Skip to main content

Advertisement

Log in

The origin of diversity: studying the evolution of multi-faceted CD8+ T cell responses

  • Multi-Author Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

During the past two decades of research in T cell biology, an increasing number of distinct T cell subsets arising during the transition from naïve to antigen-experienced T cells have been identified. Recently, it has been appreciated that, in different experimental settings, distinct T cell subsets can be generated in parallel within the same immune response. While signals driving a single “lineage” path of T cell differentiation are becoming increasingly clear, it remains largely enigmatic how the phenotypic and functional diversification creating a multi-faceted T cell response is achieved. Here, we review current literature indicating that diversification is a stable trait of CD8+ T cell responses. We showcase novel technologies providing deeper insights into the process of diversification among the descendants of individual T cells, and introduce two models that emphasize either intrinsic noise or extrinsic signals as driving forces behind the diversification of single cell-derived T cell progeny populations in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DCs:

Dendritic cells

DTR:

Diphteria toxin receptor

IFN-γ:

Interferon-γ

IL-2:

Interleukin-2

LCMV:

Lymphocytic choriomeningitis virus

KLRG1:

Killer cell lectin-like receptor subfamily G member 1

MHC:

Major histocompatibility complex

MPECs:

Memory-prone effector cells

SLECs:

Short-lived effectors cells

TCM cells:

T central memory cells

TEM cells:

T effector memory cells

T-bet:

T box transcription factor expressed in T cells

YFP:

Yellow fluorescent protein

References

  1. Williams MA, Bevan MJ (2007) Effector and memory CTL differentiation. Annu Rev Immunol 25:171–192

    Article  PubMed  CAS  Google Scholar 

  2. Dutton RW, Bradley LM, Swain SL (1998) T cell memory. Annu Rev Immunol 16:201–223

    Article  PubMed  CAS  Google Scholar 

  3. Huster KM, Stemberger C, Busch DH (2006) Protective immunity towards intracellular pathogens. Curr Opin Immunol 18(4):458–464

    Article  PubMed  CAS  Google Scholar 

  4. Jameson SC, Masopust D (2009) Diversity in T cell memory: an embarrassment of riches. Immunity 31(6):859–871

    Article  PubMed  CAS  Google Scholar 

  5. Rutishauser RL, Kaech SM (2010) Generating diversity: transcriptional regulation of effector and memory CD8 T-cell differentiation. Immunol Rev 235(1):219–233

    PubMed  CAS  Google Scholar 

  6. Joshi NS, Cui W, Chandele A, Lee HK, Urso DR, Hagman J, Gapin L, Kaech SM (2007) Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor. Immunity 27(2):281–295

    Article  PubMed  CAS  Google Scholar 

  7. Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD, Ahmed R (2003) Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol 4(12):1191–1198

    Article  PubMed  CAS  Google Scholar 

  8. Huster KM, Busch V, Schiemann M, Linkemann K, Kerksiek KM, Wagner H, Busch DH (2004) Selective expression of IL-7 receptor on memory T cells identifies early CD40L-dependent generation of distinct CD8+ memory T cell subsets. Proc Natl Acad Sci USA 101(15):5610–5615

    Article  PubMed  CAS  Google Scholar 

  9. Sallusto F, Lenig D, Förster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401(6754):708–712

    Article  PubMed  CAS  Google Scholar 

  10. Masopust D, Vezys V, Marzo AL, Lefrançois L (2001) Preferential localization of effector memory cells in nonlymphoid tissue. Science 291(5512):2413–2417

    Article  PubMed  CAS  Google Scholar 

  11. Unsoeld H, Krautwald S, Voehringer D, Kunzendorf U, Pircher H (2002) Cutting edge: CCR7+ and CCR7− memory T cells do not differ in immediate effector cell function. J Immunol 169(2):638–641

    PubMed  CAS  Google Scholar 

  12. Sarkar S, Kalia V, Haining WN, Konieczny BT, Subramaniam S, Ahmed R (2008) Functional and genomic profiling of effector CD8 T cell subsets with distinct memory fates. J Exp Med 205(3):625–640

    Article  PubMed  CAS  Google Scholar 

  13. Seder RA, Darrah PA, Roederer M (2008) T-cell quality in memory and protection: implications for vaccine design. Nat Rev Immunol 8(4):247–258

