Skip to main content
Log in

Hepatic glucose sensing and integrative pathways in the liver

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The hepatic glucose-sensing system is a functional network of enzymes and transcription factors that is critical for the maintenance of energy homeostasis and systemic glycemia. Here we review the recent literature on its components and metabolic actions. Glucokinase (GCK) is generally considered as the initial postprandial glucose-sensing component, which acts as the gatekeeper for hepatic glucose metabolism and provides metabolites that activate the transcription factor carbohydrate response element binding protein (ChREBP). Recently, liver receptor homolog 1 (LRH-1) has emerged as an upstream regulator of the central GCK–ChREBP axis, with a critical role in the integration of hepatic intermediary metabolism in response to glucose. Evidence is also accumulating that O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) and acetylation can act as glucose-sensitive modifications that may contribute to hepatic glucose sensing by targeting regulatory proteins and the epigenome. Further elucidation of the components and functional roles of the hepatic glucose-sensing system may contribute to the future treatment of liver diseases associated with deregulated glucose sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Acetyl-CoA:

Acetyl-coenzyme A

ACL:

ATP citrate lyase

ChoRE:

Carbohydrate response element

ChREBP:

Carbohydrate response element binding protein

CREB:

Cyclic AMP-responsive element binding protein

CRTC2:

cAMP-regulated transcriptional co-activator 2

F2:

6bisP, fructose-2,6-bisphosphate

F6P:

Fructose-6-phosphate

FOXA2:

Forkhead box protein A2

FOXO1:

Forkhead box protein O1

FXR:

Farnesoid x receptor

G6P:

Glucose-6-phosphate

G6Pc:

Glucose-6-phosphatase

G6Pt:

Glucose-6-phosphate transporter

GCK:

Glucokinase

GCKR:

GCK regulatory protein

GLUT:

Glucose transporter

GSD-1:

Glycogen storage disease type 1

HDAC:

Histone deacetylase

HIF-1:

Hypoxia-inducible factor 1

HK:

Hexokinase

HNF-4:

Hepatocyte nuclear factor 4

KAT:

Lysine acetyltransferase

KLF-6:

Kruppel-like factor 6

LRH-1:

Liver receptor homolog 1

LXR:

Liver x receptor

Mlx:

Max-like protein X

MLXIP:

Mlx interacting protein

MLXIPL:

Max-like protein X interacting protein-like

OGA:

O-GlcNAcase

O-GlcNAcylation:

O-linked β-N-acetylglucosaminylation

OGT:

O-GlcNAc transferase

PGC-1α:

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha

PPARγ:

Peroxisome proliferator activated receptor gamma

SREBP-1c:

Sterol regulatory binding protein-1c

T2D:

Type 2 diabetes

TCA:

Tricarboxylic acid

TCFE3:

Transcription factor E3

UDP-GlcNAc:

UDP-N-acetylglucosamine

UTP:

Uridine triphosphate

X5P:

Xylulose-5-phosphate

References

  1. Towle HC (2005) Glucose as a regulator of eukaryotic gene transcription. Trends Endocrinol Metab 16(10):489–494. doi:10.1016/j.tem.2005.10.003

    CAS  PubMed  Google Scholar 

  2. Daly ME, Vale C, Walker M, Littlefield A, Alberti KG, Mathers JC (1998) Acute effects on insulin sensitivity and diurnal metabolic profiles of a high-sucrose compared with a high-starch diet. Am J Clin Nutr 67(6):1186–1196

    CAS  PubMed  Google Scholar 

  3. Klover PJ, Mooney RA (2004) Hepatocytes: critical for glucose homeostasis. Int J Biochem Cell Biol 36(5):753–758

    CAS  PubMed  Google Scholar 

  4. Mithieux G (2010) Brain, liver, intestine: a triumvirate to coordinate insulin sensitivity of endogenous glucose production. Diabetes Metab 36(Suppl 3):S50–S53. doi:10.1016/S1262-3636(10)70467-5

    CAS  PubMed  Google Scholar 

  5. Taniguchi CM, Emanuelli B, Kahn CR (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7(2):85–96. doi:10.1038/nrm1837

    CAS  PubMed  Google Scholar 

  6. Ramnanan CJ, Edgerton DS, Kraft G, Cherrington AD (2011) Physiologic action of glucagon on liver glucose metabolism. Diabetes Obes Metab 13(Suppl 1):118–125. doi:10.1111/j.1463-1326.2011.01454.x

    CAS  PubMed  Google Scholar 

  7. Capaldo B, Gastaldelli A, Antoniello S, Auletta M, Pardo F, Ciociaro D, Guida R, Ferrannini E, Sacca L (1999) Splanchnic and leg substrate exchange after ingestion of a natural mixed meal in humans. Diabetes 48(5):958–966

    CAS  PubMed  Google Scholar 

  8. Ferrannini E, Bjorkman O, Reichard GA Jr, Pilo A, Olsson M, Wahren J, DeFronzo RA (1985) The disposal of an oral glucose load in healthy subjects. A quantitative study. Diabetes 34(6):580–588

    CAS  PubMed  Google Scholar 

  9. Woerle HJ, Meyer C, Dostou JM, Gosmanov NR, Islam N, Popa E, Wittlin SD, Welle SL, Gerich JE (2003) Pathways for glucose disposal after meal ingestion in humans. Am J Physiol Endocrinol Metab 284(4):E716–E725. doi:10.1152/ajpendo.00365.2002

    CAS  PubMed  Google Scholar 

  10. Moore MC, Pagliassotti MJ, Swift LL, Asher J, Murrell J, Neal D, Cherrington AD (1994) Disposition of a mixed meal by the conscious dog. Am J Physiol 266(4 Pt 1):E666–E675

    CAS  PubMed  Google Scholar 

  11. Mueckler M, Thorens B (2013) The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med 34(2–3):121–138. doi:10.1016/j.mam.2012.07.001

    CAS  PubMed  Google Scholar 

  12. Aschenbach JR, Steglich K, Gabel G, Honscha KU (2009) Expression of mRNA for glucose transport proteins in jejunum, liver, kidney and skeletal muscle of pigs. J Physiol Biochem 65(3):251–266. doi:10.1007/BF03180578

    CAS  PubMed  Google Scholar 

  13. Seyer P, Vallois D, Poitry-Yamate C, Schutz F, Metref S, Tarussio D, Maechler P, Staels B, Lanz B, Grueter R, Decaris J, Turner S, da Costa A, Preitner F, Minehira K, Foretz M, Thorens B (2013) Hepatic glucose sensing is required to preserve beta cell glucose competence. J Clin Investig. doi:10.1172/JCI65538

    Google Scholar 

  14. Burcelin R, del Carmen Munoz M, Guillam MT, Thorens B (2000) Liver hyperplasia and paradoxical regulation of glycogen metabolism and glucose-sensitive gene expression in GLUT2-null hepatocytes. Further evidence for the existence of a membrane-based glucose release pathway. J Biol Chem 275(15):10930–10936

    CAS  PubMed  Google Scholar 

  15. Burcelin R, Dolci W, Thorens B (2000) Glucose sensing by the hepatoportal sensor is GLUT2-dependent: in vivo analysis in GLUT2-null mice. Diabetes 49(10):1643–1648

    CAS  PubMed  Google Scholar 

  16. Williams TF, Exton JH, Park CR, Regen DM (1968) Stereospecific transport of glucose in the perfused rat liver. Am J Physiol 215(5):1200–1209

    CAS  PubMed  Google Scholar 

  17. Wilson JE (2003) Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol 206(Pt 12):2049–2057

    CAS  PubMed  Google Scholar 

  18. Cardenas ML, Cornish-Bowden A, Ureta T (1998) Evolution and regulatory role of the hexokinases. Biochim Biophys Acta 1401(3):242–264

