Skip to main content

Advertisement

Log in

O-Mannosylation and human disease

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Glycosylation of proteins is arguably the most prevalent co- and post-translational modification. It is responsible for increased heterogeneity and functional diversity of proteins. Here we discuss the importance of one type of glycosylation, specifically O-mannosylation and its relationship to a number of human diseases. The most widely studied O-mannose modified protein is alpha-dystroglycan (α-DG). Recent studies have focused intensely on α-DG due to the severity of diseases associated with its improper glycosylation. O-mannosylation of α-DG is involved in cancer metastasis, arenavirus entry, and multiple forms of congenital muscular dystrophy [1, 2]. In this review, we discuss the structural and functional characteristics of O-mannose-initiated glycan structures on α-DG, enzymes involved in the O-mannosylation pathway, and the diseases that are a direct result of disruptions within this pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hara Y, Balci-Hayta B, Yoshida-Moriguchi T, Kanagawa M, Beltrán-Valero de Bernabé D, Gündeşli H, Willer T, Satz JS, Crawford RW, Burden SJ, Kunz S, Oldstone MB, Accardi A, Talim B, Muntoni F, Topaloğlu H, Dinçer P, Campbell KP (2011) A dystroglycan mutation associated with limb-girdle muscular dystrophy. N Engl J Med 364:939–946

    Article  PubMed  CAS  Google Scholar 

  2. Ervasti JM, Campbell KP (1991) Membrane organization of the dystrophin-glycoprotein complex. Cell 66:1121–1131

    Article  PubMed  CAS  Google Scholar 

  3. Finne J, Krusius T, Margolis RK, Margolis RU (1979) Novel mannitol-containing oligosaccharides obtained by mild alkaline borohydride treatment of a chondroitin sulfate proteoglycan from brain. J Biol Chem 254:10295–10300

    PubMed  CAS  Google Scholar 

  4. Chiba A, Matsumura K, Yamada H, Inazu T, Shimizu T, Kusunoki S, Kanazawa I, Kobata A, Endo T (1997) Structures of sialylated O-linked oligosaccharides of bovine peripheral nerve alpha-dystroglycan. The role of a novel O-mannosyl-type oligosaccharide in the binding of alpha-dystroglycan with laminin. J Biol Chem 272:2156–2162

    Article  PubMed  CAS  Google Scholar 

  5. Ervasti JM, Ohlendieck K, Kahl SD, Gaver MG, Campbell KP (1990) Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature 345:315–319

    Article  PubMed  CAS  Google Scholar 

  6. Barresi R, Campbell KP (2006) Dystroglycan: from biosynthesis to pathogenesis of human disease. J Cell Sci 119:199–207

    Article  PubMed  CAS  Google Scholar 

  7. Losasso C, Di Tommaso F, Sgambato A, Ardito R, Cittadini A, Giardina B, Petrucci TC, Brancaccio A (2000) Anomalous dystroglycan in carcinoma cell lines. FEBS Lett 484:194–198

    Article  PubMed  CAS  Google Scholar 

  8. Singh J, Itahana Y, Knight-Krajewski S, Kanagawa M, Campbell KP, Bissell MJ, Muschler J (2004) Proteolytic enzymes and altered glycosylation modulate dystroglycan function in carcinoma cells. Cancer Res 64:6152–6159

    Article  PubMed  CAS  Google Scholar 

  9. Cao W, Henry MD, Borrow P, Yamada H, Elder JH, Ravkov EV, Nichol ST, Compans RW, Campbell KP, Oldstone MB (1998) Identification of alpha-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science 282:2079–2081

    Article  PubMed  CAS  Google Scholar 

  10. Spiropoulou CF, Kunz S, Rollin PE, Campbell KP, Oldstone MB (2002) New World arenavirus clade C, but not clade A and B viruses, utilizes alpha-dystroglycan as its major receptor. J Virol 76:5140–5146

