Abstract
Post-translational modifications (PTMs) are key molecular events that modify proteins after their synthesis and modulate their ultimate functional properties by affecting their stability, localisation, interaction potential or activity. These chemical changes expand the size of the proteome adding diversity to the molecular pathways governing the biological outcome of cells. PTMs are, thus, crucial in regulating a variety of cellular processes such as apoptosis, proliferation and differentiation and have been shown to be instrumental during embryonic development. In addition, alterations in protein PTMs have been implicated in the pathogenesis of many human diseases, including deafness. In this review, we summarize the recent progress made in understanding the roles of PTMs during cochlear development, with particular emphasis on the enzymes driving protein phosphorylation, acetylation, methylation, glycosylation, ubiquitination and SUMOylation. We also discuss how these enzymes may contribute to hearing impairment and deafness.




Similar content being viewed by others
Abbreviations
- ABR:
-
Auditory brainstem response
- ADP:
-
Adenosine diphosphate
- Ac-CoA:
-
Acetyl-coenzyme A
- ALG10B:
-
Alpha-1,2-glucosyltransferase
- ARHL:
-
Age-related hearing loss
- Atoh1:
-
Protein atonal homolog 1
- ATP:
-
Adénosine triphosphate
- Aos1/Uba2:
-
Ubiquitin-like 1-activating enzyme E1B
- CBP:
-
CREB-binding protein
- CREB:
-
cAMP-responsive element binding protein
- Cx26:
-
Connexin-26
- DFNB61:
-
Autosomal recessive deafness-61
- DNA:
-
Deoxyribonucleic acid
- DUBs:
-
Deubiquitinating enzymes
- E1:
-
Ubiquitin activating enzyme
- E2:
-
Ubiquitin conjugating enzyme
- E3:
-
Ubiquitin ligase
- ERK1/2:
-
Extracellular signal-regulated kinases 1/2
- ERM:
-
Ezrin, radixin and moesin proteins
- Fbx2:
-
F-Box protein 2 (also called Fbs1 or OCP1)
- FGF:
-
Fibroblast growth factor
- GCN5:
-
General control nonderepressible
- GJP2:
-
Gap junction protein type 2
- GPI:
-
Glycosylphosphatidylinositol
- GTP:
-
Guanosine triphosphate
- H3K9:
-
Histone H3 lysine 9
- HCs:
-
Hair cells
- IDH2:
-
Isocitrate dehydrogenase
- IHCs:
-
Inner hair cells
- JAB1:
-
Jun activation domain-binding protein 1
- JAMMs:
-
JAB1/MPN/MOV34 metalloenzymes
- JNK:
-
c-Jun N-terminal kinase
- KATs:
-
Lysine acetyl-transferases
- KDACi:
-
Lysine deacetylases inhibitors
- KDACs:
-
Lysine deacetylases
- KDMs:
-
Histones lysine demethylation enzymes
- KDM4B:
-
Lysine (K)-specific demethylase 4B (also called jumonjiD2)
- LKB1:
-
Liver serine/threonine kinase B1
- MAP3K1:
-
Mitogen-activated protein kinase kinase kinase 1
- MAP3K4:
-
Mitogen-activated protein kinase kinase kinase 4 (also called MEKK4)
- MAP3K7:
-
Mitogen-activated protein kinase kinase kinase 7 (also called Tak1)
- MAPK:
-
Mitogen-activated protein kinase
- MOV34:
-
Proteasome 26S subunit, non-ATPase 7 (PSMD7)
- MPN:
-
MPR1/PAD1 N-terminal
- MPR1:
-
sigMa 1278b gene for l-proline-analog resistance
- mRNA:
-
Messenger ribonucleic acid
- MYST:
-
Named for the founding members MOZ, YBF2, SAS2 and TIP60
- NAD:
-
Nicotinamide adenine dinucleotide
- NADPH:
-
Nicotinamide adenine dinucleotide phosphate-oxidase
- NEDD8:
-
Neural precursor cell expressed, developmentally down-regulated 8
- NF-κB:
-
Nuclear factor-kappa B
- OCP1:
-
Organ of corti protein 1 (also called Fbs1 or Fbx2)
- OHCs:
-
Outer hair cells
- OTUs:
-
Ovarian tumor proteases
- PAD1:
-
Protein-arginine deiminase 1
- PCAF:
-