    CAS  PubMed  Google Scholar 

  19. Wera S, Bollen M, Moens L, Stalmans W (1996) Time-dependent pseudo-activation of hepatic glycogen synthase b by glucose 6-phosphate without involvement of protein phosphatases. Biochem J 315(Pt 1):91–96

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Aiston S, Green A, Mukhtar M, Agius L (2004) Glucose 6-phosphate causes translocation of phosphorylase in hepatocytes and inactivates the enzyme synergistically with glucose. Biochem J 377(Pt 1):195–204. doi:10.1042/BJ20031191

    CAS  PubMed  PubMed Central  Google Scholar 

  21. von Wilamowitz-Moellendorff A, Hunter RW, Garcia-Rocha M, Kang L, Lopez-Soldado I, Lantier L, Patel K, Peggie MW, Martinez-Pons C, Voss M, Calbo J, Cohen PT, Wasserman DH, Guinovart JJ, Sakamoto K (2013) Glucose-6-phosphate-mediated activation of liver glycogen synthase plays a key role in hepatic glycogen synthesis. Diabetes. doi:10.2337/db13-0880

    Google Scholar 

  22. Owen OE, Kalhan SC, Hanson RW (2002) The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem 277(34):30409–30412. doi:10.1074/jbc.R200006200

    CAS  PubMed  Google Scholar 

  23. Guillam MT, Burcelin R, Thorens B (1998) Normal hepatic glucose production in the absence of GLUT2 reveals an alternative pathway for glucose release from hepatocytes. Proc Natl Acad Sci USA 95(21):12317–12321

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Van Schaftingen E, Detheux M, Veiga da Cunha M (1994) Short-term control of glucokinase activity: role of a regulatory protein. FASEB J 8(6):414–419

    PubMed  Google Scholar 

  25. Heredia VV, Thomson J, Nettleton D, Sun S (2006) Glucose-induced conformational changes in glucokinase mediate allosteric regulation: transient kinetic analysis. Biochemistry 45(24):7553–7562. doi:10.1021/bi060253q

    CAS  PubMed  Google Scholar 

  26. Iynedjian PB, Marie S, Gjinovci A, Genin B, Deng SP, Buhler L, Morel P, Mentha G (1995) Glucokinase and cytosolic phosphoenolpyruvate carboxykinase (GTP) in the human liver. Regulation of gene expression in cultured hepatocytes. J Clin Invest 95(5):1966–1973. doi:10.1172/JCI117880

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Postic C, Niswender KD, Decaux JF, Parsa R, Shelton KD, Gouhot B, Pettepher CC, Granner DK, Girard J, Magnuson MA (1995) Cloning and characterization of the mouse glucokinase gene locus and identification of distal liver-specific DNase I hypersensitive sites. Genomics 29(3):740–750. doi:10.1006/geno.1995.9943

    CAS  PubMed  Google Scholar 

  28. Dentin R, Pegorier JP, Benhamed F, Foufelle F, Ferre P, Fauveau V, Magnuson MA, Girard J, Postic C (2004) Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression. J Biol Chem 279(19):20314–20326. doi:10.1074/jbc.M312475200

    CAS  PubMed  Google Scholar 

  29. O’Doherty RM, Lehman DL, Seoane J, Gomez-Foix AM, Guinovart JJ, Newgard CB (1996) Differential metabolic effects of adenovirus-mediated glucokinase and hexokinase I overexpression in rat primary hepatocytes. J Biol Chem 271(34):20524–20530

    PubMed  Google Scholar 

  30. Seoane J, Gomez-Foix AM, O’Doherty RM, Gomez-Ara C, Newgard CB, Guinovart JJ (1996) Glucose 6-phosphate produced by glucokinase, but not hexokinase I, promotes the activation of hepatic glycogen synthase. J Biol Chem 271(39):23756–23760

    CAS  PubMed  Google Scholar 

  31. Iynedjian PB (2009) Molecular physiology of mammalian glucokinase. Cell Mol Life Sci 66(1):27–42. doi:10.1007/s00018-008-8322-9

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sommercorn J, Steward T, Freedland RA (1984) Activation of phosphofructokinase from rat tissues by 6-phosphogluconate and fructose 2,6-bisphosphate. Arch Biochem Biophys 232(2):579–584

    CAS  PubMed  Google Scholar 

  33. Sawada M, Mitsui Y, Sugiya H, Furuyama S (2000) Ribose 1,5-bisphosphate is a putative regulator of fructose 6-phosphate/fructose 1,6-bisphosphate cycle in liver. Int J Biochem Cell Biol 32(4):447–454

    CAS  PubMed  Google Scholar 

  34. Wallace JC, Jitrapakdee S, Chapman-Smith A (1998) Pyruvate carboxylase. Int J Biochem Cell Biol 30(1):1–5

    CAS  PubMed  Google Scholar 

  35. Schrenk DF, Bisswanger H (1984) Measurements of electron spin resonance with the pyruvate dehydrogenase complex from Escherichia coli. Studies on the allosteric binding site of acetyl-coenzyme A. Eur J Biochem 143(3):561–566

    CAS  PubMed  Google Scholar 

  36. Desvergne B, Michalik L, Wahli W (2006) Transcriptional regulation of metabolism. Physiol Rev 86(2):465–514

    CAS  PubMed  Google Scholar 

  37. Francis GA, Fayard E, Picard F, Auwerx J (2003) Nuclear receptors and the control of metabolism. Annu Rev Physiol 65:261–311

    CAS  PubMed  Google Scholar 

  38. McKenna NJ, Cooney AJ, DeMayo FJ, Downes M, Glass CK, Lanz RB, Lazar MA, Mangelsdorf DJ, Moore DD, Qin J, Steffen DL, Tsai MJ, Tsai SY, Yu R, Margolis RN, Evans RM, O’Malley BW (2009) Minireview: evolution of NURSA, the nuclear receptor signaling atlas. Mol Endocrinol 23(6):740–746. doi:10.1210/me.2009-0135

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Jeong YS, Kim D, Lee YS, Kim HJ, Han JY, Im SS, Chong HK, Kwon JK, Cho YH, Kim WK, Osborne TF, Horton JD, Jun HS, Ahn YH, Ahn SM, Cha JY (2011) Integrated expression profiling and genome-wide analysis of ChREBP targets reveals the dual role for ChREBP in glucose-regulated gene expression. PLoS One 6(7):e22544. doi:10.1371/journal.pone.0022544

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ma L, Robinson LN, Towle HC (2006) ChREBP*Mlx is the principal mediator of glucose-induced gene expression in the liver. J Biol Chem 281(39):28721–28730. doi:10.1074/jbc.M601576200

    CAS  PubMed  Google Scholar 

  41. Thompson KS, Towle HC (1991) Localization of the carbohydrate response element of the rat L-type pyruvate kinase gene. J Biol Chem 266(14):8679–8682

    CAS  PubMed  Google Scholar 

  42. Shih HM, Liu Z, Towle HC (1995) Two CACGTG motifs with proper spacing dictate the carbohydrate regulation of hepatic gene transcription. J Biol Chem 270(37):21991–21997

    CAS  PubMed  Google Scholar 

  43. Yamashita H, Takenoshita M, Sakurai M, Bruick RK, Henzel WJ, Shillinglaw W, Arnot D, Uyeda K (2001) A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc Natl Acad Sci USA 98(16):9116–9121

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Billin AN, Eilers AL, Coulter KL, Logan JS, Ayer DE (2000) MondoA, a novel basic helix-loop-helix-leucine zipper transcriptional activator that constitutes a positive branch of a max-like network. Mol Cell Biol 20(23):8845–8854

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Peterson CW, Ayer DE (2011) An extended Myc network contributes to glucose homeostasis in cancer and diabetes. Front Biosci 16:2206–2223

    CAS  Google Scholar 

  46. Billin AN, Eilers AL, Queva C, Ayer DE (1999) Mlx, a novel Max-like BHLHZip protein that interacts with the Max network of transcription factors. J Biol Chem 274(51):36344–36350