    Article  PubMed  CAS  Google Scholar 

  14. Darrah PA, Patel DT, De Luca PM, Lindsay RW, Davey DF, Flynn BJ, Hoff ST, Andersen P, Reed SG, Morris SL, Roederer M, Seder RA (2007) Multifunctional T(H)1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med 13:843–850

    Article  PubMed  CAS  Google Scholar 

  15. Harari A, Petitpierre S, Vallelian F, Pantaleo G (2004) Skewed representation of functionally distinct populations of virus-specific CD4 T cells in HIV-1-infected subjects with progressive disease: changes after antiretroviral therapy. Blood 103(3):966–972

    Article  PubMed  CAS  Google Scholar 

  16. Betts MR, Nason MC, West SM, De Rosa SC, Migueles SA, Abraham J, Lederman MM, Benito JM, Goepfert PA, Connors M, Roederer M, Koup RA (2006) HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood 107(12):4781–4789

    Article  PubMed  CAS  Google Scholar 

  17. Pantaleo G, Koup RA (2004) Correlates of immune protection in HIV-1 infection: what we know, what we don’t know, what we should know. Nat Med 10(8):806–810

    Article  PubMed  CAS  Google Scholar 

  18. Blattman JN, Antia R, Sourdive DJD, Wang X, Kaech SM, Murali-Krishna K, Altman JD, Ahmed R (2002) Estimating the precursor frequency of naive antigen-specific CD8 T cells. J Exp Med 195(5):657–664

    Article  PubMed  CAS  Google Scholar 

  19. Moon J, Chu H, Pepper M, Mcsorley S, Jameson S, Kedl R, Jenkins M (2007) Naive CD4+ T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27(2):203–213

    Article  PubMed  CAS  Google Scholar 

  20. Casrouge A, Beaudoing E, Dalle S, Pannetier C, Kanellopoulos J, Kourilsky P (2000) Size estimate of the alpha beta TCR repertoire of naive mouse splenocytes. J Immunol 164(11):5782–5787

    PubMed  CAS  Google Scholar 

  21. Busch DH, Pilip IM, Vijh S, Pamer EG (1998) Coordinate regulation of complex T cell populations responding to bacterial infection. Immunity 8(3):353–362

    Article  PubMed  CAS  Google Scholar 

  22. Baron V, Bouneaud C, Cumano A, Lim A, Arstila TP, Kourilsky P, Ferradini L, Pannetier C (2003) The repertoires of circulating human CD8(+) central and effector memory T cell subsets are largely distinct. Immunity 18(2):193–204

    Article  PubMed  Google Scholar 

  23. Bouneaud C, Garcia Z, Kourilsky P, Pannetier C (2005) Lineage relationships, homeostasis, and recall capacities of central- and effector-memory CD8 T cells in vivo. J Exp Med 201(4):579–590

    Article  PubMed  CAS  Google Scholar 

  24. Murphy KM, Heimberger AB, Loh DY (1990) Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science 250(4988):1720–1723

    Article  PubMed  CAS  Google Scholar 

  25. Badovinac VP, Haring JS, Harty JT (2007) Initial T cell receptor transgenic cell precursor frequency dictates critical aspects of the CD8(+) T cell response to infection. Immunity 26(6):827–841

    Article  PubMed  CAS  Google Scholar 

  26. Stemberger C, Neuenhahn M, Buchholz VR, Busch DH (2007) Origin of CD8+ effector and memory T Cell subsets. Cell Mol Immunol 4(6):399–405

    PubMed  CAS  Google Scholar 

  27. Opferman JT, Ober BT, Ashton-Rickardt PG (1999) Linear differentiation of cytotoxic effectors into memory T lymphocytes. Science 283(5408):1745–1748

    Article  PubMed  CAS  Google Scholar 

  28. Kaech SM, Hemby S, Kersh E, Ahmed R (2002) Molecular and functional profiling of memory CD8 T cell differentiation. Cell 111(6):837–851

    Article  PubMed  CAS  Google Scholar 

  29. Wherry EJ, Teichgräber V, Becker TC, Masopust D, Kaech SM, Antia R, Von Andrian UH, Ahmed R (2003) Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol 4(3):225–234

    Article  PubMed  CAS  Google Scholar 

  30. Harrington LE, Janowski KM, Oliver JR, Zajac AJ, Weaver CT (2008) Memory CD4 T cells emerge from effector T-cell progenitors. Nature 452(7185):356–360