p300/CBP-associated factor
- PCP:
-
Planar cell polarity
- Pk:
-
Prickle1
- PKMT:
-
Protein lysine methyl transferases
- PRMT:
-
Protein arginine methyl transferases
- PTK7:
-
Protein tyrosine kinase 7
- PTMs:
-
Post-translational modifications
- RhoA Ras:
-
Homolog gene family, member A
- ROCK1/2:
-
Rho-associated protein kinase 1/2
- SAH:
-
S-Adenosyl homocysteine
- SAM:
-
S-Adenosyl methionine
- SCs:
-
Supporting cells
- SCF:
-
SKP1-cullin-F-box
- Scr:
-
Proto-oncogene tyrosine-protein kinase
- SGN:
-
Spiral ganglion neurons
- SLC26A4:
-
Solute carrier family 26 (anion exchanger), member 4
- SLC26A5:
-
Solute carrier family 26 (anion exchanger), member 4
- SMAD:
-
Homologs of the Drosophila protein, mothers against decapentaplegic (MAD)
- Smurf1/2:
-
SMAD specific E3 ubiquitin protein ligase 1/2
- SUMO:
-
Small Ubiquitin-like MOdifier
- UBC9:
-
UBiquitin-conjugating 9
- UCHs:
-
Ubiquitin C-terminal hydrolases
- Usp53:
-
Ubiquitin-specific protease 53
- USPs:
-
Ubiquitin-specific proteases
- Wnt:
-
Wingless-related integration site
References
Okamoto S, Lipton SA (2015) S-Nitrosylation in neurogenesis and neuronal development. Biochim Biophys Acta 1850:1588–1593. doi:10.1016/j.bbagen.2014.12.013
McDowell GS, Hindley CJ, Lippens G et al (2014) Phosphorylation in intrinsically disordered regions regulates the activity of Neurogenin2. BMC Biochem 15:24. doi:10.1186/s12858-014-0024-3
You L, Yan K, Zou J et al (2015) Correction: the lysine acetyltransferase activator Brpf1 governs dentate gyrus development through neural stem cells and progenitors. PLoS Genet 11:e1005329. doi:10.1371/journal.pgen.1005329
Ham SJ, Lee SY, Song S et al (2015) Interaction between RING1 (R1) and ubiquitin-like (UBL) domain is critical for the regulation of Parkin activity. J Biol Chem. doi:10.1074/jbc.M115.687319
Niceta M, Stellacci E, Gripp KW et al (2015) Mutations impairing GSK3-mediated MAF phosphorylation cause cataract, deafness, intellectual disability, seizures, and a down syndrome-like facies. Am J Hum Genet 96:816–825. doi:10.1016/j.ajhg.2015.03.001
Hanks SK, Hunter T (1995) Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 9:576–596
Zhang ZY (2002) Protein tyrosine phosphatases: structure and function, substrate specificity, and inhibitor development. Annu Rev Pharmacol Toxicol 42:209–234
Mumby MC, Walter G (1993) Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth. Physiol Rev 73:673–699
Mawatari T, Ninomiya I, Inokuchi M et al (2015) Valproic acid inhibits proliferation of HER2-expressing breast cancer cells by inducing cell cycle arrest and apoptosis through Hsp70 acetylation. Int J Oncol 47:2073–2081. doi:10.3892/ijo.2015.3213
Arboleda VA, Lee H, Dorrani N et al (2015) De novo nonsense mutations in KAT6A, a lysine acetyl-transferase gene, cause a syndrome including microcephaly and global developmental delay. Am J Hum Genet 96:498–506. doi:10.1016/j.ajhg.2015.01.017
Chen S, Yao X, Li Y et al (2015) Histone deacetylase 1 and 2 regulate Wnt and p53 pathways in the ureteric bud epithelium. Development 142:1180–1192. doi:10.1242/dev.113506
Mortenson JB, Heppler LN, Banks CJ et al (2015) Histone deacetylase 6 (HDAC6) promotes the pro-survival activity of 14-3-3ζ via deacetylation of lysines within the 14-3-3ζ binding pocket. J Biol Chem 290:12487–12496. doi:10.1074/jbc.M114.607580
Olson DE, Sleiman SF, Bourassa MW et al (2015) Hydroxamate-based histone deacetylase inhibitors can protect neurons from oxidative stress via a histone deacetylase-independent catalase-like mechanism. Chem Biol 22:439–445. doi:10.1016/j.chembiol.2015.03.014