    CAS  PubMed  Google Scholar 

  47. Stoeckman AK, Ma L, Towle HC (2004) Mlx is the functional heteromeric partner of the carbohydrate response element-binding protein in glucose regulation of lipogenic enzyme genes. J Biol Chem 279(15):15662–15669. doi:10.1074/jbc.M311301200

    CAS  PubMed  Google Scholar 

  48. Ma L, Tsatsos NG, Towle HC (2005) Direct role of ChREBP.Mlx in regulating hepatic glucose-responsive genes. J Biol Chem 280(12):12019–12027. doi:10.1074/jbc.M413063200

    CAS  PubMed  Google Scholar 

  49. Petrie JL, Al-Oanzi ZH, Arden C, Tudhope SJ, Mann J, Kieswich J, Yaqoob MM, Towle HC, Agius L (2013) Glucose induces protein targeting to glycogen in hepatocytes by fructose 2,6-bisphosphate-mediated recruitment of MondoA to the promoter. Mol Cell Biol 33(4):725–738. doi:10.1128/MCB.01576-12

    CAS  PubMed  PubMed Central  Google Scholar 

  50. McFerrin LG, Atchley WR (2011) Evolution of the Max and Mlx networks in animals. Genome Biol Evol 3:915–937. doi:10.1093/gbe/evr082

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yuan J, Tirabassi RS, Bush AB, Cole MD (1998) The C. elegans MDL-1 and MXL-1 proteins can functionally substitute for vertebrate MAD and MAX. Oncogene 17(9):1109–1118. doi:10.1038/sj.onc.1202036

    CAS  PubMed  Google Scholar 

  52. McFerrin LG, Atchley WR (2012) A novel N-terminal domain may dictate the glucose response of Mondo proteins. PLoS One 7(4):e34803. doi:10.1371/journal.pone.0034803

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Li MV, Chang B, Imamura M, Poungvarin N, Chan L (2006) Glucose-dependent transcriptional regulation by an evolutionarily conserved glucose-sensing module. Diabetes 55(5):1179–1189

    CAS  PubMed  Google Scholar 

  54. Sassu ED, McDermott JE, Keys BJ, Esmaeili M, Keene AC, Birnbaum MJ, DiAngelo JR (2012) Mio/dChREBP coordinately increases fat mass by regulating lipid synthesis and feeding behavior in Drosophila. Biochem Biophys Res Commun 426(1):43–48. doi:10.1016/j.bbrc.2012.08.028

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Havula E, Teesalu M, Hyotylainen T, Seppala H, Hasygar K, Auvinen P, Oresic M, Sandmann T, Hietakangas V (2013) Mondo/ChREBP-Mlx-regulated transcriptional network is essential for dietary sugar tolerance in Drosophila. PLoS Genet 9(4):e1003438. doi:10.1371/journal.pgen.1003438

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Stoltzman CA, Peterson CW, Breen KT, Muoio DM, Billin AN, Ayer DE (2008) Glucose sensing by MondoA:Mlx complexes: a role for hexokinases and direct regulation of thioredoxin-interacting protein expression. Proc Natl Acad Sci USA 105(19):6912–6917. doi:10.1073/pnas.0712199105

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Filhoulaud G, Guilmeau S, Dentin R, Girard J, Postic C (2013) Novel insights into ChREBP regulation and function. Trends Endocrinol Metab. doi:10.1016/j.tem.2013.01.003

    PubMed  Google Scholar 

  58. Noriega LG, Feige JN, Canto C, Yamamoto H, Yu J, Herman MA, Mataki C, Kahn BB, Auwerx J (2011) CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability. EMBO Rep 12(10):1069–1076. doi:10.1038/embor.2011.151

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Arden C, Petrie JL, Tudhope SJ, Al-Oanzi Z, Claydon AJ, Beynon RJ, Towle HC, Agius L (2011) Elevated glucose represses liver glucokinase and induces its regulatory protein to safeguard hepatic phosphate homeostasis. Diabetes 60(12):3110–3120. doi:10.2337/db11-0061

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Oosterveer MH, Mataki C, Yamamoto H, Harach T, Moullan N, van Dijk TH, Ayuso E, Bosch F, Postic C, Groen AK, Auwerx J, Schoonjans K (2012) LRH-1-dependent glucose sensing determines intermediary metabolism in liver. J Clin Invest 122(8):2817–2826. doi:10.1172/JCI62368

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kabashima T, Kawaguchi T, Wadzinski BE, Uyeda K (2003) Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver. Proc Natl Acad Sci USA 100(9):5107–5112

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Li MV, Chen W, Harmancey RN, Nuotio-Antar AM, Imamura M, Saha P, Taegtmeyer H, Chan L (2010) Glucose-6-phosphate mediates activation of the carbohydrate responsive binding protein (ChREBP). Biochem Biophys Res Commun 395(3):395–400. doi:10.1016/j.bbrc.2010.04.028

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Dentin R, Tomas-Cobos L, Foufelle F, Leopold J, Girard J, Postic C, Ferre P (2012) Glucose 6-phosphate, rather than xylulose 5-phosphate, is required for the activation of ChREBP in response to glucose in the liver. J Hepatol 56(1):199–209. doi:10.1016/j.jhep.2011.07.019

    CAS  PubMed  Google Scholar 

  64. Arden C, Tudhope SJ, Petrie JL, Al-Oanzi ZH, Cullen KS, Lange AJ, Towle HC, Agius L (2012) Fructose 2,6-bisphosphate is essential for glucose-regulated gene transcription of glucose-6-phosphatase and other ChREBP target genes in hepatocytes. Biochem J 443(1):111–123. doi:10.1042/BJ20111280

    CAS  PubMed  Google Scholar 

  65. Sakiyama H, Wynn RM, Lee WR, Fukasawa M, Mizuguchi H, Gardner KH, Repa JJ, Uyeda K (2008) Regulation of nuclear import/export of carbohydrate response element-binding protein (ChREBP): interaction of an alpha-helix of ChREBP with the 14-3-3 proteins and regulation by phosphorylation. J Biol Chem 283(36):24899–24908. doi:10.1074/jbc.M804308200

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Davies MN, O’Callaghan BL, Towle HC (2008) Glucose activates ChREBP by increasing its rate of nuclear entry and relieving repression of its transcriptional activity. J Biol Chem 283(35):24029–24038. doi:10.1074/jbc.M801539200

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bricambert J, Miranda J, Benhamed F, Girard J, Postic C, Dentin R (2010) Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice. J Clin Invest 120(12):4316–4331. doi:10.1172/JCI41624

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Guinez C, Filhoulaud G, Rayah-Benhamed F, Marmier S, Dubuquoy C, Dentin R, Moldes M, Burnol AF, Yang X, Lefebvre T, Girard J, Postic C (2011) O-GlcNAcylation increases ChREBP protein content and transcriptional activity in the liver. Diabetes 60(5):1399–1413. doi:10.2337/db10-0452

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H, Li Y, Shi J, An W, Hancock SM, He F, Qin L, Chin J, Yang P, Chen X, Lei Q, Xiong Y, Guan KL (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327(5968):1000–1004. doi:10.1126/science.1179689

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hanover JA, Cohen CK, Willingham MC, Park MK (1987) O-linked N-acetylglucosamine is attached to proteins of the nuclear pore. Evidence for cytoplasmic and nucleoplasmic glycoproteins. J Biol Chem 262(20):9887–9894

    CAS  PubMed  Google Scholar 

  71. Holt GD, Hart GW (1986) The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein-saccharide linkage, O-linked GlcNAc. J Biol Chem 261(17):8049–8057

    CAS  PubMed  Google Scholar 

  72. Herman MA, Peroni OD, Villoria J, Schon MR, Abumrad NA, Bluher M, Klein S, Kahn BB (2012) A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 484(7394):333–338. doi:10.1038/nature10986

