xenopus cranial neural crest on fibronectin. Dev Biol 260:449–464. doi:10.1016/S0012-1606(03)00277-X
Bjerke MA, Dzamba BJ, Wang C, DeSimone DW (2014) FAK is required for tension-dependent organization of collective cell movements in Xenopus mesendoderm. Dev Biol 394:340–356. doi:10.1016/j.ydbio.2014.07.023
Davidson LA, Hoffstrom BG, Keller R, DeSimone DW (2002) Mesendoderm extension and mantle closure in Xenopus laevis gastrulation: combined roles for integrin α5β1, fibronectin, and tissue geometry. Dev Biol 242:109–129. doi:10.1006/dbio.2002.0537
Montero J-A, Carvalho L, Wilsch-Bräuninger M et al (2005) Shield formation at the onset of zebrafish gastrulation. Development 132:1187–1198. doi:10.1242/dev.01667
Cai D, Chen S-C, Prasad M et al (2014) Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration. Cell 157:1146–1159. doi:10.1016/j.cell.2014.03.045
Cela C, Llimargas M (2006) Egfr is essential for maintaining epithelial integrity during tracheal remodelling in Drosophila. Development 133:3115–3125. doi:10.1242/dev.02482
David NB, Sapède D, Saint-Etienne L et al (2002) Molecular basis of cell migration in the fish lateral line: role of the chemokine receptor CXCR4 and of its ligand, SDF1. Proc Natl Acad Sci USA 99:16297–16302. doi:10.1073/pnas.252339399
Ghysen A, Dambly-Chaudière C (2007) The lateral line microcosmos. Genes Dev 21:2118–2130. doi:10.1101/gad.1568407
Valentin G, Haas P, Gilmour D (2007) The chemokine SDF1a coordinates tissue migration through the spatially restricted activation of Cxcr7 and Cxcr4b. Curr Biol. doi:10.1016/j.cub.2007.05.020
Streichan SJ, Valentin G, Gilmour D et al (2011) Collective cell migration guided by dynamically maintained gradients. Phys Biol 8:45004. doi:10.1088/1478-3975/8/4/045004
Donà E, Barry JD, Valentin G et al (2013) Directional tissue migration through a self-generated chemokine gradient. Nature 503:285–289. doi:10.1038/nature12635
Shamir ER, Ewald AJ (2014) Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol 15:647–664. doi:10.1038/nrm3873
Huebner RJ, Ewald AJ (2014) Cellular foundations of mammary tubulogenesis. Semin Cell Dev Biol 31:124–131. doi:10.1016/j.semcdb.2014.04.019
Watson CJ, Khaled WT (2008) Mammary development in the embryo and adult: a journey of morphogenesis and commitment. Development 135:995–1003. doi:10.1242/dev.005439
Robinson GW (2007) Cooperation of signalling pathways in embryonic mammary gland development. Nat Rev Genet 8:963–972. doi:10.1038/nrg2227
Hogg NA, Harrison CJ, Tickle C (1983) Lumen formation in the developing mouse mammary gland. J Embryol Exp Morphol 73:39–57
Huebner RJ, Lechler T, Ewald AJ (2014) Developmental stratification of the mammary epithelium occurs through symmetry-breaking vertical divisions of apically positioned luminal cells. Development 141:1085–1094. doi:10.1242/dev.103333
Hinck L, Silberstein GB, Nandi S et al (2005) Key stages in mammary gland development: the mammary end bud as a motile organ. Breast Cancer Res 7:245. doi:10.1186/bcr1331
Ewald AJ, Huebner RJ, Palsdottir H et al (2012) Mammary collective cell migration involves transient loss of epithelial features and individual cell migration within the epithelium. J Cell Sci 125:2638–2654. doi:10.1242/jcs.096875
Walck-Shannon E, Hardin J (2014) Cell intercalation from top to bottom. Nat Rev Mol Cell Biol 15:34–48. doi:10.1038/nrm3723
Levayer R, Lecuit T (2012) Biomechanical regulation of contractility: spatial control and dynamics. Trends Cell Biol 22:61–81. doi:10.1016/j.tcb.2011.10.001
Gjorevski N, Nelson CM (2011) Integrated morphodynamic signalling of the mammary gland. Nat Rev Mol Cell Biol 12:581–593. doi:10.1038/nrm3168
Inman JL, Robertson C, Mott JD, Bissell MJ (2015) Mammary gland development: cell fate specification, stem cells and the microenvironment. Development 142:1028–1042. doi:10.1242/dev.087643