Damaskos C, Karatzas T, Nikolidakis L et al (2015) Histone deacetylase (HDAC) inhibitors: current evidence for therapeutic activities in pancreatic cancer. Anticancer Res 35:3129–3135
Choudhary C, Kumar C, Gnad F et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840. doi:10.1126/science.1175371
Allis CD, Berger SL, Cote J et al (2007) New nomenclature for chromatin-modifying enzymes. Cell 131:633–636. doi:10.1016/j.cell.2007.10.039
Li T, Du Y, Wang L et al (2012) Characterization and prediction of lysine (K)-acetyl-transferase specific acetylation sites. Mol Cell Proteomics 11(M111):011080. doi:10.1074/mcp.M111.011080
Dokmanovic M, Clarke CMP (2007) Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5(10):981–989
de Ruijter AJM, van Gennip AH, Caron HN et al (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749. doi:10.1042/BJ20021321
Marks PA, Xu W-S (2009) Histone deacetylase inhibitors: potential in cancer therapy. J Cell Biochem 107:600–608. doi:10.1002/jcb.22185
Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705. doi:10.1016/j.cell.2007.02.005
Tessarz P, Kouzarides T (2014) Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol 15:703–708. doi:10.1038/nrm3890
Watanabe K-I, Bloch W (2013) Histone methylation and acetylation indicates epigenetic change in the aged cochlea of mice. Eur Arch Otorhinolaryngol 270:1823–1830. doi:10.1007/s00405-012-2222-1
Leroy JG (2006) Congenital disorders of N-glycosylation including diseases associated with O- as well as N-glycosylation defects. Pediatr Res 60:643–656. doi:10.1203/01.pdr.0000246802.57692.ea
Wolfe LA, Krasnewich D (2013) Congenital disorders of glycosylation and intellectual disability. Dev Disabil Res Rev 17:211–225. doi:10.1002/ddrr.1115
Varki A, Cummings RD, Esko JD et al (2009) Essentials of glycobiology
Feizi T, Haltiwanger RS (2015) Editorial overview: carbohydrate-protein interactions and glycosylation: glycan synthesis and recognition: finding the perfect partner in a sugar-coated life. Curr Opin Struct Biol. doi:10.1016/j.sbi.2015.10.005
Freeze HH (2006) Genetic defects in the human glycome. Nat Rev Genet 7:537–551. doi:10.1038/nrg1894
Freeze HH (2013) Understanding human glycosylation disorders: biochemistry leads the charge. J Biol Chem 288:6936–6945. doi:10.1074/jbc.R112.429274
Freeze HH, Eklund EA, Ng BG, Patterson MC (2015) Neurological aspects of human glycosylation disorders. Annu Rev Neurosci 38:105–125. doi:10.1146/annurev-neuro-071714-034019
Freeze HH, Sharma V (2010) Metabolic manipulation of glycosylation disorders in humans and animal models. Semin Cell Dev Biol 21:655–662. doi:10.1016/j.semcdb.2010.03.011
Davis ME, Gack MU (2015) Ubiquitination in the antiviral immune response. Virology 479–480:52–65. doi:10.1016/j.virol.2015.02.033
Shan H, Lingqiang Z (2015) Research progress in linear ubiquitin modification. Yi Chuan 37:911–917. doi:10.16288/j.yczz.15-214
Shao S, Hegde RS (2015) Target selection during protein quality control. Trends Biochem Sci. doi:10.1016/j.tibs.2015.10.007
Wang F, Canadeo LA, Huibregtse JM (2015) Ubiquitination of newly synthesized proteins at the ribosome. Biochimie 114:127–133. doi:10.1016/j.biochi.2015.02.006
Kimura Y, Tanaka K (2010) Regulatory mechanisms involved in the control of ubiquitin homeostasis. J Biochem 147:793–798. doi:10.1093/jb/mvq044