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Postic C, Shiota M, Niswender KD, Jetton TL, Chen Y, Moates JM, Shelton KD, Lindner J, Cherrington AD, Magnuson MA (1999) Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. J Biol Chem 274(1):305–315

    CAS  PubMed  Google Scholar 

  74. Iynedjian PB (1993) Mammalian glucokinase and its gene. Biochem J 293(Pt 1):1–13

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Nelson JD, LeBoeuf RC, Bomsztyk K (2011) Direct recruitment of insulin receptor and ERK signaling cascade to insulin-inducible gene loci. Diabetes 60(1):127–137. doi:10.2337/db09-1806

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kim TH, Kim H, Park JM, Im SS, Bae JS, Kim MY, Yoon HG, Cha JY, Kim KS, Ahn YH (2009) Interrelationship between liver X receptor alpha, sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor gamma, and small heterodimer partner in the transcriptional regulation of glucokinase gene expression in liver. J Biol Chem 284(22):15071–15083. doi:10.1074/jbc.M109.006742

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kim MY, Jo SH, Park JM, Kim TH, Im SS, Ahn YH (2013) Adenovirus-mediated overexpression of Tcfe3 ameliorates hyperglycaemia in a mouse model of diabetes by upregulating glucokinase in the liver. Diabetologia 56(3):635–643. doi:10.1007/s00125-012-2807-7

    CAS  PubMed  Google Scholar 

  78. Bechmann LP, Gastaldelli A, Vetter D, Patman GL, Pascoe L, Hannivoort RA, Lee UE, Fiel I, Munoz U, Ciociaro D, Lee YM, Buzzigoli E, Miele L, Hui KY, Bugianesi E, Burt AD, Day CP, Mari A, Agius L, Walker M, Friedman SL, Reeves HL (2012) Glucokinase links Kruppel-like factor 6 to the regulation of hepatic insulin sensitivity in nonalcoholic fatty liver disease. Hepatology 55(4):1083–1093. doi:10.1002/hep.24793

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Roth U, Jungermann K, Kietzmann T (2004) Modulation of glucokinase expression by hypoxia-inducible factor 1 and upstream stimulatory factor 2 in primary rat hepatocytes. Biol Chem 385(3–4):239–247. doi:10.1515/BC.2004.018

    CAS  PubMed  Google Scholar 

  80. Roth U, Curth K, Unterman TG, Kietzmann T (2004) The transcription factors HIF-1 and HNF-4 and the coactivator p300 are involved in insulin-regulated glucokinase gene expression via the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 279(4):2623–2631. doi:10.1074/jbc.M308391200

    CAS  PubMed  Google Scholar 

  81. Roth U, Jungermann K, Kietzmann T (2002) Activation of glucokinase gene expression by hepatic nuclear factor 4alpha in primary hepatocytes. Biochem J 365(Pt 1):223–228. doi:10.1042/BJ20020340

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Ganjam GK, Dimova EY, Unterman TG, Kietzmann T (2009) FoxO1 and HNF-4 are involved in regulation of hepatic glucokinase gene expression by resveratrol. J Biol Chem 284(45):30783–30797. doi:10.1074/jbc.M109.045260

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Lee JM, Lee YK, Mamrosh JL, Busby SA, Griffin PR, Pathak MC, Ortlund EA, Moore DD (2011) A nuclear-receptor-dependent phosphatidylcholine pathway with antidiabetic effects. Nature 474(7352):506–510. doi:10.1038/nature10111

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Mataki C, Magnier BC, Houten SM, Annicotte JS, Argmann C, Thomas C, Overmars H, Kulik W, Metzger D, Auwerx J, Schoonjans K (2007) Compromised intestinal lipid absorption in mice with a liver-specific deficiency of liver receptor homolog 1. Mol Cell Biol 27(23):8330–8339. doi:10.1128/MCB.00852-07

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lee YK, Schmidt DR, Cummins CL, Choi M, Peng L, Zhang Y, Goodwin B, Hammer RE, Mangelsdorf DJ, Kliewer SA (2008) Liver receptor homolog-1 regulates bile acid homeostasis but is not essential for feedback regulation of bile acid synthesis. Mol Endocrinol 22(6):1345–1356. doi:10.1210/me.2007-0565

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Matsukuma KE, Wang L, Bennett MK, Osborne TF (2007) A key role for orphan nuclear receptor liver receptor homologue-1 in activation of fatty acid synthase promoter by liver X receptor. J Biol Chem 282(28):20164–20171. doi:10.1074/jbc.M702895200

    CAS  PubMed  Google Scholar 

  87. Chong HK, Biesinger J, Seo YK, Xie X, Osborne TF (2012) Genome-wide analysis of hepatic LRH-1 reveals a promoter binding preference and suggests a role in regulating genes of lipid metabolism in concert with FXR. BMC Genomics 13:51. doi:10.1186/1471-2164-13-51

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Mitro N, Mak PA, Vargas L, Godio C, Hampton E, Molteni V, Kreusch A, Saez E (2007) The nuclear receptor LXR is a glucose sensor. Nature 445(7124):219–223

    CAS  PubMed  Google Scholar 

  89. Cha JY, Repa JJ (2007) The liver X receptor (LXR) and hepatic lipogenesis. The carbohydrate-response element-binding protein is a target gene of LXR. J Biol Chem 282(1):743–751

    CAS  PubMed  Google Scholar 

  90. Anthonisen EH, Berven L, Holm S, Nygard M, Nebb HI, Gronning-Wang LM (2010) Nuclear receptor liver X receptor is O-GlcNAc-modified in response to glucose. J Biol Chem 285(3):1607–1615. doi:10.1074/jbc.M109.082685

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Gauthier K, Billon C, Bissler M, Beylot M, Lobaccaro JM, Vanacker JM, Samarut J (2010) Thyroid hormone receptor beta (TRbeta) and liver X receptor (LXR) regulate carbohydrate-response element-binding protein (ChREBP) expression in a tissue-selective manner. J Biol Chem 285(36):28156–28163. doi:10.1074/jbc.M110.146241

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Beaven SW, Matveyenko A, Wroblewski K, Chao L, Wilpitz D, Hsu TW, Lentz J, Drew B, Hevener AL, Tontonoz P (2013) Reciprocal regulation of hepatic and adipose lipogenesis by liver x receptors in obesity and insulin resistance. Cell Metab 18(1):106–117. doi:10.1016/j.cmet.2013.04.021

    CAS  PubMed  Google Scholar 

  93. Denechaud PD, Bossard P, Lobaccaro JM, Millatt L, Staels B, Girard J, Postic C (2008) ChREBP, but not LXRs, is required for the induction of glucose-regulated genes in mouse liver. J Clin Invest 118(3):956–964. doi:10.1172/JCI34314

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Oosterveer MH, van Dijk TH, Grefhorst A, Bloks VW, Havinga R, Kuipers F, Reijngoud DJ (2008) Lxralpha deficiency hampers the hepatic adaptive response to fasting in mice. J Biol Chem 283(37):25437–25445. doi:10.1074/jbc.M801922200

    CAS  PubMed  Google Scholar 

  95. Walsh CT, Garneau-Tsodikova S, Gatto GJ Jr (2005) Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed Engl 44(45):7342–7372. doi:10.1002/anie.200501023

    CAS  PubMed  Google Scholar 

  96. Kaelin WG Jr, McKnight SL (2013) Influence of metabolism on epigenetics and disease. Cell 153(1):56–69. doi:10.1016/j.cell.2013.03.004

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Wellen KE, Thompson CB (2012) A two-way street: reciprocal regulation of metabolism and signalling. Nat Rev Mol Cell Biol 13(4):270–276. doi:10.1038/nrm3305

