Abstract
Amylin is an important control of nutrient fluxes because it reduces energy intake, modulates nutrient utilization by inhibiting postprandial glucagon secretion, and increases energy disposal by preventing compensatory decreases of energy expenditure in weight-reduced individuals. The best investigated function of amylin which is cosecreted with insulin is to reduce eating by promoting meal-ending satiation. This effect is thought to be mediated by a stimulation of specific amylin receptors in the area postrema. Secondary brain sites to mediate amylin action include the nucleus of the solitary tract and the lateral parabrachial nucleus, which convey the neural signal to the lateral hypothalamic area and other hypothalamic nuclei. Amylin may also signal adiposity because plasma levels of amylin are increased in adiposity and because higher amylin concentrations in the brain result in reduced body weight gain and adiposity, while amylin receptor antagonists increase body adiposity. The central mechanisms involved in amylin’s effect on energy expenditure are much less known. A series of recent experiments in animals and humans indicate that amylin is a promising option for anti-obesity therapy especially in combination with other hormones. The most extensive dataset is available for the combination therapy of amylin and leptin. Ongoing research focuses on the mechanisms of these interactions.


Similar content being viewed by others
References
Young A, Denaro M (1998) Roles of amylin in diabetes and in regulation of nutrient load. Nutrition 14(6):524–527 (pii:S0899900798000446)
Potes CS, Lutz TA (2010) Brainstem mechanisms of amylin-induced anorexia. Physiol Behav 100(5):511–518. doi:10.1016/j.physbeh.2010.03.001
Christopoulos G, Perry KJ, Morfis M, Tilakaratne N, Gao Y, Fraser NJ, Main MJ, Foord SM, Sexton PM (1999) Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. Mol Pharmacol 56(1):235–242
McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N, Solari R, Lee MG, Foord SM (1998) RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393(6683):333–339. doi:10.1038/30666
Muff R, Buhlmann N, Fischer JA, Born W (1999) An amylin receptor is revealed following co-transfection of a calcitonin receptor with receptor activity modifying proteins-1 or -3. Endocrinology 140(6):2924–2927
Hay DL, Christopoulos G, Christopoulos A, Poyner DR, Sexton PM (2005) Pharmacological discrimination of calcitonin receptor: receptor activity-modifying protein complexes. Mol Pharmacol 67(5):1655–1665. doi:10.1124/mol.104.008615
Morfis M, Tilakaratne N, Furness SG, Christopoulos G, Werry TD, Christopoulos A, Sexton PM (2008) Receptor activity-modifying proteins differentially modulate the G protein-coupling efficiency of amylin receptors. Endocrinology 149(11):5423–5431. doi:10.1210/en.2007-1735
Fischer JA, Muff R, Born W (2002) Functional relevance of G-protein-coupled-receptor-associated proteins, exemplified by receptor-activity-modifying proteins (RAMPs). Biochem Soc Trans 30(4):455–460. doi:10.1042/BST0300455
Becskei C, Riediger T, Zund D, Wookey P, Lutz TA (2004) Immunohistochemical mapping of calcitonin receptors in the adult rat brain. Brain Res 1030(2):221–233. doi:10.1016/j.brainres.2004.10.012
Ueda T, Ugawa S, Saishin Y, Shimada S (2001) Expression of receptor-activity modifying protein (RAMP) mRNAs in the mouse brain. Brain Res Mol Brain Res 93(1):36–45 (pii: S0169328X01001796)
Barth SW, Riediger T, Lutz TA, Rechkemmer G (2004) Peripheral amylin activates circumventricular organs expressing calcitonin receptor a/b subtypes and receptor-activity modifying proteins in the rat. Brain Res 997(1):97–102
Sexton PM, Paxinos G, Kenney MA, Wookey PJ, Beaumont K (1994) In vitro autoradiographic localization of amylin binding sites in rat brain. Neuroscience 62(2):553–567. doi:10.1016/0306-4522(94)90388-3
Lutz TA (2010) The role of amylin in the control of energy homeostasis. Am J Physiol Regul Integr Comp Physiol 298(6):R1475–R1484. doi:10.1152/ajpregu.00703.2009