Komander D, Clague MJ, Urbé S (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10:550–563. doi:10.1038/nrm2731
Nelson RF, Glenn KA, Zhang Y et al (2007) Selective cochlear degeneration in mice lacking the F-box protein, Fbx2, a glycoprotein-specific ubiquitin ligase subunit. J Neurosci 27:5163–5171. doi:10.1523/JNEUROSCI.0206-07.2007
Kazmierczak M, Harris SL, Kazmierczak P et al (2015) Progressive hearing loss in mice carrying a mutation in Usp53. J Neurosci 35:15582–15598. doi:10.1523/JNEUROSCI.1965-15.2015
Narimatsu M, Bose R, Pye M et al (2009) Regulation of Planar cell polarity by Smurf ubiquitin ligases. Cell 137:295–307. doi:10.1016/j.cell.2009.02.025
Hay RT (2005) SUMO. Mol Cell 18:1–12. doi:10.1016/j.molcel.2005.03.012
Nuro-Gyina PK, Parvin JD (2015) Roles for SUMO in pre-mRNA processing. Wiley Interdiscip Rev RNA. doi:10.1002/wrna.1318
Enserink JM (2015) Sumo and the cellular stress response. Cell Div 10:4. doi:10.1186/s13008-015-0010-1
Sarangi P, Zhao X (2015) SUMO-mediated regulation of DNA damage repair and responses. Trends Biochem Sci 40:233–242. doi:10.1016/j.tibs.2015.02.006
Basch ML, Brown RM, Jen H-I, Groves AK (2015) Where hearing starts: the development of the mammalian cochlea. J Anat. doi:10.1111/joa.12314
Sai X, Ladher RK (2015) Early steps in inner ear development: induction and morphogenesis of the otic placode. Front Pharmacol 6:19. doi:10.3389/fphar.2015.00019
Fuchs JC, Tucker AS (2015) Development and integration of the ear. Curr Top Dev Biol 115:213–232. doi:10.1016/bs.ctdb.2015.07.007
Rubel EW, Fritzsch B (2002) Auditory system development: primary auditory neurons and their targets. Annu Rev Neurosci 25:51–101. doi:10.1146/annurev.neuro.25.112701.142849
Uribe RA, Buzzi AL, Bronner ME, Strobl-Mazzulla PH (2015) Histone demethylase KDM4B regulates otic vesicle invagination via epigenetic control of Dlx3 expression. J Cell Biol 211:815–827. doi:10.1083/jcb.201503071
He Y, Tang D, Li W et al (2016) Histone deacetylase 1 is required for the development of the zebrafish inner ear. Sci Rep 6:16535. doi:10.1038/srep16535
Sai X, Yonemura S, Ladher RK (2014) Junctionally restricted RhoA activity is necessary for apical constriction during phase 2 inner ear placode invagination. Dev Biol 394:206–216. doi:10.1016/j.ydbio.2014.08.022
Taylor KM, Labonne C (2005) SoxE factors function equivalently during neural crest and inner ear development and their activity is regulated by SUMOylation. Dev Cell 9:593–603. doi:10.1016/j.devcel.2005.09.016
Betancur P, Sauka-Spengler T, Bronner M (2011) A Sox10 enhancer element common to the otic placode and neural crest is activated by tissue-specific paralogs. Development 138:3689–3698. doi:10.1242/dev.057836
Bouchard M, de Caprona D, Busslinger M et al (2010) Pax2 and Pax8 cooperate in mouse inner ear morphogenesis and innervation. BMC Dev Biol 10:89. doi:10.1186/1471-213X-10-89
Yousaf R, Meng Q, Hufnagel RB et al (2015) MAP3K1 function is essential for cytoarchitecture of the mouse organ of Corti and survival of auditory hair cells. Dis Model Mech 8:1543–1553. doi:10.1242/dmm.023077
Parker A, Cross SH, Jackson IJ et al (2015) The goya mouse mutant reveals distinct newly identified roles for MAP3K1 in the development and survival of cochlear sensory hair cells. Dis Model Mech 8:1555–1568. doi:10.1242/dmm.023176
Haque K, Pandey AK, Zheng H-W et al (2016) MEKK4 signaling regulates sensory cell development and function in the mouse inner ear. J Neurosci 36:1347–1361. doi:10.1523/JNEUROSCI.1853-15.2016