    CAS  PubMed  Google Scholar 

  98. Ruan HB, Singh JP, Li MD, Wu J, Yang X (2013) Cracking the O-GlcNAc code in metabolism. Trends Endocrinol Metab 24(6):301–309. doi:10.1016/j.tem.2013.02.002

    CAS  PubMed  Google Scholar 

  99. Moellering RE, Cravatt BF (2013) Functional lysine modification by an intrinsically reactive primary glycolytic metabolite. Science 341(6145):549–553. doi:10.1126/science.1238327

    CAS  PubMed  Google Scholar 

  100. Lu C, Thompson CB (2012) Metabolic regulation of epigenetics. Cell Metab 16(1):9–17. doi:10.1016/j.cmet.2012.06.001

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Donohoe DR, Bultman SJ (2012) Metaboloepigenetics: interrelationships between energy metabolism and epigenetic control of gene expression. J Cell Physiol 227(9):3169–3177. doi:10.1002/jcp.24054

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Katada S, Imhof A, Sassone-Corsi P (2012) Connecting threads: epigenetics and metabolism. Cell 148(1–2):24–28. doi:10.1016/j.cell.2012.01.001

    CAS  PubMed  Google Scholar 

  103. Hanover JA, Yu S, Lubas WB, Shin SH, Ragano-Caracciola M, Kochran J, Love DC (2003) Mitochondrial and nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded by a single mammalian gene. Arch Biochem Biophys 409(2):287–297

    CAS  PubMed  Google Scholar 

  104. Hanover JA, Krause MW, Love DC (2010) The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine. Biochim Biophys Acta 1800(2):80–95. doi:10.1016/j.bbagen.2009.07.017

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Kreppel LK, Blomberg MA, Hart GW (1997) Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J Biol Chem 272(14):9308–9315

    CAS  PubMed  Google Scholar 

  106. Gao Y, Wells L, Comer FI, Parker GJ, Hart GW (2001) Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain. J Biol Chem 276(13):9838–9845. doi:10.1074/jbc.M010420200

    CAS  PubMed  Google Scholar 

  107. Kreppel LK, Hart GW (1999) Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats. J Biol Chem 274(45):32015–32022

    CAS  PubMed  Google Scholar 

  108. Lubas WA, Hanover JA (2000) Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity. J Biol Chem 275(15):10983–10988

    CAS  PubMed  Google Scholar 

  109. Keembiyehetty CN, Krzeslak A, Love DC, Hanover JA (2011) A lipid-droplet-targeted O-GlcNAcase isoform is a key regulator of the proteasome. J Cell Sci 124(Pt 16):2851–2860. doi:10.1242/jcs.083287

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Gloster TM, Vocadlo DJ (2010) Mechanism, structure, and inhibition of O-GlcNAc processing enzymes. Curr Signal Transduct Ther 5(1):74–91

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Vocadlo DJ (2012) O-GlcNAc processing enzymes: catalytic mechanisms, substrate specificity, and enzyme regulation. Curr Opin Chem Biol 16(5–6):488–497. doi:10.1016/j.cbpa.2012.10.021

    CAS  PubMed  Google Scholar 

  112. Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O (2011) Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem 80:825–858. doi:10.1146/annurev-biochem-060608-102511

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Bond MR, Hanover JA (2013) O-GlcNAc cycling: a link between metabolism and chronic disease. Annu Rev Nutr. doi:10.1146/annurev-nutr-071812-161240

    PubMed  Google Scholar 

  114. Li MD, Ruan HB, Hughes ME, Lee JS, Singh JP, Jones SP, Nitabach MN, Yang X (2013) O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab 17(2):303–310. doi:10.1016/j.cmet.2012.12.015

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Kaasik K, Kivimae S, Allen JJ, Chalkley RJ, Huang Y, Baer K, Kissel H, Burlingame AL, Shokat KM, Ptacek LJ, Fu YH (2013) Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock. Cell Metab 17(2):291–302. doi:10.1016/j.cmet.2012.12.017

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Dentin R, Hedrick S, Xie J, Yates J 3rd, Montminy M (2008) Hepatic glucose sensing via the CREB coactivator CRTC2. Science 319(5868):1402–1405. doi:10.1126/science.1151363

    CAS  PubMed  Google Scholar 

  117. Housley MP, Udeshi ND, Rodgers JT, Shabanowitz J, Puigserver P, Hunt DF, Hart GW (2009) A PGC-1alpha-O-GlcNAc transferase complex regulates FoxO transcription factor activity in response to glucose. J Biol Chem 284(8):5148–5157. doi:10.1074/jbc.M808890200

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Housley MP, Rodgers JT, Udeshi ND, Kelly TJ, Shabanowitz J, Hunt DF, Puigserver P, Hart GW (2008) O-GlcNAc regulates FoxO activation in response to glucose. J Biol Chem 283(24):16283–16292. doi:10.1074/jbc.M802240200

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Ruan HB, Han X, Li MD, Singh JP, Qian K, Azarhoush S, Zhao L, Bennett AM, Samuel VT, Wu J, Yates JR 3rd, Yang X (2012) O-GlcNAc transferase/host cell factor C1 complex regulates gluconeogenesis by modulating PGC-1alpha stability. Cell Metab 16(2):226–237. doi:10.1016/j.cmet.2012.07.006

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Yang X, Ongusaha PP, Miles PD, Havstad JC, Zhang F, So WV, Kudlow JE, Michell RH, Olefsky JM, Field SJ, Evans RM (2008) Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 451(7181):964–969. doi:10.1038/nature06668

    CAS  PubMed  Google Scholar 

  121. Soesanto YA, Luo B, Jones D, Taylor R, Gabrielsen JS, Parker G, McClain DA (2008) Regulation of Akt signaling by O-GlcNAc in euglycemia. Am J Physiol Endocrinol Metab 295(4):E974–E980. doi:10.1152/ajpendo.90366.2008

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Sakabe K, Wang Z, Hart GW (2010) Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proc Natl Acad Sci USA 107(46):19915–19920. doi:10.1073/pnas.1009023107

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Hahne H, Sobotzki N, Nyberg T, Helm D, Borodkin VS, van Aalten DM, Agnew B, Kuster B (2013) Proteome wide purification and identification of O-GlcNAc-modified proteins using click chemistry and mass spectrometry. J Proteome Res 12(2):927–936. doi:10.1021/pr300967y

    CAS  PubMed  Google Scholar 

  124. Teo CF, Ingale S, Wolfert MA, Elsayed GA, Not LG, Chatham JC, Wells L, Boons GJ (2010) Glycopeptide-specific monoclonal antibodies suggest new roles for O-GlcNAc. Nat Chem Biol 6(5):338–343. doi:10.1038/nchembio.338

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Allis CD, Berger SL, Cote J, Dent S, Jenuwien T, Kouzarides T, Pillus L, Reinberg D, Shi Y, Shiekhattar R, Shilatifard A, Workman J, Zhang Y (2007) New nomenclature for chromatin-modifying enzymes. Cell 131(4):633–636. doi:10.1016/j.cell.2007.10.039

    CAS  PubMed  Google Scholar 

  126. Blander G, Guarente L (2004) The Sir2 family of protein deacetylases. Annu Rev Biochem 73:417–435. doi:10.1146/annurev.biochem.73.011303.073651

    CAS  PubMed  Google Scholar 

  127. Bakin RE, Jung MO (2004) Cytoplasmic sequestration of HDAC7 from mitochondrial and nuclear compartments upon initiation of apoptosis. J Biol Chem 279(49):51218–51225. doi:10.1074/jbc.M409271200

    CAS  PubMed  Google Scholar 

  128. Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16(10):4623–4635. doi:10.1091/mbc.E05-01-0033

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13(4):225–238. doi:10.1038/nrm3293

