Skip to main content

Advertisement

Log in

Molecular functions and cellular roles of the ChlR1 (DDX11) helicase defective in the rare cohesinopathy Warsaw breakage syndrome

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

In 2010, a new recessive cohesinopathy disorder, designated Warsaw breakage syndrome (WABS), was described. The individual with WABS displayed microcephaly, pre- and postnatal growth retardation, and abnormal skin pigmentation. Cytogenetic analysis revealed mitomycin C (MMC)-induced chromosomal breakage; however, an additional sister chromatid cohesion defect was also observed. WABS is genetically linked to bi-allelic mutations in the ChlR1/DDX11 gene which encodes a protein of the conserved family of Iron–Sulfur (Fe–S) cluster DNA helicases. Mutations in the budding yeast ortholog of ChlR1, known as Chl1, were known to cause sister chromatid cohesion defects, indicating a conserved function of the gene. In 2012, three affected siblings were identified with similar symptoms to the original WABS case, and found to have a homozygous mutation in the conserved Fe–S domain of ChlR1, confirming the genetic linkage. Significantly, the clinically relevant mutations perturbed ChlR1 DNA unwinding activity. In addition to its genetic importance in human disease, ChlR1 is implicated in papillomavirus genome maintenance and cancer. Although its precise functions in genome homeostasis are still not well understood, ongoing molecular studies of ChlR1 suggest the helicase plays a critically important role in cellular replication and/or DNA repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. van der Lelij P, Chrzanowska KH, Godthelp BC, Rooimans MA, Oostra AB, Stumm M, Zdzienicka MZ, Joenje H, De Winter JP (2010) Warsaw breakage syndrome, a cohesinopathy associated with mutations in the XPD helicase family member DDX11/ChlR1. Am J Hum Genet 86:262–266

    Article  PubMed Central  PubMed  Google Scholar 

  2. Hirota Y, Lahti JM (2000) Characterization of the enzymatic activity of hChlR1, a novel human DNA helicase. Nucleic Acids Res 28:917–924

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Skibbens RV (2004) Chl1p, a DNA helicase-like protein in budding yeast, functions in sister-chromatid cohesion. Genetics 166:33–42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Wu Y, Sommers JA, Khan I, De Winter JP, Brosh RM Jr (2012) Biochemical characterization of Warsaw breakage syndrome helicase. J Biol Chem 287:1007–1021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. van der Lelij P, Oostra A.B, Rooimans M.A, Joenje H, De Winter J.P (2010) Diagnostic overlap between Fanconi Anemia and the cohesinopathies: Roberts syndrome and Warsaw breakage syndrome. Anemia, Article ID 565268

  6. Rudolf J, Makrantoni V, Ingledew WJ, Stark MJ, White MF (2006) The DNA repair helicases XPD and FancJ have essential Iron–Sulfur domains. Mol Cell 23:801–808

    Article  CAS  PubMed  Google Scholar 

  7. Wu Y, Brosh RM Jr (2012) DNA helicase and helicase-nuclease enzymes with a conserved iron–sulfur cluster. Nucleic Acids Res 40:4247–4260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Digiovanna JJ, Kraemer KH (2012) Shining a light on Xeroderma pigmentosum. J Invest Dermatol 132:785–796

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Egly JM, Coin F (2011) A history of TFIIH: two decades of molecular biology on a pivotal transcription/repair factor. DNA Repair (Amst) 10:714–721

    Article  CAS  Google Scholar 

  10. Levitus M, Waisfisz Q, Godthelp BC, de Vries Y, Hussain S, Wiegant WW, Elghalbzouri-Maghrani E, Steltenpool J, Rooimans MA, Pals G, Arwert F, Mathew CG, Zdzienicka MZ, Hiom K, De Winter JP, Joenje H (2005) The DNA helicase BRIP1 is defective in Fanconi anemia complementation group. J Nat Genet 37:934–935