Mann ZF, Thiede BR, Chang W et al (2014) A gradient of Bmp7 specifies the tonotopic axis in the developing inner ear. Nat Commun 5:3839. doi:10.1038/ncomms4839
Andreeva A, Lee J, Lohia M et al (2014) PTK7-Src signaling at epithelial cell contacts mediates spatial organization of actomyosin and planar cell polarity. Dev Cell 29:20–33. doi:10.1016/j.devcel.2014.02.008
Men Y, Zhang A, Li H et al (2015) LKB1 Is Required for the development and maintenance of stereocilia in inner ear hair cells in mice. PLoS One 10:e0135841. doi:10.1371/journal.pone.0135841
Izzi L, Attisano L (2006) Ubiquitin-dependent regulation of TGFbeta signaling in cancer. Neoplasia 8:677–688. doi:10.1593/neo.06472
Stojanova ZP, Kwan T, Segil N (2015) Epigenetic regulation of Atoh1 guides hair cell development in the mammalian cochlea. Development 142:3529–3536. doi:10.1242/dev.126763
Alagramam KN, Stepanyan R, Jamesdaniel S et al (2014) Noise exposure immediately activates cochlear mitogen-activated protein kinase signaling. Noise Health 16:400–409. doi:10.4103/1463-1741.144418
Shin YS, Hwang HS, Kang SU et al (2014) Inhibition of p38 mitogen-activated protein kinase ameliorates radiation-induced ototoxicity in zebrafish and cochlea-derived cell lines. Neurotoxicology 40:111–122. doi:10.1016/j.neuro.2013.12.006
Maeda Y, Fukushima K, Omichi R et al (2013) Time courses of changes in phospho- and total-MAP kinases in the cochlea after intense noise exposure. PLoS One 8:e58775. doi:10.1371/journal.pone.0058775
Kurioka T, Matsunobu T, Satoh Y et al (2015) ERK2 mediates inner hair cell survival and decreases susceptibility to noise-induced hearing loss. Sci Rep 5:16839. doi:10.1038/srep16839
Wu J, Sun S, Li W et al (2014) pRb phosphorylation regulates the proliferation of supporting cells in gentamicin-damaged neonatal avian utricle. Neuroreport 25:1144–1150. doi:10.1097/WNR.0000000000000241
Wang J, Ruel J, Ladrech S et al (2007) Inhibition of the c-Jun N-terminal kinase-mediated mitochondrial cell death pathway restores auditory function in sound-exposed animals. Mol Pharmacol 71:654–666. doi:10.1124/mol.106.028936
Nagashima R, Yamaguchi T, Tanaka H, Ogita K (2010) Mechanism underlying the protective effect of tempol and Nω-nitro-l-arginine methyl ester on acoustic injury: possible involvement of c-Jun N-terminal kinase pathway and connexin26 in the cochlear spiral ligament. J Pharmacol Sci 114:50–62
Dragunow M, Young D, Hughes P et al (1993) Is c-Jun involved in nerve cell death following status epilepticus and hypoxic-ischaemic brain injury? Brain Res Mol Brain Res 18:347–352
Eshraghi AA, Wang J, Adil E et al (2007) Blocking c-Jun-N-terminal kinase signaling can prevent hearing loss induced by both electrode insertion trauma and neomycin ototoxicity. Hear Res 226:168–177. doi:10.1016/j.heares.2006.09.008
Coleman JKM, Littlesunday C, Jackson R, Meyer T (2007) AM-111 protects against permanent hearing loss from impulse noise trauma. Hear Res 226:70–78. doi:10.1016/j.heares.2006.05.006
Omotehara Y, Hakuba N, Hato N et al (2011) Protection against ischemic cochlear damage by intratympanic administration of AM-111. Otol Neurotol 32:1422–1427. doi:10.1097/MAO.0b013e3182355658
Tabuchi K, Oikawa K, Hoshino T et al (2010) Cochlear protection from acoustic injury by inhibitors of p38 mitogen-activated protein kinase and sequestosome 1 stress protein. Neuroscience 166:665–670. doi:10.1016/j.neuroscience.2009.12.038