Geary N (2005) A new way of looking at eating. Am J Physiol Regul Integr Comp Physiol 288(6):R1444–R1446. doi:10.1152/ajpregu.00066.2005
Lutz TA, Geary N (2008) Gastrointestinal factors in appetite and food research–animal research. In: Harris R, Mattes R (eds) Appetite and food intake: behavioral and physiological consideration. CRC Press, Boca Raton, pp 163–186
Butler PC, Chou J, Carter WB, Wang YN, Bu BH, Chang D, Chang JK, Rizza RA (1990) Effects of meal ingestion on plasma amylin concentration in NIDDM and nondiabetic humans. Diabetes 39(6):752–756
Lutz TA (2006) Amylinergic control of food intake. Physiol Behav 89(4):465–471. doi:10.1016/j.physbeh.2006.04.001
Arnelo U, Reidelberger R, Adrian TE, Larsson J, Permert J (1998) Sufficiency of postprandial plasma levels of islet amyloid polypeptide for suppression of feeding in rats. Am J Physiol 275(5 Pt 2):R1537–R1542
Mollet A, Meier S, Grabler V, Gilg S, Scharrer E, Lutz TA (2003) Endogenous amylin contributes to the anorectic effects of cholecystokinin and bombesin. Peptides 24(1):91–98
Roth JD, Coffey T, Jodka CM, Maier H, Athanacio JR, Mack CM, Weyer C, Parkes DG (2007) Combination therapy with amylin and peptide YY[3–36] in obese rodents: anorexigenic synergy and weight loss additivity. Endocrinology 148(12):6054–6061. doi:10.1210/en.2007-0898
Trevaskis JL, Turek VF, Griffin PS, Wittmer C, Parkes DG, Roth JD (2010) Multi-hormonal weight loss combinations in diet-induced obese rats: therapeutic potential of cholecystokinin? Physiol Behav 100(2):187–195. doi:10.1016/j.physbeh.2010.02.023
Gebre-Medhin S, Mulder H, Pekny M, Westermark G, Tornell J, Westermark P, Sundler F, Ahren B, Betsholtz C (1998) Increased insulin secretion and glucose tolerance in mice lacking islet amyloid polypeptide (amylin). Biochem Biophys Res Commun 250(2):271–277. doi:10.1006/bbrc.1998.9308
Devine E, Young AA (1998) Weight gain in male and female mice with amylin gene knockout. Diabetes 47:A317
Lutz TA (2005) Pancreatic amylin as a centrally acting satiating hormone. Curr Drug Targets 6(2):181–189
Reidelberger RD, Haver AC, Arnelo U, Smith DD, Schaffert CS, Permert J (2004) Amylin receptor blockade stimulates food intake in rats. Am J Physiol Regul Integr Comp Physiol 287(3):R568–R574. doi:10.1152/ajpregu.00213.2004
Rushing PA, Hagan MM, Seeley RJ, Lutz TA, D’Alessio DA, Air EL, Woods SC (2001) Inhibition of central amylin signaling increases food intake and body adiposity in rats. Endocrinology 142(11):5035
Mollet A, Gilg S, Riediger T, Lutz TA (2004) Infusion of the amylin antagonist AC 187 into the area postrema increases food intake in rats. Physiol Behav 81(1):149–155. doi:10.1016/j.physbeh.2004.01.006
Lutz TA, Geary N, Szabady MM, Del Prete E, Scharrer E (1995) Amylin decreases meal size in rats. Physiol Behav 58(6):1197–1202
Morley JE, Suarez MD, Mattamal M, Flood JF (1997) Amylin and food intake in mice: effects on motivation to eat and mechanism of action. Pharmacol Biochem Behav 56(1):123–129. doi:10.1016/S0091-3057(96)00168-2
Mack C, Wilson J, Athanacio J, Reynolds J, Laugero K, Guss S, Vu C, Roth J, Parkes D (2007) Pharmacological actions of the peptide hormone amylin in the long-term regulation of food intake, food preference, and body weight. Am J Physiol Regul Integr Comp Physiol 293(5):R1855–R1863. doi:10.1152/ajpregu.00297.2007
Mack CM, Soares CJ, Wilson JK, Athanacio JR, Turek VF, Trevaskis JL, Roth JD, Smith PA, Gedulin B, Jodka CM, Roland BL, Adams SH, Lwin A, Herich J, Laugero KD, Vu C, Pittner R, Paterniti JR Jr, Hanley M, Ghosh S, Parkes DG (2010) Davalintide (AC2307), a novel amylin-mimetic peptide: enhanced pharmacological properties over native amylin to reduce food intake and body weight. Int J Obes (Lond) 34(2):385–395. doi:10.1038/ijo.2009.238
Lutz TA, Senn M, Althaus J, Del Prete E, Ehrensperger F, Scharrer E (1998) Lesion of the area postrema/nucleus of the solitary tract (AP/NTS) attenuates the anorectic effects of amylin and calcitonin gene-related peptide (CGRP) in rats. Peptides 19(2):309–317