Daniel CW, Robinson S, Silberstein GB (1996) The role of TGF-β in patterning and growth of the mammary ductal tree. J Mammary Gland Biol Neoplasia 1:331–341. doi:10.1007/BF02017389
Silberstein GB, Daniel CW (1987) Reversible inhibition of mammary gland growth by transforming growth factor-beta. Science 237:291–293. doi:10.1126/science.3474783
Nelson CM, Vanduijn MM, Inman JL et al (2006) Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 314:298–300. doi:10.1126/science.1131000
Onodera T, Sakai T, Hsu JC et al (2010) Btbd7 regulates epithelial cell dynamics and branching morphogenesis. Science 329:562–565. doi:10.1126/science.1191880
Chi X, Michos O, Shakya R et al (2009) Ret-dependent cell rearrangements in the Wolffian duct epithelium initiate ureteric bud morphogenesis. Dev Cell 17:199–209. doi:10.1016/j.devcel.2009.07.013
Shakya R, Watanabe T, Costantini F (2005) The role of GDNF/Ret signaling in ureteric bud cell fate and branching morphogenesis. Dev Cell 8:65–74. doi:10.1016/j.devcel.2004.11.008
Patel VN, Likar KM, Zisman-Rozen S et al (2008) Specific heparan sulfate structures modulate FGF10-mediated submandibular gland epithelial morphogenesis and differentiation. J Biol Chem 283:9308–9317. doi:10.1074/jbc.M709995200
Packard A, Georgas K, Michos O et al (2013) Luminal mitosis drives epithelial cell dispersal within the branching ureteric bud. Dev Cell 27:319–330. doi:10.1016/j.devcel.2013.09.001
Keller R (2006) Mechanisms of elongation in embryogenesis. Development 133:2291–2302. doi:10.1242/dev.02406
Takeichi M (1991) Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251:1451–1455. doi:10.1126/science.2006419
Desai R, Sarpal R, Ishiyama N et al (2013) Monomeric α-catenin links cadherin to the actin cytoskeleton. Nat Cell Biol 15:261–273. doi:10.1038/ncb2685
Yonemura S, Wada Y, Watanabe T et al (2010) α-Catenin as a tension transducer that induces adherens junction development. Nat Cell Biol 12:533–542. doi:10.1038/ncb2055
Perez-Moreno M, Fuchs E (2006) Catenins: keeping cells from getting their signals crossed. Dev Cell 11:601–612. doi:10.1016/j.devcel.2006.10.010
Reynolds AB, Daniel J, McCrea PD et al (1994) Identification of a new catenin: the tyrosine kinase substrate p120cas associates with E-cadherin complexes. Mol Cell Biol 14:8333–8342. doi:10.1128/MCB.14.12.8333
Daniel JM, Reynolds AB (1995) The tyrosine kinase substrate p120cas binds directly to E-cadherin but not to the adenomatous polyposis coli protein or alpha-catenin. Mol Cell Biol 15:4819–4824. doi:10.1128/MCB.15.9.4819
Yonemura S, Itoh M, Nagafuchi A, Tsukita S (1995) Cell-to-cell adherens junction formation and actin filament organization: similarities and differences between non-polarized fibroblasts and polarized epithelial cells. J Cell Sci 108:127–142
Watabe-Uchida M, Uchida N, Imamura Y et al (1998) α-Catenin-vinculin interaction functions to organize the apical junctional complex in epithelial cells. J Cell Biol 142:847–857. doi:10.1083/jcb.142.3.847
Nishimura T, Takeichi M (2009) Chapter 2 remodeling of the adherens junctions during morphogenesis. Curr Top Dev Biol 89:33–54. doi:10.1016/S0070-2153(09)89002-9
Huber AH, Stewart DB, Laurents DV et al (2001) The cadherin cytoplasmic domain is unstructured in the absence of β-catenin. J Biol Chem 276:12301–12309. doi:10.1074/JBC.M010377200
Bajpai S, Correia J, Feng Y et al (2008) α-Catenin mediates initial E-cadherin-dependent cell–cell recognition and subsequent bond strengthening. Proc Natl Acad Sci 105:18331–18336. doi:10.1073/PNAS.0806783105
Rimm DL, Koslov ER, Kebriaei P et al (1995) α1(E)-Catenin is an actin-binding and actin-bundling protein mediating the attachment of F-actin to the membrane adhesion complex. Proc Natl Acad Sci USA 92:8813–8817. doi:10.1073/pnas.92.19.8813
Irvine KD, Wieschaus E (1994) Cell intercalation during Drosophila germband extension and its regulaton by pair-rule segmentation genes. Development 120:827–841.