    Article  CAS  Google Scholar 

  11. Levran O, Attwooll C, Henry RT, Milton KL, Neveling K, Rio P, Batish SD, Kalb R, Velleuer E, Barral S, Ott J, Petrini J, Schindler D, Hanenberg H, Auerbach AD (2005) The BRCA1-interacting helicase BRIP1 is deficient in Fanconi anemia. Nat Genet 37:931–933

    Article  CAS  PubMed  Google Scholar 

  12. Litman R, Peng M, Jin Z, Zhang F, Zhang J, Powell S, Andreasse PR, Cantor SB (2005) BACH1 is critical for homologous recombination and appears to be the Fanconi anemia gene product FANCJ. Cancer Cell 8:255–265

    Article  CAS  PubMed  Google Scholar 

  13. Cantor SB, Bell DW, Ganesan S, Kas EM, Drapkin R, Grossman S, Wahrer DC, Sgroi DC, Lane WS, Haber DA, Livingston DM (2001) BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell 105:149–160

    Article  CAS  PubMed  Google Scholar 

  14. Rafnar T, Gudbjartsson DF, Sulem P, Jonasdottir A, Sigurdsson A, Jonasdottir A, Besenbacher S, Lundin P, Stacey SN, Gudmundsson J et al (2011) Mutations in BRIP1 confer high risk of ovarian cancer. Nat Genet 43:1104–1107

    Article  CAS  PubMed  Google Scholar 

  15. Seal S, Thompson D, Renwick A, Elliott A, Kelly P, Barfoot R, Chagtai T, Jayatilake H, Ahmed M, Spanova K et al (2006) Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet 38:1239–1241

    Article  CAS  PubMed  Google Scholar 

  16. Greenberg RA, Sobhia B, Pathania S, Cantor SB, Nakatani Y, Livingston DM (2006) Multifactorial contributions to an acute DNA damage response by BRCA1/BARD1-containing complexes. Genes Dev 20:34–46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Suhasini AN, Rawtani NA, Wu Y, Sommers JA, Sharma S, Mosedale G, North PS, Cantor SB, Hickson ID, Brosh RM Jr (2011) Interaction between the helicases genetically linked to Fanconi anemia group J and Bloom’s syndrome. EMBO J 30:692–705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Peng M, Litman R, Xie J, Sharma S, Brosh RM Jr, Cantor SB (2007) The FANCJ/MutLalpha interaction is required for correction of the cross-link response in FA-J cells. EMBO J 26:3238–3249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ballew BJ, Yeager M, Jacobs K, Giri N, Boland J, Burdett L, Alter BP, Savage SA (2013) Germline mutations of regulator of telomere elongation helicase 1, RTEL1, in Dyskeratosis congenita. Hum Genet 132:473–480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Ballew BJ, Joseph V, De S, Sarek G, Vannier JB, Stracker T, Schrader KA, Small TN, O’Reilly R, Manschreck C et al (2013) A recessive founder mutation in Regulator of Telomere Elongation Helicase 1, RTEL1, underlies severe immunodeficiency and features of Hoyeraal Hreidarsson Syndrome. PLoS Genet 9:e1003695

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Deng Z, Glousker G, Molczan A, Fox AJ, Lamm N, Dheekollu J, Weizman OE, Schertzer M, Wang Z, Vladimirova O et al (2013) Inherited mutations in the helicase RTEL1 cause telomere dysfunction and Hoyeraal-Hreidarsson syndrome. Proc Natl Acad Sci USA 110:E3408–E3416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Le GT, Jullien L, Touzot F, Schertzer M, Gaillard L, Perderiset M, Carpentier W, Nitschke P, Picard C, Couillault G et al (2013) Human RTEL1 deficiency causes Hoyeraal-Hreidarsson syndrome with short telomeres and genome instability. Hum Mol Genet 22:3239–3249