    CAS  PubMed  Google Scholar 

  130. Yang L, Vaitheesvaran B, Hartil K, Robinson AJ, Hoopmann MR, Eng JK, Kurland IJ, Bruce JE (2011) The fasted/fed mouse metabolic acetylome: N6-acetylation differences suggest acetylation coordinates organ-specific fuel switching. J Proteome Res 10(9):4134–4149. doi:10.1021/pr200313x

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Xiong Y, Guan KL (2012) Mechanistic insights into the regulation of metabolic enzymes by acetylation. J Cell Biol 198(2):155–164. doi:10.1083/jcb.201202056

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Xiong Y, Lei QY, Zhao S, Guan KL (2011) Regulation of glycolysis and gluconeogenesis by acetylation of PKM and PEPCK. Cold Spring Harb Symp Quant Biol 76:285–289. doi:10.1101/sqb.2011.76.010942

    CAS  PubMed  Google Scholar 

  133. Li X, Zhang S, Blander G, Tse JG, Krieger M, Guarente L (2007) SIRT1 deacetylates and positively regulates the nuclear receptor LXR. MolCell 28(1):91–106

    Google Scholar 

  134. Liu Y, Dentin R, Chen D, Hedrick S, Ravnskjaer K, Schenk S, Milne J, Meyers DJ, Cole P, Yates J 3rd, Olefsky J, Guarente L, Montminy M (2008) A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 456(7219):269–273. doi:10.1038/nature07349

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434(7029):113–118

    CAS  PubMed  Google Scholar 

  136. Mihaylova MM, Vasquez DS, Ravnskjaer K, Denechaud PD, Yu RT, Alvarez JG, Downes M, Evans RM, Montminy M, Shaw RJ (2011) Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145(4):607–621. doi:10.1016/j.cell.2011.03.043

    CAS  PubMed  PubMed Central  Google Scholar 

  137. von Meyenn F, Porstmann T, Gasser E, Selevsek N, Schmidt A, Aebersold R, Stoffel M (2013) Glucagon-induced acetylation of Foxa2 regulates hepatic lipid metabolism. Cell Metab 17(3):436–447. doi:10.1016/j.cmet.2013.01.014

    Google Scholar 

  138. Kemper JK, Xiao Z, Ponugoti B, Miao J, Fang S, Kanamaluru D, Tsang S, Wu SY, Chiang CM, Veenstra TD (2009) FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab 10(5):392–404. doi:10.1016/j.cmet.2009.09.009

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Ponugoti B, Kim DH, Xiao Z, Smith Z, Miao J, Zang M, Wu SY, Chiang CM, Veenstra TD, Kemper JK (2010) SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J Biol Chem 285(44):33959–33970. doi:10.1074/jbc.M110.122978

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Walker AK, Yang F, Jiang K, Ji JY, Watts JL, Purushotham A, Boss O, Hirsch ML, Ribich S, Smith JJ, Israelian K, Westphal CH, Rodgers JT, Shioda T, Elson SL, Mulligan P, Najafi-Shoushtari H, Black JC, Thakur JK, Kadyk LC, Whetstine JR, Mostoslavsky R, Puigserver P, Li X, Dyson NJ, Hart AC, Naar AM (2010) Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes Dev 24(13):1403–1417. doi:10.1101/gad.1901210

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458(7241):1056–1060. doi:10.1038/nature07813

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324(5930):1076–1080. doi:10.1126/science.1164097

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Takahashi H, McCaffery JM, Irizarry RA, Boeke JD (2006) Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. Mol Cell 23(2):207–217. doi:10.1016/j.molcel.2006.05.040

    CAS  PubMed  Google Scholar 

  144. Madiraju P, Pande SV, Prentki M, Madiraju SR (2009) Mitochondrial acetylcarnitine provides acetyl groups for nuclear histone acetylation. Epigenetics 4(6):399–403

    CAS  PubMed  Google Scholar 

  145. Tu BP, Kudlicki A, Rowicka M, McKnight SL (2005) Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 310(5751):1152–1158. doi:10.1126/science.1120499

    CAS  PubMed  Google Scholar 

  146. Cai L, Sutter BM, Li B, Tu BP (2011) Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol Cell 42(4):426–437. doi:10.1016/j.molcel.2011.05.004

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Feng D, Liu T, Sun Z, Bugge A, Mullican SE, Alenghat T, Liu XS, Lazar MA (2011) A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331(6022):1315–1319. doi:10.1126/science.1198125

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Tokutake Y, Onizawa N, Katoh H, Toyoda A, Chohnan S (2010) Coenzyme A and its thioester pools in fasted and fed rat tissues. Biochem Biophys Res Commun 402(1):158–162. doi:10.1016/j.bbrc.2010.10.009

    CAS  PubMed  Google Scholar 

  149. Bandsma RH, Grefhorst A, van Dijk TH, van der Sluijs FH, Hammer A, Reijngoud DJ, Kuipers F (2004) Enhanced glucose cycling and suppressed de novo synthesis of glucose-6-phosphate result in a net unchanged hepatic glucose output in ob/ob mice. Diabetologia 47(11):2022–2031. doi:10.1007/s00125-004-1571-8

    CAS  PubMed  Google Scholar 

  150. Yen TT, Stamm NB (1981) Constitutive hepatic glucokinase activity in db/db and ob/ob mice. Biochim Biophys Acta 657(1):195–202

    CAS  PubMed  Google Scholar 

  151. Srinivasan V, Sandhya N, Sampathkumar R, Farooq S, Mohan V, Balasubramanyam M (2007) Glutamine fructose-6-phosphate amidotransferase (GFAT) gene expression and activity in patients with type 2 diabetes: inter-relationships with hyperglycaemia and oxidative stress. Clin Biochem 40(13–14):952–957. doi:10.1016/j.clinbiochem.2007.05.002

    CAS  PubMed  Google Scholar 

  152. Buse MG (2006) Hexosamines, insulin resistance, and the complications of diabetes: current status. Am J Physiol Endocrinol Metab 290(1):E1–E8. doi:10.1152/ajpendo.00329.2005

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Dentin R, Benhamed F, Hainault I, Fauveau V, Foufelle F, Dyck JR, Girard J, Postic C (2006) Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes 55(8):2159–2170. doi:10.2337/db06-0200

    CAS  PubMed  Google Scholar 

  154. Stefan N, Haring HU (2011) The metabolically benign and malignant fatty liver. Diabetes 60(8):2011–2017. doi:10.2337/db11-0231

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Kursawe R, Caprio S, Giannini C, Narayan D, Lin A, D’Adamo E, Shaw M, Pierpont B, Cushman SW, Shulman GI (2013) Decreased transcription of ChREBP-alpha/beta isoforms in abdominal subcutaneous adipose tissue of obese adolescents with prediabetes or early type 2 diabetes: associations with insulin resistance and hyperglycemia. Diabetes 62(3):837–844. doi:10.2337/db12-0889

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Eissing L, Scherer T, Todter K, Knippschild U, Greve JW, Buurman WA, Pinnschmidt HO, Rensen SS, Wolf AM, Bartelt A, Heeren J, Buettner C, Scheja L (2013) De novo lipogenesis in human fat and liver is linked to ChREBP-beta and metabolic health. Nat Commun 4:1528. doi:10.1038/ncomms2537

    PubMed  PubMed Central  Google Scholar 

  157. Benhamed F, Denechaud PD, Lemoine M, Robichon C, Moldes M, Bertrand-Michel J, Ratziu V, Serfaty L, Housset C, Capeau J, Girard J, Guillou H, Postic C (2012) The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J Clin Invest 122(6):2176–2194. doi:10.1172/JCI41636

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Lerin C, Rodgers JT, Kalume DE, Kim SH, Pandey A, Puigserver P (2006) GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha. Cell Metab 3(6):429–438. doi:10.1016/j.cmet.2006.04.013

    CAS  PubMed  Google Scholar 

  159. Sever S, Weinstein DA, Wolfsdorf JI, Gedik R, Schaefer EJ (2012) Glycogen storage disease type Ia: linkage of glucose, glycogen, lactic acid, triglyceride, and uric acid metabolism. J Clin Lipidol 6(6):596–600. doi:10.1016/j.jacl.2012.08.005