Wei X, Zhao L, Liu J et al (2005) Minocycline prevents gentamicin-induced ototoxicity by inhibiting p38 MAP kinase phosphorylation and caspase 3 activation. Neuroscience 131:513–521. doi:10.1016/j.neuroscience.2004.11.014
Han Y, Wang X, Chen J, Sha S-H (2015) Noise-induced cochlear F-actin depolymerization is mediated via ROCK2/p-ERM signaling. J Neurochem 133:617–628. doi:10.1111/jnc.13061
Chen F-Q, Zheng H-W, Hill K, Sha S-H (2012) Traumatic noise activates Rho-family GTPases through transient cellular energy depletion. J Neurosci 32:12421–12430. doi:10.1523/JNEUROSCI.6381-11.2012
Jiang H, Sha S-H, Schacht J (2006) Kanamycin alters cytoplasmic and nuclear phosphoinositide signaling in the organ of Corti in vivo. J Neurochem 99:269–276. doi:10.1111/j.1471-4159.2006.04117.x
Chen FQ, Schacht J, Sha SH (2009) Aminoglycoside-induced histone deacetylation and hair cell death in the mouse cochlea. J Neurochem 108:1226–1236. doi:10.1111/j.1471-4159.2009.05871.x
Wang J, Wang Y, Chen X et al (2015) Histone deacetylase inhibitor sodium butyrate attenuates gentamicin-induced hearing loss in vivo. Am J Otolaryngol 36:242–248. doi:10.1016/j.amjoto.2014.11.003
Layman WS, Williams DM, Dearman JA et al (2015) Histone deacetylase inhibition protects hearing against acute ototoxicity by activating the Nf-κB pathway. Cell death Discov. doi:10.1038/cddiscovery.2015.12
Xiong H, Pang J, Yang H et al (2015) Activation of miR-34a/SIRT1/p53 signaling contributes to cochlear hair cell apoptosis: implications for age-related hearing loss. Neurobiol Aging 36:1692–1701. doi:10.1016/j.neurobiolaging.2014.12.034
Wang P, Du B, Yin W et al (2013) Resveratrol attenuates CoCl2-induced cochlear hair cell damage through upregulation of Sirtuin1 and NF-κB deacetylation. PLoS One 8:e80854. doi:10.1371/journal.pone.0080854
Someya S, Yu W, Hallows WC et al (2010) Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143:802–812. doi:10.1016/j.cell.2010.10.002
Han C, Someya S (2013) Maintaining good hearing: calorie restriction, Sirt3, and glutathione. Exp Gerontol 48:1091–1095. doi:10.1016/j.exger.2013.02.014
Davie JR (2003) Inhibition of histone deacetylase activity by butyrate. J Nutr 133:2485S–2493S
Gross J, Stute K, Fuchs J et al (2011) Effects of retinoic acid and butyric acid on the expression of prestin and Gata-3 in organotypic cultures of the organ of corti of newborn rats. Dev Neurobiol 71:650–661. doi:10.1002/dneu.20881
Slattery EL, Speck JD, Warchol ME (2009) Epigenetic influences on sensory regeneration: histone deacetylases regulate supporting cell proliferation in the avian utricle. JARO J Assoc Res Otolaryngol 10:341–353. doi:10.1007/s10162-009-0166-y
Yu H, Lin Q, Wang Y et al (2013) Inhibition of H3K9 methyltransferases G9a/GLP prevents ototoxicity and ongoing hair cell death. Cell Death Dis 4:e506. doi:10.1038/cddis.2013.28
Reardon W, Trembath RC (1996) Pendred syndrome. J Med Genet 33:1037–1040
Royaux IE, Suzuki K, Mori A et al (2000) Pendrin, the protein encoded by the Pendred syndrome gene (PDS), is an apical porter of iodide in the thyroid and is regulated by thyroglobulin in FRTL-5 cells. Endocrinology 141:839–845. doi:10.1210/endo.141.2.7303
Azroyan A, Laghmani K, Crambert G et al (2011) Regulation of pendrin by pH: dependence on glycosylation. Biochem J 434:61–72. doi:10.1042/BJ20101411
Ben Rebeh I, Yoshimi N, Hadj-Kacem H et al (2010) Two missense mutations in SLC26A4 gene: a molecular and functional study. Clin Genet 78:74–80. doi:10.1111/j.1399-0004.2009.01360.x