    Article  Google Scholar 

  23. Lee J (2013) Telomere shortening by mutations in the RTEL1 helicase cause severe form of Dyskeratosis Congenita, Hoyerall-Hreidarsson syndrome. Clin Genet 84:210

    Article  CAS  PubMed  Google Scholar 

  24. Walne AJ, Vulliamy T, Kirwan M, Plagnol V, Dokal I (2013) Constitutional mutations in RTEL1 cause severe Dyskeratosis congenita. Am J Hum Genet 92:448–453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Vannier JB, Pavicic-Kaltenbrunner V, Petalcorin MI, Ding H, Boulton SJ (2012) RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity. Cell 149:795–806

    Article  CAS  PubMed  Google Scholar 

  26. Ding H, Schertzer M, Wu X, Gertsenstein M, Selig S, Kammori M, Pourvali R, Poon S, Vulto I, Chavez E, Tam PP, Nagy A, Lansdorp PM (2004) Regulation of murine telomere length by Rtel: an essential gene encoding a helicase-like protein. Cell 117:873–886

    Article  CAS  PubMed  Google Scholar 

  27. Vannier JB, Sandhu S, Petalcorin MI, Wu X, Nabi Z, Ding H, Boulton SJ (2013) RTEL1 is a replisome-associated helicase that promotes telomere and genome-wide replication. Science 342:239–242

    Article  CAS  PubMed  Google Scholar 

  28. Moldovan GL, Pfander B, Jentsch S (2007) PCNA, the maestro of the replication fork. Cell 129:665–679

    Article  CAS  PubMed  Google Scholar 

  29. Brosh RM Jr (2013) DNA helicases involved in DNA repair and their roles in cancer. Nat Rev Cancer 13:542–558

    Article  CAS  PubMed  Google Scholar 

  30. Mann MB, Hodges CA, Barnes E, Vogel H, Hassold TJ, Luo G (2005) Defective sister-chromatid cohesion, aneuploidy and cancer predisposition in a mouse model of type II Rothmund-Thomson syndrome. Hum Mol Genet 14:813–825

    Article  CAS  PubMed  Google Scholar 

  31. Skibbens RV, Colquhoun JM, Green MJ, Molnar CA, Sin DN, Sullivan BJ, Tanzosh EE (2013) Cohesinopathies of a feather flock together. PLoS Genet 9:e1004036

    Article  PubMed Central  PubMed  Google Scholar 

  32. Capo-chichi J-M, Bharti SK, Sommers JA, Yammine T, Chouery E, Patry L, Rouleau GA, Samuels ME, Hamdan FF, Michaud JL, Brosh RM Jr, Megarbae A, Kibar Z (2012) Identification and biochemical characterization of a novel mutation in DDX11 causing Warsaw breakage syndrome. Human Mutat 334:103–107

    Google Scholar 

  33. Suhasini AN, Brosh RM Jr (2012) Disease-causing missense mutations in human DNA helicase disorders. Mutat Res 752:138–152

    Article  PubMed Central  PubMed  Google Scholar 

  34. Botta E, Nardo T, Lehmann AR, Egly JM, Pedrini AM, Stefanini M (2002) Reduced level of the repair/transcription factor TFIIH in trichothiodystrophy. Hum Mol Genet 11:2919–2928

    Article  CAS  PubMed  Google Scholar 

  35. Dubaele S, De Proietti SL, Bienstock RJ, Keriel A, Stefanini M, Van HB, Egly JM (2003) Basal transcription defect discriminates between Xeroderma pigmentosum and Trichothiodystrophy in XPD patients. Mol Cell 11:1635–1646

    Article  CAS  PubMed  Google Scholar 

  36. Parish JL, Rosa J, Wang X, Lahti JM, Doxsey SJ, Androphy EJ (2006) The DNA helicase ChlR1 is required for sister chromatid cohesion in mammalian cells. J Cell Sci 119:4857–4865