    Article  PubMed  CAS  Google Scholar 

  31. Bannard O, Kraman M, Fearon DT (2009) Secondary replicative function of CD8+ T cells that had developed an effector phenotype. Science 323(5913):505–509

    Article  PubMed  CAS  Google Scholar 

  32. Huster KM, Koffler M, Stemberger C, Schiemann M, Wagner H, Busch DH (2006) Unidirectional development of CD8+ central memory T cells into protective listeria-specific effector memory T cells. Eur J Immunol 36(6):1453–1464

    Article  PubMed  CAS  Google Scholar 

  33. Goldrath AW, Bogatzki LY, Bevan MJ (2000) Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J Exp Med 192(4):557–564

    Article  PubMed  CAS  Google Scholar 

  34. Lauvau G, Vijh S, Kong P, Horng T, Kerksiek K, Serbina N, Tuma RA, Pamer EG (2001) Priming of memory but not effector CD8 T cells by a killed bacterial vaccine. Science 294(5547):1735–1739

    Article  PubMed  CAS  Google Scholar 

  35. D’Souza WN, Hedrick SM (2006) Cutting edge: latecomer CD8 T cells are imprinted with a unique differentiation program. J Immunol 177(2):777–781

    PubMed  Google Scholar 

  36. Gett AV, Sallusto F, Lanzavecchia A, Geginat J (2003) T cell fitness determined by signal strength. Nat Immunol 4(4):355–360

    Article  PubMed  CAS  Google Scholar 

  37. Intlekofer AM, Takemoto N, Wherry EJ, Longworth SA, Northrup JT, Palanivel VR, Mullen AC, Gasink CR, Kaech SM, Miller JD, Gapin L, Ryan K, Russ AP, Lindsten T, Orange JS, Goldrath AW, Ahmed R, Reiner SL (2005) Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat Immunol 6(12):1236–1244

    Article  PubMed  CAS  Google Scholar 

  38. Kaech SM, Ahmed R (2001) Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naïve cells. Nat Immunol 2(5):415–422

    PubMed  CAS  Google Scholar 

  39. van Stipdonk MJ, Lemmens EE, Schoenberger SP (2001) Naïve CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat Immunol 2(5):423–429

    PubMed  Google Scholar 

  40. Badovinac VP, Porter BB, Harty JT (2004) CD8+ T cell contraction is controlled by early inflammation. Nat Immunol 5(8):809–817

    Article  PubMed  CAS  Google Scholar 

  41. Germain RN, Miller MJ, Dustin ML, Nussenzweig MC (2006) Dynamic imaging of the immune system: progress, pitfalls and promise. Nat Rev Immunol 6(7):497–507

    Article  PubMed  CAS  Google Scholar 

  42. Cahalan MD, Parker I, Wei SH, Miller MJ (2002) Two-photon tissue imaging: seeing the immune system in a fresh light. Nat Rev Immunol 2(11):872–880

    Article  PubMed  CAS  Google Scholar 

  43. Miller MJ, Wei SH, Parker I, Cahalan MD (2002) Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296(5574):1869–1873

    Article  PubMed  CAS  Google Scholar 

  44. Stoll S, Delon J, Brotz TM, Germain RN (2002) Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 296(5574):1873–1876

    Article  PubMed  Google Scholar 

  45. Henrickson SE, von Andrian UH (2007) Single-cell dynamics of T-cell priming. Curr Opin Immunol 19(3):249–258

    Article  PubMed  CAS  Google Scholar 

  46. Mempel TR, Henrickson SE, Von Andrian UH (2004) T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427(6970):154–159

    Article  PubMed  CAS  Google Scholar 

  47. Henrickson SE, Mempel TR, Mazo IB, Liu B, Artyomov MN, Zheng H, Peixoto A, Flynn MP, Senman B, Junt T, Wong HC, Chakraborty AK, Von Andrian UH (2008) T cell sensing of antigen dose governs interactive behavior with dendritic cells and sets a threshold for T cell activation. Nat Immunol 9(3):282–291

    Article  PubMed  CAS  Google Scholar 

  48. Prlic M (2006) Duration of the initial TCR stimulus controls the magnitude but not functionality of the CD8+ T cell response. J Exp Med 203(9):2135–2143