    PubMed  Google Scholar 

  160. Shelly LL, Lei KJ, Pan CJ, Sakata SF, Ruppert S, Schutz G, Chou JY (1993) Isolation of the gene for murine glucose-6-phosphatase, the enzyme deficient in glycogen storage disease type 1A. J Biol Chem 268(29):21482–21485

    CAS  PubMed  Google Scholar 

  161. Ihara K, Kuromaru R, Hara T (1998) Genomic structure of the human glucose 6-phosphate translocase gene and novel mutations in the gene of a Japanese patient with glycogen storage disease type Ib. Hum Genet 103(4):493–496

    CAS  PubMed  Google Scholar 

  162. Gerin I, Veiga-da-Cunha M, Achouri Y, Collet JF, Van Schaftingen E (1997) Sequence of a putative glucose 6-phosphate translocase, mutated in glycogen storage disease type Ib. FEBS Lett 419(2–3):235–238

    CAS  PubMed  Google Scholar 

  163. Grefhorst A, Schreurs M, Oosterveer MH, Cortes VA, Havinga R, Herling AW, Reijngoud DJ, Groen AK, Kuipers F (2010) Carbohydrate-response-element-binding protein (ChREBP) and not the liver X receptor alpha (LXRalpha) mediates elevated hepatic lipogenic gene expression in a mouse model of glycogen storage disease type 1. Biochem J 432(2):249–254. doi:10.1042/BJ20101225

    CAS  PubMed  Google Scholar 

  164. Van Dijk TH, van der Sluijs FH, Wiegman CH, Baller JF, Gustafson LA, Burger HJ, Herling AW, Kuipers F, Meijer AJ, Reijngoud DJ (2001) Acute inhibition of hepatic glucose-6-phosphatase does not affect gluconeogenesis but directs gluconeogenic flux toward glycogen in fasted rats. A pharmacological study with the chlorogenic acid derivative S4048. J Biol Chem 276(28):25727–25735

    PubMed  Google Scholar 

  165. Mutel E, Abdul-Wahed A, Ramamonjisoa N, Stefanutti A, Houberdon I, Cavassila S, Pilleul F, Beuf O, Gautier-Stein A, Penhoat A, Mithieux G, Rajas F (2011) Targeted deletion of liver glucose-6 phosphatase mimics glycogen storage disease type 1a including development of multiple adenomas. J Hepatol 54(3):529–537. doi:10.1016/j.jhep.2010.08.014

    CAS  PubMed  Google Scholar 

  166. McAdams AJ, Hug G, Bove KE (1974) Glycogen storage disease, types I to X: criteria for morphologic diagnosis. Hum Pathol 5(4):463–487

    CAS  PubMed  Google Scholar 

  167. Bandsma RH, Wiegman CH, Herling AW, Burger HJ, ter Harmsel A, Meijer AJ, Romijn JA, Reijngoud DJ, Kuipers F (2001) Acute inhibition of glucose-6-phosphate translocator activity leads to increased de novo lipogenesis and development of hepatic steatosis without affecting VLDL production in rats. Diabetes 50(11):2591–2597

    CAS  PubMed  Google Scholar 

  168. Fernandes J, Pikaar NA (1969) Hyperlipemia in children with liver glycogen disease. Am J Clin Nutr 22(5):617–627

    CAS  PubMed  Google Scholar 

  169. Jakovcic S, Khachadurian AK, Hsia DY (1966) The hyperlipidemia in glycogen storage disease. J Lab Clin Med 68(5):769–779

    CAS  PubMed  Google Scholar 

  170. Bandsma RH, Prinsen BH, van Der Velden Mde S, Rake JP, Boer T, Smit GP, Reijngoud DJ, Kuipers F (2008) Increased de novo lipogenesis and delayed conversion of large VLDL into intermediate density lipoprotein particles contribute to hyperlipidemia in glycogen storage disease type 1a. Pediatr Res 63(6):702–707. doi:10.1203/PDR.0b013e31816c9013

    CAS  PubMed  Google Scholar 

  171. Postic C, Girard J (2008) The role of the lipogenic pathway in the development of hepatic steatosis. Diabetes Metab 34(6 Pt 2):643–648. doi:10.1016/S1262-3636(08)74599-3

    CAS  PubMed  Google Scholar 

  172. Rajas F, Labrune P, Mithieux G (2013) Glycogen storage disease type 1 and diabetes: learning by comparing and contrasting the two disorders. Diabetes Metab. doi:10.1016/j.diabet.2013.03.002

    PubMed  Google Scholar 

  173. Wang P, Kang D, Cao W, Wang Y, Liu Z (2012) Diabetes mellitus and risk of hepatocellular carcinoma: a systematic review and meta-analysis. Diabetes Metab Res Rev 28(2):109–122. doi:10.1002/dmrr.1291

    PubMed  Google Scholar 

  174. Seshasai SR, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, Sarwar N, Whincup PH, Mukamal KJ, Gillum RF, Holme I, Njolstad I, Fletcher A, Nilsson P, Lewington S, Collins R, Gudnason V, Thompson SG, Sattar N, Selvin E, Hu FB, Danesh J (2011) Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med 364(9):829–841. doi:10.1056/NEJMoa1008862

    CAS  PubMed  Google Scholar 

  175. Lee PJ (2002) Glycogen storage disease type I: pathophysiology of liver adenomas. Eur J Pediatr 161(Suppl 1):S46–S49. doi:10.1007/s00431-002-1002-0

    CAS  PubMed  Google Scholar 

  176. Ertle J, Dechene A, Sowa JP, Penndorf V, Herzer K, Kaiser G, Schlaak JF, Gerken G, Syn WK, Canbay A (2011) Non-alcoholic fatty liver disease progresses to hepatocellular carcinoma in the absence of apparent cirrhosis. Int J Cancer 128(10):2436–2443. doi:10.1002/ijc.25797

    CAS  PubMed  Google Scholar 

  177. Paradis V, Zalinski S, Chelbi E, Guedj N, Degos F, Vilgrain V, Bedossa P, Belghiti J (2009) Hepatocellular carcinomas in patients with metabolic syndrome often develop without significant liver fibrosis: a pathological analysis. Hepatology 49(3):851–859. doi:10.1002/hep.22734

    PubMed  Google Scholar 

  178. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    CAS  PubMed  Google Scholar 

  179. DeBerardinis RJ, Thompson CB (2012) Cellular metabolism and disease: what do metabolic outliers teach us? Cell 148(6):1132–1144. doi:10.1016/j.cell.2012.02.032

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Tong X, Zhao F, Mancuso A, Gruber JJ, Thompson CB (2009) The glucose-responsive transcription factor ChREBP contributes to glucose-dependent anabolic synthesis and cell proliferation. Proc Natl Acad Sci USA 106(51):21660–21665. doi:10.1073/pnas.0911316106

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Zimonjic DB, Popescu NC (2012) Role of DLC1 tumor suppressor gene and MYC oncogene in pathogenesis of human hepatocellular carcinoma: potential prospects for combined targeted therapeutics (review). Int J Oncol 41(2):393–406. doi:10.3892/ijo.2012.1474

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Zhang P, Metukuri MR, Bindom SM, Prochownik EV, O’Doherty RM, Scott DK (2010) c-Myc is required for the CHREBP-dependent activation of glucose-responsive genes. Mol Endocrinol 24(6):1274–1286. doi:10.1210/me.2009-0437

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Safi R, Kovacic A, Gaillard S, Murata Y, Simpson ER, McDonnell DP, Clyne CD (2005) Coactivation of liver receptor homologue-1 by peroxisome proliferator-activated receptor gamma coactivator-1alpha on aromatase promoter II and its inhibition by activated retinoid X receptor suggest a novel target for breast-specific antiestrogen therapy. Cancer Res 65(24):11762–11770. doi:10.1158/0008-5472.CAN-05-2792