    Article  CAS  PubMed  Google Scholar 

  37. Leman AR, Noguchi C, Lee CY, Noguchi E (2010) Human timeless and tipin stabilize replication forks and facilitate sister-chromatid cohesion. J Cell Sci 123:660–670

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Shah N, Inoue A, Woo LS, Beishline K, Lahti JM, Noguchi E (2013) Roles of ChlR1 DNA helicase in replication recovery from DNA damage. Exp Cell Res 319:2244–2253

    Article  CAS  PubMed  Google Scholar 

  39. Soutoglou E, Misteli T (2008) Activation of the cellular DNA damage response in the absence of DNA lesions. Science 320:1507–1510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Holloway L (2000) CHL1 is a nuclear protein with an essential ATP binding site that exhibits a size-dependent effect on chromosome segregation. Nucleic Acids Res 28:3056–3064

    Article  CAS  PubMed Central  Google Scholar 

  41. Rudra S, Skibbens RV (2013) Cohesin codes—interpreting chromatin architecture and the many facets of cohesin function. J Cell Sci 126:31–41

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Petronczki M, Chwalla B, Siomos MF, Yokobayashi S, Helmhart W, Deutschbauer AM, Davis RW, Watanabe Y, Nasmyth K (2004) Sister-chromatid cohesion mediated by the alternative RF-CCtf18/Dcc1/Ctf8, the helicase Chl1 and the polymerase-alpha-associated protein Ctf4 is essential for chromatid disjunction during meiosis II. J Cell Sci 117:3547–3559

    Article  CAS  PubMed  Google Scholar 

  43. Ansbach AB, Noguchi C, Klansek IW, Heidlebaugh M, Nakamura TM, Noguchi E (2008) RFCCtf18 and the Swi1-Swi3 complex function in separate and redundant pathways required for the stabilization of replication forks to facilitate sister chromatid cohesion in Schizosaccharomyces pombe. Mol Biol Cell 19:595–607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Mayer ML, Pot I, Chang M, Xu H, Aneliunas V, Kwok T, Newitt R, Aebersold R, Boone C, Brown GW, Hieter P (2004) Identification of protein complexes required for efficient sister chromatid cohesion. Mol Biol Cell 15:1736–1745

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Rudra S, Skibbens RV (2012) Sister chromatid cohesion establishment occurs in concert with lagging strand synthesis. Cell Cycle 11:2114–2121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Borges V, Smith DJ, Whitehouse I, Uhlmann F (2013) An Eco1-independent sister chromatid cohesion establishment pathway in S. cerevisiae. Chromosoma 122:121–134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Rudra S, Skibbens RV (2013) Chl1 DNA helicase regulates Scc2 deposition specifically during DNA-replication in Saccharomyces cerevisiae. PLoS ONE 8:e75435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Inoue A, Li T, Roby SK, Valentine MB, Inoue M, Boyd K, Kidd VJ, Lahti JM (2007) Loss of ChlR1 helicase in mouse causes lethality due to the accumulation of aneuploid cells generated by cohesion defects and placental malformation. Cell Cycle 6:1646–1654

    Article  CAS  PubMed  Google Scholar 

  49. Cota CD, Garcia-Garcia MJ (2012) The ENU-induced cetus mutation reveals an essential role of the DNA helicase DDX11 for mesoderm development during early mouse embryogenesis. Dev Dyn 241:1249–1259

    Article  CAS  PubMed  Google Scholar 

  50. Chung G, O’Neil NJ, Rose AM (2011) CHL-1 provides an essential function affecting cell proliferation and chromosome stability in Caenorhabditis elegans. DNA Repair (Amst) 10:1174–1182

    Article  CAS  Google Scholar 

  51. Cheung I, Schertzer M, Rose A, Lansdorp PM (2002) Disruption of dog-1 in Caenorhabditis elegans triggers deletions upstream of guanine-rich DNA. Nat Genet 31:405–409