    Article  PubMed  CAS  Google Scholar 

  11. Kunz S, Rojek JM, Kanagawa M, Spiropoulou CF, Barresi R, Campbell KP, Oldstone MB (2005) Posttranslational modification of alpha-dystroglycan, the cellular receptor for arenaviruses, by the glycosyltransferase LARGE is critical for virus binding. J Virol 79:14282–14296

    Article  PubMed  CAS  Google Scholar 

  12. Smalheiser NR, Schwartz NB (1987) Cranin: a laminin-binding protein of cell membranes. Proc Natl Acad Sci USA 84:6457–6461

    Article  PubMed  CAS  Google Scholar 

  13. Ibraghimov-Beskrovnaya O, Ervasti JM, Leveille CJ, Slaughter CA, Sernett SW, Campbell KP (1992) Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355:696–702

    Article  PubMed  CAS  Google Scholar 

  14. Winder SJ (2001) The complexities of dystroglycan. Trends Biochem Sci 26:118–124

    Article  PubMed  CAS  Google Scholar 

  15. Smalheiser NR, Haslam SM, Sutton-Smith M, Morris HR, Dell A (1998) Structural analysis of sequences O-linked to mannose reveals a novel Lewis X structure in cranin (dystroglycan) purified from sheep brain. J Biol Chem 273:23698–23703

    Article  PubMed  CAS  Google Scholar 

  16. Sasaki T, Yamada H, Matsumura K, Shimizu T, Kobata A, Endo T (1998) Detection of O-mannosyl glycans in rabbit skeletal muscle alpha-dystroglycan. Biochim Biophys Acta 1425:599–606

    Article  PubMed  CAS  Google Scholar 

  17. Yoshida-Moriguchi T, Yu L, Stalnaker SH, Davis S, Kunz S, Madson M, Oldstone MB, Schachter H, Wells L, Campbell KP (2010) O-mannosyl phosphorylation of alpha-dystroglycan is required for laminin binding. Science 327:88–92

    Article  PubMed  CAS  Google Scholar 

  18. Nilsson J, Larson G, Grahn A (2010) Characterization of site-specific O-glycan structures within the mucin-like domain of alpha-dystroglycan from human skeletal muscle. Glycobiology 20:1160–1169

    Article  PubMed  CAS  Google Scholar 

  19. Stalnaker SH, Hashmi S, Lim JM, Aoki K, Porterfield M, Gutierrez-Sanchez G, Wheeler J, Ervasti JM, Bergmann C, Tiemeyer M, Wells L (2010) Site mapping and characterization of O-glycan structures on alpha-dystroglycan isolated from rabbit skeletal muscle. J Biol Chem 285:24882–24891

    Article  PubMed  CAS  Google Scholar 

  20. Manya H, Suzuki T, Akasaka-Manya K, Ishida HK, Mizuno M, Suzuki Y, Inazu T, Dohmae N, Endo T (2007) Regulation of mammalian protein O-mannosylation: preferential amino acid sequence for O-mannose modification. J Biol Chem 282:20200–20206

    Article  PubMed  CAS  Google Scholar 

  21. Gee SH, Montanaro F, Lindenbaum MH, Carbonetto S (1994) Dystroglycan-alpha, a dystrophin-associated glycoprotein, is a functional agrin receptor. Cell 77:675–686

    Article  PubMed  CAS  Google Scholar 

  22. Peng HB, Ali AA, Daggett DF, Rauvala H, Hassell JR, Smalheiser NR (1998) The relationship between perlecan and dystroglycan and its implication in the formation of the neuromuscular junction. Cell Adhes Commun 5:475–489

    Article  PubMed  CAS  Google Scholar 

  23. Combs AC, Ervasti JM (2005) Enhanced laminin binding by alpha-dystroglycan after enzymatic deglycosylation. Biochem J 390:303–309

    Article  PubMed  CAS  Google Scholar 

  24. Brockington M, Torelli S, Prandini P, Boito C, Dolatshad NF, Longman C, Brown SC, Muntoni F (2005) Localization and functional analysis of the LARGE family of glycosyltransferases: significance for muscular dystrophy. Hum Mol Genet 14:657–665