    CAS  PubMed  Google Scholar 

  184. Schoonjans K, Dubuquoy L, Mebis J, Fayard E, Wendling O, Haby C, Geboes K, Auwerx J (2005) Liver receptor homolog 1 contributes to intestinal tumor formation through effects on cell cycle and inflammation. Proc Natl Acad Sci USA 102(6):2058–2062. doi:10.1073/pnas.0409756102

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Benod C, Vinogradova MV, Jouravel N, Kim GE, Fletterick RJ, Sablin EP (2011) Nuclear receptor liver receptor homologue 1 (LRH-1) regulates pancreatic cancer cell growth and proliferation. Proc Natl Acad Sci USA 108(41):16927–16931. doi:10.1073/pnas.1112047108

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Yi W, Clark PM, Mason DE, Keenan MC, Hill C, Goddard WA 3rd, Peters EC, Driggers EM, Hsieh-Wilson LC (2012) Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science 337(6097):975–980. doi:10.1126/science.1222278

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Zhao D, Zou SW, Liu Y, Zhou X, Mo Y, Wang P, Xu YH, Dong B, Xiong Y, Lei QY, Guan KL (2013) Lysine-5 acetylation negatively regulates lactate dehydrogenase a and is decreased in pancreatic cancer. Cancer Cell 23(4):464–476. doi:10.1016/j.ccr.2013.02.005

    CAS  PubMed  Google Scholar 

  188. Lv L, Li D, Zhao D, Lin R, Chu Y, Zhang H, Zha Z, Liu Y, Li Z, Xu Y, Wang G, Huang Y, Xiong Y, Guan KL, Lei QY (2011) Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell 42(6):719–730. doi:10.1016/j.molcel.2011.04.025

    CAS  PubMed  Google Scholar 

  189. Slawson C, Hart GW (2011) O-GlcNAc signalling: implications for cancer cell biology. Nat Rev Cancer 11(9):678–684. doi:10.1038/nrc3114

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Brooks CL, Gu W (2011) The impact of acetylation and deacetylation on the p53 pathway. Protein Cell 2(6):456–462. doi:10.1007/s13238-011-1063-9

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Wellen KE, Lu C, Mancuso A, Lemons JM, Ryczko M, Dennis JW, Rabinowitz JD, Coller HA, Thompson CB (2010) The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism. Genes Dev 24(24):2784–2799. doi:10.1101/gad.1985910

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Morrish F, Noonan J, Perez-Olsen C, Gafken PR, Fitzgibbon M, Kelleher J, VanGilst M, Hockenbery D (2010) Myc-dependent mitochondrial generation of acetyl-CoA contributes to fatty acid biosynthesis and histone acetylation during cell cycle entry. J Biol Chem 285(47):36267–36274. doi:10.1074/jbc.M110.141606

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Bouchard MF, Taniguchi H, Viger RS (2005) Protein kinase A-dependent synergism between GATA factors and the nuclear receptor, liver receptor homolog-1, regulates human aromatase (CYP19) PII promoter activity in breast cancer cells. Endocrinology 146(11):4905–4916. doi:10.1210/en.2005-0187

    CAS  PubMed  Google Scholar 

  194. Chalkiadaki A, Talianidis I (2005) SUMO-dependent compartmentalization in promyelocytic leukemia protein nuclear bodies prevents the access of LRH-1 to chromatin. Mol Cell Biol 25(12):5095–5105. doi:10.1128/MCB.25.12.5095-5105.2005

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB, Galardi C, Wilson JG, Lewis MC, Roth ME, Maloney PR, Willson TM, Kliewer SA (2000) A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell 6(3):517–526

    CAS  PubMed  Google Scholar 

  196. Hsieh HT, Wang CH, Wu ML, Yang FM, Tai YC, Hu MC (2009) PIASy inhibits LRH-1-dependent CYP11A1 expression by competing for SRC-1 binding. Biochem J 419(1):201–209. doi:10.1042/BJ20081402

    CAS  PubMed  Google Scholar 

  197. Qin J, Gao DM, Jiang QF, Zhou Q, Kong YY, Wang Y, Xie YH (2004) Prospero-related homeobox (Prox1) is a corepressor of human liver receptor homolog-1 and suppresses the transcription of the cholesterol 7-alpha-hydroxylase gene. Mol Endocrinol 18(10):2424–2439. doi:10.1210/me.2004-0009

    CAS  PubMed  Google Scholar 

  198. Sablin EP, Woods A, Krylova IN, Hwang P, Ingraham HA, Fletterick RJ (2008) The structure of corepressor Dax-1 bound to its target nuclear receptor LRH-1. Proc Natl Acad Sci USA 105(47):18390–18395. doi:10.1073/pnas.0808936105

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Steffensen KR, Holter E, Bavner A, Nilsson M, Pelto-Huikko M, Tomarev S, Treuter E (2004) Functional conservation of interactions between a homeodomain cofactor and a mammalian FTZ-F1 homologue. EMBO Rep 5(6):613–619. doi:10.1038/sj.embor.7400147

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Xu PL, Kong YY, Xie YH, Wang Y (2003) Corepressor SMRT specifically represses the transcriptional activity of orphan nuclear receptor hB1F/hLRH-1. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 35(10):897–903

    CAS  Google Scholar 

  201. Lee YK, Choi YH, Chua S, Park YJ, Moore DD (2006) Phosphorylation of the hinge domain of the nuclear hormone receptor LRH-1 stimulates transactivation. J Biol Chem 281(12):7850–7855. doi:10.1074/jbc.M509115200

    CAS  PubMed  Google Scholar 

  202. Ohno M, Komakine J, Suzuki E, Nishizuka M, Osada S, Imagawa M (2010) Repression of the promoter activity mediated by liver receptor homolog-1 through interaction with ku proteins. Biol Pharm Bull 33(5):784–791

    CAS  PubMed  Google Scholar 

  203. Brendel C, Gelman L, Auwerx J (2002) Multiprotein bridging factor-1 (MBF-1) is a cofactor for nuclear receptors that regulate lipid metabolism. Mol Endocrinol 16(6):1367–1377

    CAS  PubMed  Google Scholar 

  204. Xu PL, Liu YQ, Shan SF, Kong YY, Zhou Q, Li M, Ding JP, Xie YH, Wang Y (2004) Molecular mechanism for the potentiation of the transcriptional activity of human liver receptor homolog 1 by steroid receptor coactivator-1. Mol Endocrinol 18(8):1887–1905. doi:10.1210/me.2003-0334

    CAS  PubMed  Google Scholar 

  205. Nussinov R, Tsai CJ, Xin F, Radivojac P (2012) Allosteric post-translational modification codes. Trends Biochem Sci 37(10):447–455. doi:10.1016/j.tibs.2012.07.001

    CAS  PubMed  Google Scholar 

  206. Yang XJ, Seto E (2008) Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell 31(4):449–461. doi:10.1016/j.molcel.2008.07.002

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Ruan HB, Nie Y, Yang X (2013) Regulation of protein degradation by O-GlcNAcylation: crosstalk with ubiquitination. Mol Cell Proteomics. doi:10.1074/mcp.R113.029751

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Albert K. Groen for reading and commenting on the manuscript. The work in the laboratory of the authors is supported by the Ecole Polytechnique Fédérale de Lausanne (EPFL), the Swiss National Science Foundation, the Swiss Cancer League and the University Medical Center Groningen (UMCG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina Schoonjans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oosterveer, M.H., Schoonjans, K. Hepatic glucose sensing and integrative pathways in the liver. Cell. Mol. Life Sci. 71, 1453–1467 (2014). https://doi.org/10.1007/s00018-013-1505-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1505-z

Keywords

Navigation