Zallen JA, Wieschaus E (2004) Patterned gene expression directs bipolar planar polarity in Drosophila. Dev Cell 6:343–355. doi:10.1016/S1534-5807(04)00060-7
Bertet C, Sulak L, Lecuit T (2004) Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429:667–671. doi:10.1038/nature02590
Collinet C, Rauzi M, Lenne P, Lecuit T (2015) Local and tissue-scale forces drive oriented junction growth during tissue extension. Nat Cell Biol 17:1247–1258. doi:10.1038/ncb3226
Blankenship JT, Backovic ST, Sanny JSP et al (2006) Multicellular rosette formation links planar cell polarity to tissue morphogenesis. Dev Cell 11:459–470. doi:10.1016/j.devcel.2006.09.007
Simões Sde M, Blankenship JT, Weitz O et al (2010) Rho-kinase directs Bazooka/Par-3 planar polarity during Drosophila axis elongation. Dev Cell 19:377–388. doi:10.1016/j.devcel.2010.08.011
Levayer R, Pelissier-Monier A, Lecuit T (2011) Spatial regulation of Dia and Myosin-II by RhoGEF2 controls initiation of E-cadherin endocytosis during epithelial morphogenesis. Nat Cell Biol 13:529–542. doi:10.1038/ncb2224
Rauzi M, Lenne P-F, Lecuit T (2010) Planar polarized actomyosin contractile flows control epithelial junction remodelling. Nature 468:1110–1114. doi:10.1038/nature09566
Bardet PL, Guirao B, Paoletti C et al (2013) PTEN controls junction lengthening and stability during cell rearrangement in epithelial tissue. Dev Cell 25:534–546. doi:10.1016/j.devcel.2013.04.020
Nishimura T, Honda H, Takeichi M (2012) Planar cell polarity links axes of spatial dynamics in neural-tube closure. Cell 149:1084–1097. doi:10.1016/j.cell.2012.04.021
Karner CM, Chirumamilla R, Aoki S et al (2009) Wnt9b signaling regulates planar cell polarity and kidney tubule morphogenesis. Nat Genet 41:793–799. doi:10.1038/ng.400
Lienkamp SS, Liu K, Karner CM et al (2012) Vertebrate kidney tubules elongate using a planar cell polarity-dependent, rosette-based mechanism of convergent extension. Nat Genet 44:1382–1387. doi:10.1038/ng.2452
Wang J, Mark S, Zhang X et al (2005) Regulation of polarized extension and planar cell polarity in the cochlea by the vertebrate PCP pathway. Nat Genet 37:980–985. doi:10.1038/ng1622
Yamamoto N, Okano T, Ma X, et al (2009) Myosin II regulates extension, growth and patterning in the mammalian cochlear duct. Development 136:1977–1986. doi:10.1242/dev.030718
Gray RS, Roszko I, Solnica-Krezel L (2011) Planar cell polarity: coordinating morphogenetic cell behaviors with embryonic polarity. Dev Cell 21:120–133. doi:10.1016/j.devcel.2011.06.011
Wallingford JB (2012) Planar cell polarity and the developmental control of cell behavior in vertebrate embryos. Annu Rev Cell Dev Biol 28:627–653. doi:10.1146/annurev-cellbio-092910-154208
Paré AC, Vichas A, Fincher CT et al (2014) A positional Toll receptor code directs convergent extension in Drosophila. Nature 515:523–527. doi:10.1038/nature13953
Heller E, Kumar KV, Grill SW, Fuchs E (2014) Forces generated by cell intercalation tow epidermal sheets in mammalian tissue morphogenesis. Dev Cell 28:617–632. doi:10.1016/j.devcel.2014.02.011
Mine N, Iwamoto R, Mekada E (2005) HB-EGF promotes epithelial cell migration in eyelid development. Development 132:4317–4326. doi:10.1242/Dev.02030
Shih J, Keller R (1992) Patterns of cell motility in the organizer and dorsal mesoderm of Xenopus laevis. Development 116:915–930
Shih J, Keller R (1992) Cell motility driving mediolateral intercalation in explants of Xenopus laevis. Development 116:901–914. doi:10.1007/bf02616114
Marsden M, DeSimone DW (2003) Integrin-ECM interactions regulate cadherin-dependent cell adhesion and are required for convergent extension in Xenopus. Curr Biol 13:1182–1191. doi:10.1016/S0960-9822(03)00433-0
Davidson LA, Marsden M, Keller R, DeSimone DW (2006) Integrin α5β1 and fibronectin regulate polarized cell protrusions required for Xenopus convergence and extension. Curr Biol 16:833–844. doi:10.1016/j.cub.2006.03.038