    Article  PubMed  CAS  Google Scholar 

  25. Kanagawa M, Saito F, Kunz S, Yoshida-Moriguchi T, Barresi R, Kobayashi YM, Muschler J, Dumanski JP, Michele DE, Oldstone MB, Campbell KP (2004) Molecular recognition by LARGE is essential for expression of functional dystroglycan. Cell 117:953–964

    Article  PubMed  CAS  Google Scholar 

  26. Longman C, Brockington M, Torelli S, Jimenez-Mallebrera C, Kennedy C, Khalil N, Feng L, Saran RK, Voit T, Merlini L, Sewry CA, Brown SC, Muntoni F (2003) Mutations in the human LARGE gene cause MDC1D, a novel form of congenital muscular dystrophy with severe mental retardation and abnormal glycosylation of alpha-dystroglycan. Hum Mol Genet 12:2853–2861

    Article  PubMed  CAS  Google Scholar 

  27. Barresi R, Michele DE, Kanagawa M, Harper HA, Dovico SA, Satz JS, Moore SA, Zhang W, Schachter H, Dumanski JP, Cohn RD, Nishino I, Campbell KP (2004) LARGE can functionally bypass alpha-dystroglycan glycosylation defects in distinct congenital muscular dystrophies. Nat Med 10:696–703

    Article  PubMed  CAS  Google Scholar 

  28. Inamori K, Yoshida-Moriguchi T, Hara Y, Anderson ME, Yu L, Campbell KP (2012) Dystroglycan function requires xylosyl- and glucuronyltransferase activities of LARGE. Science 335:93–96

    Article  PubMed  CAS  Google Scholar 

  29. Williamson RA, Henry MD, Daniels KJ, Hrstka RF, Lee JC, Sunada Y, Ibraghimov-Beskrovnaya O, Campbell KP (1997) Dystroglycan is essential for early embryonic development: disruption of Reichert’s membrane in Dag1-null mice. Hum Mol Genet 6:831–841

    Article  PubMed  CAS  Google Scholar 

  30. Cote PD, Moukhles H, Lindenbaum M, Carbonetto S (1999) Chimaeric mice deficient in dystroglycans develop muscular dystrophy and have disrupted myoneural synapses. Nat Genet 23:338–342

    Article  PubMed  CAS  Google Scholar 

  31. Sciandra F, Bozzi M, Bianchi M, Pavoni E, Giardina B, Brancaccio A (2003) Dystroglycan and muscular dystrophies related to the dystrophin-glycoprotein complex. Ann Ist Super Sanita 39:173–181

    PubMed  CAS  Google Scholar 

  32. Burton EA, Davies KE (2002) Muscular dystrophy–reason for optimism? Cell 108:5–8

    Article  PubMed  CAS  Google Scholar 

  33. Chandrasekharan K, Martin PT (2010) Genetic defects in muscular dystrophy. Methods Enzymol 479:291–322

    Article  PubMed  CAS  Google Scholar 

  34. Endo T, Manya H (2006) Defect in glycosylation that causes muscular dystrophy. Methods Enzymol 417:137–152

    Article  PubMed  CAS  Google Scholar 

  35. Willer T, Valero MC, Tanner W, Cruces J, Strahl S (2003) O-mannosyl glycans: from yeast to novel associations with human disease. Curr Opin Struct Biol 13:621–630

    Article  PubMed  CAS  Google Scholar 

  36. Takahashi S, Sasaki T, Manya H, Chiba Y, Yoshida A, Mizuno M, Ishida H, Ito F, Inazu T, Kotani N, Takasaki S, Takeuchi M, Endo T (2001) A new beta-1,2-N-acetylglucosaminyltransferase that may play a role in the biosynthesis of mammalian O-mannosyl glycans. Glycobiology 11:37–45

    Article  PubMed  CAS  Google Scholar 

  37. Patnaik SK, Stanley P (2005) Mouse large can modify complex N- and mucin O-glycans on alpha-dystroglycan to induce laminin binding. J Biol Chem 280:20851–20859