    CAS  PubMed  Google Scholar 

  52. Youds JL, O’Neil NJ, Rose AM (2006) Homologous recombination is required for genome stability in the absence of DOG-1 in Caenorhabditis elegans. Genetics 173:697–708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Lohman TM, Bjornson KP (1996) Mechanisms of helicase-catalyzed DNA unwinding. Annu Rev Biochem 65:169–214

    Article  CAS  PubMed  Google Scholar 

  54. Farina A, Shin JH, Kim DH, Bermudez VP, Kelman Z, Seo YS, Hurwitz J (2008) Studies with the human cohesin establishment factor, ChlR1. Association of ChlR1 with Ctf18-RFC and Fen1. J Biol Chem 283:20925–20936

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Kuper J, Wolski SC, Michels G, Kisker C (2012) Functional and structural studies of the nucleotide excision repair helicase XPD suggest a polarity for DNA translocation. EMBO J 31:494–502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Pugh RA, Wu CG, Spies M (2011) Regulation of translocation polarity by helicase domain 1 in SF2B helicases. EMBO J 31:503–514

    Article  PubMed Central  PubMed  Google Scholar 

  57. Wu Y, Sommers JA, Loiland JA, Kitao H, Kuper J, Kisker C, Brosh RM (2012) The Q motif of FANCJ DNA helicase regulates its dimerization, DNA binding, and DNA repair function. J Biol Chem 287:21699–21716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Pugh RA, Honda M, Leesley H, Thomas A, Lin Y, Nilges MJ, Cann IK, Spies M (2008) The iron-containing domain is essential in Rad3 helicases for coupling of ATP hydrolysis to DNA translocation and for targeting the helicase to the single-stranded DNA-double-stranded DNA junction. J Biol Chem 283:1732–1743

    Article  CAS  PubMed  Google Scholar 

  59. Qi Z, Pugh RA, Spies M, Chemla YR (2013) Sequence-dependent base pair stepping dynamics in XPD helicase unwinding. Elife 2:e00334

    Article  PubMed Central  PubMed  Google Scholar 

  60. Chapman JR, Taylor MR, Boulton SJ (2012) Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47:497–510

    Article  CAS  PubMed  Google Scholar 

  61. Inoue A, Hyle J, Lechner MS, Lahti JM (2011) Mammalian ChlR1 has a role in heterochromatin organization. Exp Cell Res 317:2522–2535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Bhattacharya C, Wang X, Becker D (2012) The DEAD/DEAH box helicase, DDX11, is essential for the survival of advanced melanomas. Mol Cancer 11:82

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Bochman ML, Paeschke K, Zakian VA (2012) DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet 13:770–780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Wu Y, Brosh RM Jr (2010) G-quadruplex nucleic acids and human disease. FEBS J 277:3470–3488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. London TB, Barber LJ, Mosedale G, Kelly GP, Balasubramanian S, Hickson ID, Boulton SJ, Hiom K (2008) FANCJ is a structure-specific DNA helicase associated with the maintenance of genomic G/C tracts. J Biol Chem 283:36132–36139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Wu Y, Shin-Ya K, Brosh RM Jr (2008) FANCJ helicase defective in Fanconia Anemia and breast cancer unwinds G-quadruplex DNA to defend genomic stability. Mol Cell Biol 28:4116–4128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Bharti SK, Sommers JA, George F, Kuper J, Hamon F, Shin-Ya K, Teulade-Fichou MP, Kisker C, Brosh RM Jr (2013) Specialization among iron–sulfur cluster helicases to resolve G-quadruplex DNA structures that threaten genomic stability. J Biol Chem 288:28217–28229

    Article  CAS  PubMed  Google Scholar 

  68. Sun H, Karow JK, Hickson ID, Maizels N (1998) The Bloom’s syndrome helicase unwinds G4 DNA. J Biol Chem 273:27587–27592