Gleichauf R (1936) Anatomie und Variabilität des Geschlechtsapparates von Drosophila melanogaster (Meigen). Zeitschrift für wissenschaftliche Zool 148:1–66
Adám G, Perrimon N, Noselli S, Adam G (2003) The retinoic-like juvenile hormone controls the looping of left-right asymmetric organs in Drosophila. Development 130:2397–2406. doi:10.1242/dev.00460
Suzanne M, Petzoldt AG, Spéder P et al (2010) Coupling of apoptosis and L/R patterning controls stepwise organ looping. Curr Biol 20:1773–1778. doi:10.1016/j.cub.2010.08.056
Kuranaga E, Matsunuma T, Kanuka H et al (2011) Apoptosis controls the speed of looping morphogenesis in Drosophila male terminalia. Development 138:1493–1499. doi:10.1242/dev.058958
Keisman EL, Christiansen AE, Baker BS et al (2001) The sex determination gene doublesex regulates the A/P organizer to direct sex-specific patterns of growth in the Drosophila genital imaginal disc. Dev Cell 1:215–225. doi:10.1016/S1534-5807(01)00027-2
Hozumi S, Maeda R, Taniguchi K et al (2006) An unconventional myosin in Drosophila reverses the default handedness in visceral organs. Nature 440:798–802. doi:10.1038/nature04625
Spéder P, Adám G, Noselli S (2006) Type ID unconventional myosin controls left-right asymmetry in Drosophila. Nature 440:803–807. doi:10.1038/nature04623
Coutelis J-B, Géminard C, Spéder P et al (2013) Drosophila left/right asymmetry establishment is controlled by the Hox gene abdominal-B. Dev Cell 24:89–97. doi:10.1016/j.devcel.2012.11.013
González-Morales N, Géminard C, Lebreton G et al (2015) The atypical cadherin Dachsous controls left-right asymmetry in Drosophila. Dev Cell 33:675–689. doi:10.1016/j.devcel.2015.04.026
Taniguchi K, Maeda R, Ando T et al (2011) Chirality in planar cell shape contributes to left-right asymmetric epithelial morphogenesis. Science 333:339–341. doi:10.1126/science.1200940
Spradling AC (1993) Developmental genetics of oogenesis. In: The development of Drosophila melanogaster. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 1–70
Chen DY, Lipari KR, Dehghan Y et al (2016) Symmetry breaking in an edgeless epithelium by Fat2-regulated microtubule polarity. Cell Rep 15:1125–1133. doi:10.1016/j.celrep.2016.04.014
Haigo SL, Bilder D (2011) Global tissue revolutions in a morphogenetic movement controlling elongation. Science 331:1071–1074. doi:10.1126/science.1199424
Gutzeit H (1990) The microfilament pattern in the somatic follicle cells of mid-vitellogenic ovarian follicles of Drosophila. Eur J Cell Biol 53:349–356
Gutzeit HO, Eberhardt W, Gratwohl E (1991) Laminin and basement membrane-associated microfilaments in wild-type and mutant Drosophila ovarian follicles. J Cell Sci 100:781–788
Bateman J, Reddy RS, Saito H et al (2001) The receptor tyrosine phosphatase Dlar and integrins organize actin filaments in the Drosophila follicular epithelium. Curr Biol 11:1317–1327. doi:10.1016/S0960-9822(01)00420-1
Frydman HM, Spradling AC (2001) The receptor-like tyrosine phosphatase lar is required for epithelial planar polarity and for axis determination within Drosophila ovarian follicles. Development 128:3209–3220
Cetera M, Juan GRR-SJ, Oakes PW et al (2014) Epithelial rotation promotes the global alignment of contractile actin bundles during Drosophila egg chamber elongation. Nat Commun 5:1–12. doi:10.1038/ncomms6511
Krause M, Dent EW, Bear JE et al (2003) Ena/VASP proteins: regulators of the actin cytoskeleton and cell migration. Annu Rev Cell Dev Biol 19:541–564. doi:10.1146/annurev.cellbio.19.050103.103356
Stradal TE, Scita G (2006) Protein complexes regulating Arp2/3-mediated actin assembly. Curr Opin Cell Biol 18:4–10. doi:10.1016/j.ceb.2005.12.003
Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–465. doi:10.1016/S0092-8674(03)00120-X