    Article  PubMed  CAS  Google Scholar 

  38. Willer T, Lee H, Lommel M, Yoshida-Moriguchi T, de Bernabe DBV, Venzke D, Cirak S, Schachter H, Vajsar J, Voit T, Muntoni F, Loder AS, Dobyns WB, Winder TL, Strahl S, Mathews KD, Nelson SF, Moore SA, Campbell KP (2012) ISPD loss-of-function mutations disrupt dystroglycan O-mannosylation and cause Walker–Warburg syndrome. Nat Genet 44:575–580

    Article  PubMed  CAS  Google Scholar 

  39. Roscioli T, Kamsteeg E-J, Buysse K, Maystadt I, van Reeuwijk J, van den Elzen C, van Beusekom E, Riemersma M, Pfundt R, Vissers LELM, Schraders M, Altunoglu U, Buckley MF, Brunner HG, Grisart B, Zhou H, Veltman JA, Gilissen C, Mancini GMS, Delrée P, Willemsen MA, Ramadža DP, Chitayat D, Bennett C, Sheridan E, Peeters EAJ, Tan-Sindhunata GMB, de Die-Smulders CE, Devriendt K, Kayserili H, El-Hashash OAE-F, Stemple DL, Lefeber DJ, Lin Y–Y, van Bokhoven H (2012) Mutations in ISPD cause Walker–Warburg syndrome and defective glycosylation of α-dystroglycan. Nat Genet 44:581–585

    Article  PubMed  CAS  Google Scholar 

  40. Hara Y, Balci-Hayta B, Yoshida-Moriguchi T, Kanagawa M, Beltran-Valero de Bernabe D, Gundesli H, Willer T, Satz JS, Crawford RW, Burden SJ, Kunz S, Oldstone MB, Accardi A, Talim B, Muntoni F, Topaloglu H, Dincer P, Campbell KP (2011) A dystroglycan mutation associated with limb-girdle muscular dystrophy. N Engl J Med 364:939–946

    Article  PubMed  CAS  Google Scholar 

  41. Jurado LA, Coloma A, Cruces J (1999) Identification of a human homolog of the Drosophila rotated abdomen gene (POMT1) encoding a putative protein O-mannosyl-transferase, and assignment to human chromosome 9q34.1. Genomics 58:171–180

    Article  PubMed  CAS  Google Scholar 

  42. Willer T, Amselgruber W, Deutzmann R, Strahl S (2002) Characterization of POMT2, a novel member of the PMT protein O-mannosyltransferase family specifically localized to the acrosome of mammalian spermatids. Glycobiology 12:771–783

    Article  PubMed  CAS  Google Scholar 

  43. Hewitt JE (2009) Abnormal glycosylation of dystroglycan in human genetic disease. Biochim Biophys Acta 1792:853–861

    Article  PubMed  CAS  Google Scholar 

  44. Beltran-Valero de Bernabe D, Currier S, Steinbrecher A, Celli J, van Beusekom E, van der Zwaag B, Kayserili H, Merlini L, Chitayat D, Dobyns WB, Cormand B, Lehesjoki AE, Cruces J, Voit T, Walsh CA, van Bokhoven H, Brunner HG (2002) Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome. Am J Hum Genet 71:1033–1043

    Article  PubMed  Google Scholar 

  45. Willer T, Prados B, Falcon-Perez JM, Renner-Muller I, Przemeck GK, Lommel M, Coloma A, Valero MC, de Angelis MH, Tanner W, Wolf E, Strahl S, Cruces J (2004) Targeted disruption of the Walker-Warburg syndrome gene Pomt1 in mouse results in embryonic lethality. Proc Natl Acad Sci USA 101:14126–14131

    Article  PubMed  CAS  Google Scholar 

  46. Hehr U, Uyanik G, Gross C, Walter MC, Bohring A, Cohen M, Oehl-Jaschkowitz B, Bird LM, Shamdeen GM, Bogdahn U, Schuierer G, Topaloglu H, Aigner L, Lochmuller H, Winkler J (2007) Novel POMGnT1 mutations define broader phenotypic spectrum of muscle-eye-brain disease. Neurogenetics 8:279–288