    Article  PubMed  CAS  Google Scholar 

  49. Chang JT, Palanivel VR, Kinjyo I, Schambach F, Intlekofer AM, Banerjee A, Longworth SA, Vinup KE, Mrass P, Oliaro J, Killeen N, Orange JS, Russell SM, Weninger W, Reiner SL (2007) Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315(5819):1687–1691

    Article  PubMed  CAS  Google Scholar 

  50. Stemberger C, Huster KM, Koffler M, Anderl F, Schiemann M, Wagner H, Busch DH (2007) A single naive CD8 + T cell precursor can develop into diverse effector and memory subsets. Immunity 27(6):985–997

    Article  PubMed  CAS  Google Scholar 

  51. Reiner SL, Sallusto F, Lanzavecchia A (2007) Division of labor with a workforce of one: challenges in specifying effector and memory T cell fate. Science 317(5838):622–625

    Article  PubMed  CAS  Google Scholar 

  52. Schepers K, Swart E, Van Heijst JWJ, Gerlach C, Castrucci M, Sie D, Heimerikx M, Velds A, Kerkhoven RM, Arens R, Schumacher TNM (2008) Dissecting T cell lineage relationships by cellular barcoding. J Exp Med 205(10):2309–2318

    Article  PubMed  CAS  Google Scholar 

  53. Gerlach C, van Heijst JWJ, Swart E, Sie D, Armstrong N, Kerkhoven RM, Zehn D, Bevan MJ, Schepers K, Schumacher TNM (2010) One naive T cell, multiple fates in CD8+ T cell differentiation. J Exp Med 207(6):1235–1246

    Article  PubMed  CAS  Google Scholar 

  54. Zehn D, Lee SY, Bevan MJ (2009) Complete but curtailed T-cell response to very low affinity antigen. Nature 458(7235):211–214

    Article  PubMed  CAS  Google Scholar 

  55. Morris SA, Teo RTY, Li H, Robson P, Glover DM, Zernicka-Goetz M (2010) Origin and formation of the first two distinct cell types of the inner cell mass in the mouse embryo. Proc Natl Acad Sci USA 107(14):6364–6369

    Article  PubMed  CAS  Google Scholar 

  56. Yamanaka Y, Lanner F, Rossant J (2010) FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development 137(5):715–724

    Article  PubMed  CAS  Google Scholar 

  57. Chazaud C, Yamanaka Y, Pawson T, Rossant J (2006) Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev Cell 10(5):615–624

    Article  PubMed  CAS  Google Scholar 

  58. Eldar A, Elowitz MB (2010) Functional roles for noise in genetic circuits. Nature 467(7312):167–173

    Article  PubMed  CAS  Google Scholar 

  59. Kalia V, Sarkar S, Subramaniam S, Haining WN, Smith KA, Ahmed R (2010) Prolonged interleukin-2Ralpha expression on virus-specific CD8+ T cells favors terminal-effector differentiation in vivo. Immunity 32(1):91–103

    Article  PubMed  CAS  Google Scholar 

  60. Beuneu H, Lemaître F, Deguine J, Moreau HD, Bouvier I, Garcia Z, Albert ML, Bousso P (2010) Visualizing the functional diversification of CD8+ T cell responses in lymph nodes. Immunity 33(3):412–423

    Article  PubMed  CAS  Google Scholar 

  61. Stemberger C, Neuenhahn M, Gebhardt FE, Schiemann M, Buchholz VR, Busch DH (2009) Stem cell-like plasticity of naïve and distinct memory CD8(+) T cell subsets. Semin Immunol 21:62–68

    Article  PubMed  CAS  Google Scholar 

  62. van Heijst JWJ, Gerlach C, Swart E, Sie D, Nunes-Alves C, Kerkhoven RM, Arens R, Correia-Neves M, Schepers K, Schumacher TNM (2009) Recruitment of antigen-specific CD8+ T cells in response to infection is markedly efficient. Science 325(5945):1265–1269

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk H. Busch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchholz, V.R., Gräf, P. & Busch, D.H. The origin of diversity: studying the evolution of multi-faceted CD8+ T cell responses. Cell. Mol. Life Sci. 69, 1585–1595 (2012). https://doi.org/10.1007/s00018-012-0967-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-0967-8

Keywords