Fry M, Hoyda TD, Ferguson AV (2007) Making sense of it: roles of the sensory circumventricular organs in feeding and regulation of energy homeostasis. Exp Biol Med (Maywood) 232(1):14–26 (pii: 232/1/14)
Lutz TA, Althaus J, Rossi R, Scharrer E (1998) Anorectic effect of amylin is not transmitted by capsaicin-sensitive nerve fibers. Am J Physiol 274(6 Pt 2):R1777–R1782
Lutz TA, Del Prete E, Scharrer E (1994) Reduction of food intake in rats by intraperitoneal injection of low doses of amylin. Physiol Behav 55(5):891–895
Lutz TA, Del Prete E, Scharrer E (1995) Subdiaphragmatic vagotomy does not influence the anorectic effect of amylin. Peptides 16(3):457–462
Lutz TA, Mollet A, Rushing PA, Riediger T, Scharrer E (2001) The anorectic effect of a chronic peripheral infusion of amylin is abolished in area postrema/nucleus of the solitary tract (AP/NTS) lesioned rats. Int J Obes Relat Metab Disord 25(7):1005–1011. doi:10.1038/sj.ijo.0801664
Morley JE, Flood JF, Horowitz M, Morley PM, Walter MJ (1994) Modulation of food intake by peripherally administered amylin. Am J Physiol 267(1 Pt 2):R178–R184
Potes CS, Riediger T, Lutz TA (2010) Amylin induces ERK 1/2 phosphorylation in structures of the AP/NTS-LPB-Ce-BSTL axis. Appetite 54(3):670. doi:10.1016/j.appet.2010.04.164
Riediger T, Schmid HA, Lutz T, Simon E (2001) Amylin potently activates AP neurons possibly via formation of the excitatory second messenger cGMP. Am J Physiol Regul Integr Comp Physiol 281(6):R1833–R1843
Riediger T, Schmid HA, Lutz TA, Simon E (2002) Amylin and glucose co-activate area postrema neurons of the rat. Neurosci Lett 328(2):121–124
Riediger T, Zuend D, Becskei C, Lutz TA (2004) The anorectic hormone amylin contributes to feeding-related changes of neuronal activity in key structures of the gut-brain axis. Am J Physiol Regul Integr Comp Physiol 286(1):R114–R122. doi:10.1152/ajpregu.00333.2003
Potes CS, Boyle CN, Riediger T, Lutz TA (in press) Involvement of the extracellular-signal regulated kinase 1/2 signaling pathway in amylin's eating inhibitory effect. Am J Physiol
Edwards GL, Gedulin BR, Jodka C, Dilts RP, Miller CC, Young A (1998) Area postrem (AP)-lesions block the regulation of gastric emptying by amylin. Neurogastroenterol Motil 10:26
Gedulin BR, Rink TJ, Young AA (1997) Dose-response for glucagonostatic effect of amylin in rats. Metabolism 46(1):67–70 (pii: S0026-0495(97)90170-0)
Young AA, Gedulin B, Vine W, Percy A, Rink TJ (1995) Gastric emptying is accelerated in diabetic BB rats and is slowed by subcutaneous injections of amylin. Diabetologia 38(6):642–648
Wickbom J, Herrington MK, Permert J, Jansson A, Arnelo U (2008) Gastric emptying in response to IAPP and CCK in rats with subdiaphragmatic afferent vagotomy. Regul Pept 148(1–3):21–25. doi:10.1016/j.regpep.2008.03.010
Potes CS, Lutz TA, Riediger T (2010) Identification of central projections from amylin-activated neurons to the lateral hypothalamus. Brain Res 1334:31–44. doi:10.1016/j.brainres.2010.03.114
Rowland NE, Crews EC, Gentry RM (1997) Comparison of Fos induced in rat brain by GLP-1 and amylin. Regul Pept 71(3):171–174 (pii: S0167-0115(97)01034-3)
Curran T, Morgan JI (1995) Fos: an immediate-early transcription factor in neurons. J Neurobiol 26(3):403–412. doi:10.1002/neu.480260312
Nishimoto S, Nishida E (2006) MAPK signalling: ERK5 versus ERK1/2. EMBO Rep 7:782–786
Torii S, Nakayama K, Yamamoto T, Nishida E (2004) Regulatory mechanisms and function of ERK MAP kinases. J Biochem 136:557–561
Yuan LL, Adams JP, Swank M, Sweatt JD, Johnston D (2002) Protein kinase modulation of dendritic K + channels in hippocampus involves a mitogen-activated protein kinase pathway. J Neurosci 22:4860–4868
Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40