    Article  PubMed  CAS  Google Scholar 

  47. Yoshida A, Kobayashi K, Manya H, Taniguchi K, Kano H, Mizuno M, Inazu T, Mitsuhashi H, Takahashi S, Takeuchi M, Herrmann R, Straub V, Talim B, Voit T, Topaloglu H, Toda T, Endo T (2001) Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev Cell 1:717–724

    Article  PubMed  CAS  Google Scholar 

  48. Stalnaker SH, Aoki K, Lim JM, Porterfield M, Liu M, Satz JS, Buskirk S, Xiong Y, Zhang P, Campbell KP, Hu H, Live D, Tiemeyer M, Wells L (2011) Glycomic analyses of mouse models of congenital muscular dystrophy. J Biol Chem 286:21180–21190

    Article  PubMed  CAS  Google Scholar 

  49. Mo KF, Fang T, Stalnaker SH, Kirby PS, Liu M, Wells L, Pierce M, Live DH, Boons GJ (2011) Synthetic, structural, and biosynthetic studies of an unusual phospho-glycopeptide derived from alpha-dystroglycan. J Am Chem Soc 133:14418–14430

    Article  PubMed  CAS  Google Scholar 

  50. Liu J, Ball SL, Yang Y, Mei P, Zhang L, Shi H, Kaminski HJ, Lemmon VP, Hu H (2006) A genetic model for muscle-eye-brain disease in mice lacking protein O-mannose 1,2-N-acetylglucosaminyltransferase (POMGnT1). Mech Dev 123:228–240

    Article  PubMed  CAS  Google Scholar 

  51. Miyagoe-Suzuki Y, Masubuchi N, Miyamoto K, Wada MR, Yuasa S, Saito F, Matsumura K, Kanesaki H, Kudo A, Manya H, Endo T, Takeda S (2009) Reduced proliferative activity of primary POMGnT1-null myoblasts in vitro. Mech Dev 126:107–116

    Article  PubMed  CAS  Google Scholar 

  52. Kobayashi K, Nakahori Y, Miyake M, Matsumura K, Kondo-Iida E, Nomura Y, Segawa M, Yoshioka M, Saito K, Osawa M, Hamano K, Sakakihara Y, Nonaka I, Nakagome Y, Kanazawa I, Nakamura Y, Tokunaga K, Toda T (1998) An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 394:388–392

    Article  PubMed  CAS  Google Scholar 

  53. Yis U, Uyanik G, Heck PB, Smitka M, Nobel H, Ebinger F, Dirik E, Feng L, Kurul SH, Brocke K, Unalp A, Ozer E, Cakmakci H, Sewry C, Cirak S, Muntoni F, Hehr U, Morris-Rosendahl DJ (2011) Fukutin mutations in non-Japanese patients with congenital muscular dystrophy: less severe mutations predominate in patients with a non-Walker–Warburg phenotype. Neuromuscul Disord 21:20–30

    Article  PubMed  Google Scholar 

  54. Cipollo JF, Awad A, Costello CE, Robbins PW, Hirschberg CB (2004) Biosynthesis in vitro of Caenorhabditis elegans phosphorylcholine oligosaccharides. Proc Natl Acad Sci USA 101:3404–3408

    Article  PubMed  CAS  Google Scholar 

  55. Mercuri E, Brockington M, Straub V, Quijano-Roy S, Yuva Y, Herrmann R, Brown SC, Torelli S, Dubowitz V, Blake DJ, Romero NB, Estournet B, Sewry CA, Guicheney P, Voit T, Muntoni F (2003) Phenotypic spectrum associated with mutations in the fukutin-related protein gene. Ann Neurol 53:537–542

    Article  PubMed  CAS  Google Scholar 

  56. Brockington M, Blake DJ, Prandini P, Brown SC, Torelli S, Benson MA, Ponting CP, Estournet B, Romero NB, Mercuri E, Voit T, Sewry CA, Guicheney P, Muntoni F (2001) Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin alpha2 deficiency and abnormal glycosylation of alpha-dystroglycan. Am J Hum Genet 69:1198–1209