Yoon JS, Park H-J, Yoo S-Y et al (2008) Heterogeneity in the processing defect of SLC26A4 mutants. J Med Genet 45:411–419. doi:10.1136/jmg.2007.054635
Saihan Z, Webster AR, Luxon L, Bitner-Glindzicz M (2009) Update on Usher syndrome. Curr Opin Neurol 22:19–27
Tian G, Zhou Y, Hajkova D et al (2009) Clarin-1, encoded by the Usher syndrome III causative gene, forms a membranous microdomain: possible role of clarin-1 in organizing the actin cytoskeleton. J Biol Chem 284:18980–18993. doi:10.1074/jbc.M109.003160
Kremer H, van Wijk E, Märker T et al (2006) Usher syndrome: molecular links of pathogenesis, proteins and pathways. Hum Mol Genet 15 Spec No:R262–R270. doi:10.1093/hmg/ddl205
Gopal SR, Chen DH-C, Chou S-W et al (2015) Zebrafish models for the mechanosensory hair cell dysfunction in Usher syndrome 3 reveal that Clarin-1 Is an essential hair bundle protein. J Neurosci 35:10188–10201. doi:10.1523/JNEUROSCI.1096-15.2015
Matsuda K, Zheng J, Du G-G et al (2004) N-linked glycosylation sites of the motor protein prestin: effects on membrane targeting and electrophysiological function. J Neurochem 89:928–938. doi:10.1111/j.1471-4159.2004.02377.x
Rajagopalan L, Organ-Darling LE, Liu H et al (2010) Glycosylation regulates prestin cellular activity. J Assoc Res Otolaryngol 11:39–51. doi:10.1007/s10162-009-0196-5
Dawson PA, Markovich D (2005) Pathogenetics of the human SLC26 transporters. Curr Med Chem 12:385–396
Probst FJ, Corrigan RR, Del Gaudio D et al (2013) A point mutation in the gene for asparagine-linked glycosylation 10B (Alg10b) causes nonsyndromic hearing impairment in mice (Mus musculus). PLoS One 8:e80408. doi:10.1371/journal.pone.0080408
Locke D, Bian S, Li H, Harris AL (2009) Post-translational modifications of connexin26 revealed by mass spectrometry. Biochem J 424:385–398. doi:10.1042/BJ20091140
Henzl MT, Thalmann I, Larson JD et al (2004) The cochlear F-box protein OCP1 associates with OCP2 and connexin 26. Hear Res 191:101–109. doi:10.1016/j.heares.2004.01.005
Brown JS, Jackson SP (2015) Ubiquitylation, neddylation and the DNA damage response. Open Biol 5:150018. doi:10.1098/rsob.150018
Curtis VF, Ehrentraut SF, Colgan SP (2015) Actions of adenosine on cullin neddylation: implications for inflammatory responses. Comput Struct Biotechnol J 13:273–276. doi:10.1016/j.csbj.2014.10.002
Choo YS, Vogler G, Wang D et al (2012) Regulation of parkin and PINK1 by neddylation. Hum Mol Genet 21:2514–2523. doi:10.1093/hmg/dds070
Bütepage M, Eckei L, Verheugd P, Lüscher B (2015) Intracellular mono-ADP-ribosylation in signaling and disease. Cells 4:569–595. doi:10.3390/cells4040569
Basello DA, Scovassi AI (2015) Poly(ADP-ribosylation) and neurodegenerative disorders. Mitochondrion 24:56–63. doi:10.1016/j.mito.2015.07.005
Acknowledgments
BM is Research Director from the Belgian National Funds for Scientific Research (FNRS). This work was supported by Grants from the FSR-FNRS, the Fonds Léon Fredericq, the Fondation Médicale Reine Elisabeth, and the Belgian Science Policy (IAP-VII network P7/07). We thank Bernard Minguet for his assistance with Fig. 4.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mateo Sánchez, S., Freeman, S.D., Delacroix, L. et al. The role of post-translational modifications in hearing and deafness. Cell. Mol. Life Sci. 73, 3521–3533 (2016). https://doi.org/10.1007/s00018-016-2257-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00018-016-2257-3