Kunda P, Craig G, Dominguez V, Baum B (2003) Abi, Sra1, and Kette control the stability and localization of SCAR/WAVE to regulate the formation of actin-based protrusions. Curr Biol 13:1867–1875. doi:10.1016/j.cub.2003.10.005
Viktorinová I, Dahmann C (2013) Microtubule polarity predicts direction of egg chamber rotation in Drosophila. Curr Biol 23:1472–1477. doi:10.1016/j.cub.2013.06.014
Li R, Gundersen GG (2008) Beyond polymer polarity: how the cytoskeleton builds a polarized cell. Nat Rev Mol Cell Biol 9:860–873. doi:10.1038/nrm2522
Vladar EK, Bayly RD, Sangoram AM et al (2012) Microtubules enable the planar cell polarity of airway cilia. Curr Biol 22:2203–2212. doi:10.1016/j.cub.2012.09.046
Shimada Y, Yonemura S, Ohkura H et al (2006) Polarized transport of Frizzled along the planar microtubule arrays in Drosophila wing epithelium. Dev Cell 10:209–222. doi:10.1016/j.devcel.2005.11.016
Mimori-Kiyosue Y, Shiina N, Tsukita S (2000) The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr Biol 10:865–868. doi:10.1016/S0960-9822(00)00600-X
Rogers SL, Wiedemann U, Häcker U et al (2004) Drosophila RhoGEF2 associates with microtubule plus ends in an EB1-dependent manner. Curr Biol. doi:10.1016/j.cub.2004.09.078
Viktorinová I, König T, Schlichting K, Dahmann C (2009) The cadherin Fat2 is required for planar cell polarity in the Drosophila ovary. Development 136:4123–4132. doi:10.1242/dev.039099
Aurich F, Dahmann C (2016) A mutation in fat2 uncouples tissue elongation from global tissue rotation. Cell Rep 14:2503–2510. doi:10.1016/j.celrep.2016.02.044
Haeger A, Wolf K, Zegers MM, Friedl P (2015) Collective cell migration: guidance principles and hierarchies. Trends Cell Biol 25:556–566. doi:10.1016/j.tcb.2015.06.003
Friedl P, Locker J, Sahai E, Segall JE (2012) Classifying collective cancer cell invasion. Nat Cell Biol 14:777–783. doi:10.1038/ncb2548
Shamir ER, Ewald AJ (2015) Chapter eleven—adhesion in mammary development: novel roles for E-cadherin in individual and collective cell migration. Curr Top Dev Biol 112:353–382
Jeanes A, Gottardi CJ, Yap AS (2008) Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 27:6920–6929. doi:10.1038/onc.2008.343
Huang L, Muthuswamy SK (2010) Polarity protein alterations in carcinoma: a focus on emerging roles for polarity regulators. Curr Opin Genet Dev 20:41–50. doi:10.1016/j.gde.2009.12.001
Bosoi CM, Capra V, Allache R et al (2011) Identification and characterization of novel rare mutations in the planar cell polarity gene PRICKLE1 in human neural tube defects. Hum Mutat 32:1371–1375. doi:10.1002/humu.21589
Robinson A, Escuin S, Vekemans KD et al (2012) Mutations in the planar cell polarity genes CELSR1 and SCRIB are associated with the severe neural tube defect craniorachischisis. Hum Mutat 33:440–447. doi:10.1002/humu.21662
Marmaras A, Berge U, Ferrari A et al (2010) A mathematical method for the 3D analysis of rotating deformable systems applied on lumen-forming MDCK cell aggregates. Cytoskeleton 67:224–240. doi:10.1002/cm.20438
Tanner K, Mori H, Mroue R et al (2012) Coherent angular motion in the establishment of multicellular architecture of glandular tissues. Proc Natl Acad Sci USA 109:1973–1978. doi:10.1073/pnas.1119578109
Acknowledgements
We apologize to colleagues whose work could not be cited because of space limitations. We especially thank all the members of Kuranaga laboratory for valuable discussions. Studies by our group were supported in part by grants from the Takeda Science Foundation (E.K.), the Japan Foundation for Applied Enzymology (E.K.), MEXT KAKENHI Grant Number JP26114003 (E.K.) and the JSPS KAKENHI Grant Numbers JP24687027 (E.K.), and JP16H04800 (E.K.).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Uechi, H., Kuranaga, E. Mechanisms of collective cell movement lacking a leading or free front edge in vivo. Cell. Mol. Life Sci. 74, 2709–2722 (2017). https://doi.org/10.1007/s00018-017-2489-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00018-017-2489-x