    Article  PubMed  CAS  Google Scholar 

  57. Brockington M, Yuva Y, Prandini P, Brown SC, Torelli S, Benson MA, Herrmann R, Anderson LV, Bashir R, Burgunder JM, Fallet S, Romero N, Fardeau M, Straub V, Storey G, Pollitt C, Richard I, Sewry CA, Bushby K, Voit T, Blake DJ, Muntoni F (2001) Mutations in the fukutin-related protein gene (FKRP) identify limb girdle muscular dystrophy 2I as a milder allelic variant of congenital muscular dystrophy MDC1C. Hum Mol Genet 10:2851–2859

    Article  PubMed  CAS  Google Scholar 

  58. Grewal PK, Holzfeind PJ, Bittner RE, Hewitt JE (2001) Mutant glycosyltransferase and altered glycosylation of alpha-dystroglycan in the myodystrophy mouse. Nat Genet 28:151–154

    Article  PubMed  CAS  Google Scholar 

  59. Aguilan JT, Sundaram S, Nieves E, Stanley P (2009) Mutational and functional analysis of Large in a novel CHO glycosylation mutant. Glycobiology 19:971–986

    Article  PubMed  CAS  Google Scholar 

  60. Patnaik SK, Stanley P (2005) Mouse large can modify complex N- and mucin O-glycans on alpha-dystroglycan to induce laminin binding. J Biol Chem 280:20851–20859

    Article  PubMed  CAS  Google Scholar 

  61. Bakker H, Oka T, Ashikov A, Yadav A, Berger M, Rana NA, Bai X, Jigami Y, Haltiwanger RS, Esko JD, Gerardy-Schahn R (2009) Functional UDP-xylose transport across the endoplasmic reticulum/Golgi membrane in a Chinese hamster ovary cell mutant defective in UDP-xylose synthase. J Biol Chem 284:2576–2583

    Article  PubMed  CAS  Google Scholar 

  62. Grewal PK, McLaughlan JM, Moore CJ, Browning CA, Hewitt JE (2005) Characterization of the LARGE family of putative glycosyltransferases associated with dystroglycanopathies. Glycobiology 15:912–923

    Article  PubMed  CAS  Google Scholar 

  63. Hewitt JE (2010) Investigating the functions of LARGE: lessons from mutant mice. Methods Enzymol 479:367–386

    Article  PubMed  CAS  Google Scholar 

  64. Fujimura K, Sawaki H, Sakai T, Hiruma T, Nakanishi N, Sato T, Ohkura T, Narimatsu H (2005) LARGE2 facilitates the maturation of alpha-dystroglycan more effectively than LARGE. Biochem Biophys Res Commun 329:1162–1171

    Article  PubMed  CAS  Google Scholar 

  65. Borrow P, Oldstone MB (1994) Mechanism of lymphocytic choriomeningitis virus entry into cells. Virology 198:1–9

    Article  PubMed  CAS  Google Scholar 

  66. Smelt SC, Borrow P, Kunz S, Cao W, Tishon A, Lewicki H, Campbell KP, Oldstone MB (2001) Differences in affinity of binding of lymphocytic choriomeningitis virus strains to the cellular receptor alpha-dystroglycan correlate with viral tropism and disease kinetics. J Virol 75:448–457

    Article  PubMed  CAS  Google Scholar 

  67. Rojek JM, Perez M, Kunz S (2008) Cellular entry of lymphocytic choriomeningitis virus. J Virol 82:1505–1517

    Article  PubMed  CAS  Google Scholar 

  68. Shah WA, Peng H, Carbonetto S (2006) Role of non-raft cholesterol in lymphocytic choriomeningitis virus infection via alpha-dystroglycan. J Gen Virol 87:673–678

    Article  PubMed  CAS  Google Scholar 

  69. Vela EM, Zhang L, Colpitts TM, Davey RA, Aronson JF (2007) Arenavirus entry occurs through a cholesterol-dependent, non-caveolar, clathrin-mediated endocytic mechanism. Virology 369:1–11