    Article  CAS  PubMed  Google Scholar 

  69. Jones M, Rose A (2012) A DOG’s view of Fanconi Anemia: insights from C. elegans. Anemia 2012:323721

    Article  PubMed Central  PubMed  Google Scholar 

  70. Bridge WL, Vandenberg CJ, Franklin RJ, Hiom K (2005) The BRIP1 helicase functions independently of BRCA1 in the Fanconi anemia pathway for DNA crosslink repair. Nat Genet 37:953–957

    Article  CAS  PubMed  Google Scholar 

  71. Hiom K (2010) FANCJ: solving problems in DNA replication. DNA Repair (Amst) 9:250–256

    Article  CAS  Google Scholar 

  72. Garner TP, Williams HE, Gluszyk KI, Roe S, Oldham NJ, Stevens MF, Moses JE, Searle MS (2009) Selectivity of small molecule ligands for parallel and anti-parallel DNA G-quadruplex structures. Org Biomol Chem 7:4194–4200

    Article  CAS  PubMed  Google Scholar 

  73. Henderson A, Wu Y, Huang YC, Chavez EA, Platt J, Johnson FB, Brosh RM Jr, Sen D, Lansdorp PM (2013) Detection of G-quadruplex DNA in mammalian cells. Nucleic Acids Res, PMID 24163102

    Google Scholar 

  74. Lam EY, Beraldi D, Tannahill D, Balasubramanian S (2013) G-quadruplex structures are stable and detectable in human genomic DNA. Nat Commun 4:1796

    Article  PubMed Central  PubMed  Google Scholar 

  75. Sommers JA, Rawtani N, Gupta R, Bugreev DV, Mazin AV, Cantor SB, Brosh RM Jr (2009) FANCJ uses its motor ATPase to disrupt protein-DNA complexes, unwind triplexes, and inhibit rad51 strand exchange. J Biol Chem 284:7505–7517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Wu Y, Sommers JA, Suhasini AN, Leonard T, Deakyne JS, Mazin AV, Shin-Ya K, Kitao H, Brosh RM Jr (2010) Fanconi anemia Group J mutation abolishes its DNA repair function by uncoupling DNA translocation from helicase activity or disruption of protein-DNA complexes. Blood 116:3780–3791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Doherty KM, Sommers JA, Gray MD, Lee JW, von Kobbe C, Thoma NH, Kureekattil RP, Kenny MK, Brosh RM Jr (2005) Physical and functional mapping of the RPA interaction domain of the Werner and Bloom syndrome helicases. J Biol Chem 280:29494–29505

    Article  CAS  PubMed  Google Scholar 

  78. Sharma S, Doherty KM, Brosh RM (2006) Mechanisms of RecQ helicases in pathways of DNA metabolism and maintenance of genomic stability. Biochem J 398:319–337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Gupta R, Sharma S, Sommers JA, Kenny MK, Cantor SB, Brosh RM Jr (2007) FANCJ (BACH1) helicase forms DNA damage inducible foci with replication protein A and interacts physically and functionally with the single-stranded DNA-binding protein. Blood 110:2390–2398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Horsfield JA, Print CG, Monnich M (2012) Diverse developmental disorders from the one ring: distinct molecular pathways underlie the cohesinopathies. Front Genet 3:171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Vega H, Waisfisz Q, Gordillo M, Sakai N, Yanagihara I, Yamada M, van GD, Kayserili H, Xu C, Ozono K et al (2005) Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nat Genet 37:468–470

    Article  CAS  PubMed  Google Scholar 

  82. Bharti SK, Banerjee T, Brosh RM Jr (2012) Setting the stage for cohesion establishment by the replication fork. Cell Cycle 11:2228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Sakakibara N, Chen D, McBride AA (2013) Papillomaviruses use recombination-dependent replication to vegetatively amplify their genomes in differentiated cells. PLoS Pathog 9:e1003321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Parish JL, Bean AM, Park RB, Androphy EJ (2006) ChlR1 is required for loading papillomavirus E2 onto mitotic chromosomes and viral genome maintenance. Mol Cell 24:867–876

    Article  CAS  PubMed  Google Scholar 

  85. Feeney KM, Saade A, Okrasa K, Parish JL (2011) In vivo analysis of the cell cycle dependent association of the bovine papillomavirus E2 protein and ChlR1. Virology 414:1–9

    Article  CAS  PubMed  Google Scholar 

  86. Romick-Rosendale LE, Lui VW, Grandis JR, Wells SI (2013) The Fanconi anemia pathway: repairing the link between DNA damage and squamous cell carcinoma. Mutat Res 743–744:78–88

    Article  PubMed  Google Scholar 

  87. Park JW, Pitot HC, Strati K, Spardy N, Duensing S, Grompe M, Lambert PF (2010) Deficiencies in the Fanconi anemia DNA damage response pathway increase sensitivity to HPV-associated head and neck cancer. Cancer Res 70:9959–9968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Perez-Benavente B, Garcia JL, Rodriguez MS, Pineda-Lucena A, Piechaczyk M, de Font MJ, Farras R (2013) GSK3-SCF(FBXW7) targets JunB for degradation in G2 to preserve chromatid cohesion before anaphase. Oncogene 32:2189–2199

    Article  CAS  PubMed  Google Scholar 

  89. Mussolin L, Pillon M, Bonato P, Leszl A, Franceschetto G, Di MA, d’Amore ES, Sainati L, Rosolen A (2010) Cytogenetic analysis of pediatric anaplastic large cell lymphoma. Pediatr Blood Cancer 55:446–451

    Article  PubMed  Google Scholar 

  90. Frank S, Werner S (1996) The human homologue of the yeast CHL1 gene is a novel keratinocyte growth factor-regulated gene. J Biol Chem 271:24337–24340

    Article  CAS  PubMed  Google Scholar 

  91. Deans AJ, West SC (2011) DNA interstrand crosslink repair and cancer. Nat Rev Cancer 11:467–480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Egan KM, Thompson RC, Nabors LB, Olson JJ, Brat DJ, Larocca RV, Brem S, Moots PL, Madden MH, Browning JE, Ann CY (2011) Cancer susceptibility variants and the risk of adult glioma in a US case-control study. J Neurooncol 104:535–542

    Article  PubMed Central  PubMed  Google Scholar 

  93. Shete S, Hosking FJ, Robertson LB, Dobbins SE, Sanson M, Malmer B, Simon M, Marie Y, Boisselier B, Delattre JY et al (2009) Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet 41:899–904

    Article  CAS  PubMed  Google Scholar 

  94. Wrensch M, Jenkins RB, Chang JS, Yeh RF, Xiao Y, Decker PA, Ballman KV, Berger M, Buckner JC, Chang S et al (2009) Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat Genet 41:905–908

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work is funded in part by the National Institutes of Health (NIH) and the National Institute on Aging (NIA) (R.M.B.), and by the Saskatchewan Health Research Foundation (SHRF) and the Natural Sciences and Engineering Research Council of Canada (NSERC) (Y.W.). We thank Drs. H. Vallabhaneni and J. Yin (NIA–NIH) for critically reading the manuscript. We wish to dedicate this paper to the memory of Dr. Johan P. de Winter, an outstanding scientist who led efforts in understanding the molecular-genetic basis of Warsaw breakage syndrome, Fanconi anemia, and other genetic disorders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Brosh Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bharti, S.K., Khan, I., Banerjee, T. et al. Molecular functions and cellular roles of the ChlR1 (DDX11) helicase defective in the rare cohesinopathy Warsaw breakage syndrome. Cell. Mol. Life Sci. 71, 2625–2639 (2014). https://doi.org/10.1007/s00018-014-1569-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1569-4

Keywords

Navigation