    Article  PubMed  CAS  Google Scholar 

  70. Hara Y, Kanagawa M, Kunz S, Yoshida-Moriguchi T, Satz JS, Kobayashi YM, Zhu Z, Burden SJ, Oldstone MB, Campbell KP (2011) Like-acetylglucosaminyltransferase (LARGE)-dependent modification of dystroglycan at Thr-317/319 is required for laminin binding and arenavirus infection. Proc Natl Acad Sci USA 108:17426–17431

    Article  PubMed  CAS  Google Scholar 

  71. Kunz S, Sevilla N, McGavern DB, Campbell KP, Oldstone MB (2001) Molecular analysis of the interaction of LCMV with its cellular receptor [alpha]-dystroglycan. J Cell Biol 155:301–310

    Article  PubMed  CAS  Google Scholar 

  72. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  73. Condeelis J, Segall JE (2003) Intravital imaging of cell movement in tumours. Nat Rev Cancer 3:921–930

    Article  PubMed  CAS  Google Scholar 

  74. Liotta LA, Steeg PS, Stetler-Stevenson WG (1991) Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64:327–336

    Article  PubMed  CAS  Google Scholar 

  75. Herlyn M, Malkowicz SB (1991) Regulatory pathways in tumor growth and invasion. Lab Invest 65:262–271

    PubMed  CAS  Google Scholar 

  76. Schreiner C, Bauer J, Margolis M, Juliano RL (1991) Expression and role of integrins in adhesion of human colonic carcinoma cells to extracellular matrix components. Clin Exp Metastasis 9:163–178

    Article  PubMed  CAS  Google Scholar 

  77. Agrez MV, Bates RC, Mitchell D, Wilson N, Ferguson N, Anseline P, Sheppard D (1996) Multiplicity of fibronectin-binding alpha V integrin receptors in colorectal cancer. Br J Cancer 73:887–892

    Article  PubMed  CAS  Google Scholar 

  78. Timmer A, Oosterhuis JW, Schraffordt Koops H, Sleijfer DT, Szabo BG, Timens W (1994) The tumor microenvironment: possible role of integrins and the extracellular matrix in tumor biological behavior of intratubular germ cell neoplasia and testicular seminomas. Am J Pathol 144:1035–1044

    PubMed  CAS  Google Scholar 

  79. Muschler J, Levy D, Boudreau R, Henry M, Campbell K, Bissell MJ (2002) A role for dystroglycan in epithelial polarization: loss of function in breast tumor cells. Cancer Res 62:7102–7109

    PubMed  CAS  Google Scholar 

  80. Yang B, Jung D, Motto D, Meyer J, Koretzky G, Campbell KP (1995) SH3 domain-mediated interaction of dystroglycan and Grb2. J Biol Chem 270:11711–11714

    Article  PubMed  CAS  Google Scholar 

  81. Henry MD, Campbell KP (1998) A role for dystroglycan in basement membrane assembly. Cell 95:859–870

    Article  PubMed  CAS  Google Scholar 

  82. de Bernabe DB, Inamori K, Yoshida-Moriguchi T, Weydert CJ, Harper HA, Willer T, Henry MD, Campbell KP (2009) Loss of alpha-dystroglycan laminin binding in epithelium-derived cancers is caused by silencing of LARGE. J Biol Chem 284:11279–11284

    Article  PubMed  Google Scholar 

  83. Dwyer CA, Baker E, Hu H, Matthews RT (2012) RPTPzeta/phosphacan is abnormally glycosylated in a model of muscle-eye-brain disease lacking functional POMGnT1. Neuroscience 220:47–61

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank all members of the Wells’ laboratory for helpful discussions. We apologize to any laboratories that have contributed to this growing field that we failed to cite. This work was supported in part by grants from the NIH (P41RR018502 and R21AR056055, L.W. co-PI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lance Wells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobson, C.M., Hempel, S.J., Stalnaker, S.H. et al. O-Mannosylation and human disease. Cell. Mol. Life Sci. 70, 2849–2857 (2013). https://doi.org/10.1007/s00018-012-1193-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1193-0

Keywords