Dacquin R, Davey RA, Laplace C, Levasseur R, Morris HA, Goldring SR, Gebre-Medhin S, Galson DL, Zajac JD, Karsenty G (2004) Amylin inhibits bone resorption while the calcitonin receptor controls bone formation in vivo. J Cell Biol 164(4):509–514. doi:10.1083/jcb.200312135
Potes CS, Turek VF, Cole RL, Vu C, Roland BL, Roth JD, Riediger T, Lutz TA (2010) Noradrenergic neurons of the area postrema mediate amylin’s hypophagic action. Am J Physiol Regul Integr Comp Physiol 299(2):R623–R631. doi:10.1152/ajpregu.00791.2009
Babic T, Townsend RL, Patterson LM, Sutton GM, Zheng H, Berthoud HR (2009) Phenotype of neurons in the nucleus of the solitary tract that express CCK-induced activation of the ERK signaling pathway. Am J Physiol Regul Integr Comp Physiol 296(4):R845–R854. doi:10.1152/ajpregu.90531.2008
Sutton GM, Patterson LM, Berthoud HR (2004) Extracellular signal-regulated kinase 1/2 signaling pathway in solitary nucleus mediates cholecystokinin-induced suppression of food intake in rats. J Neurosci 24(45):10240–10247. doi:10.1523/jneurosci.2764-04.2004
Bhavsar S, Watkins J, Young A (1998) Synergy between amylin and cholecystokinin for inhibition of food intake in mice. Physiol Behav 64(4):557–561
Gedulin BR, Young AA (1998) Hypoglycemia overrides amylin-mediated regulation of gastric emptying in rats. Diabetes 47(1):93–97
Michel S, Becskei C, Erguven E, Lutz TA, Riediger T (2007) Diet-derived nutrients modulate the effects of amylin on c-Fos expression in the area postrema and on food intake. Neuroendocrinology 86(2):124–135. doi:10.1159/000107579
Riediger T, Michel S, Forster K, Lutz TA (2009) The ability of amylin to reduce eating depends on the protein content of the diet. Appetite 52(3):854. doi:10.1016/j.appet.2009.04.163
Smith GP (1996) The direct and indirect controls of meal size. Neurosci Biobehav Rev 20(1):41–46. doi:10.1016/0149-7634(95)00038-G
Moran TH, Ladenheim EE, Schwartz GJ (2001) Within-meal gut feedback signaling. Int J Obes Relat Metab Disord 25(Suppl 5):S39–S41. doi:10.1038/sj.ijo.0801910
Schwartz GJ, McHugh PR, Moran TH (1991) Integration of vagal afferent responses to gastric loads and cholecystokinin in rats. Am J Physiol 261(1 Pt 2):R64–R69
Schwartz GJ, McHugh PR, Moran TH (1993) Gastric loads and cholecystokinin synergistically stimulate rat gastric vagal afferents. Am J Physiol 265(4 Pt 2):R872–R876
Young A (2005) Inhibition of gastric emptying. Adv Pharmacol 52:99–121. doi:10.1016/S1054-3589(05)52006-4
Reidelberger RD, Kelsey L, Heimann D (2002) Effects of amylin-related peptides on food intake, meal patterns, and gastric emptying in rats. Am J Physiol Regul Integr Comp Physiol 282(5):R1395–R1404. doi:10.1152/ajpregu.00597.2001
Gedulin BR, Jodka CM, Herrmann K, Young AA (2006) Role of endogenous amylin in glucagon secretion and gastric emptying in rats demonstrated with the selective antagonist, AC187. Regul Pept 137(3):121–127. doi:10.1016/j.regpep.2006.06.004
Aryangat AV, Gerich JE (2010) Type 2 diabetes: postprandial hyperglycemia and increased cardiovascular risk. Vasc Health Risk Manag 6:145–155
Kong MF, King P, Macdonald IA, Blackshaw PE, Horowitz M, Perkins AC, Armstrong E, Buchanan KD, Tattersall RB (1999) Euglycaemic hyperinsulinaemia does not affect gastric emptying in type I and type II diabetes mellitus. Diabetologia 42(3):365–372. doi:10.1007/s001250051164
Kong MF, King P, Macdonald IA, Blackshaw PE, Perkins AC, Armstrong E, Buchanan KD, Tattersall RB (1998) Effect of euglycaemic hyperinsulinaemia on gastric emptying and gastrointestinal hormone responses in normal subjects. Diabetologia 41(4):474–481. doi:10.1007/s001250050932
Kong MF, King P, Macdonald IA, Stubbs TA, Perkins AC, Blackshaw PE, Moyses C, Tattersall RB (1997) Infusion of pramlintide, a human amylin analogue, delays gastric emptying in men with IDDM. Diabetologia 40(1):82–88. doi:10.1007/s001250050646
Kong MF, Stubbs TA, King P, Macdonald IA, Lambourne JE, Blackshaw PE, Perkins AC, Tattersall RB (1998) The effect of single doses of pramlintide on gastric emptying of two meals in men with IDDM. Diabetologia 41(5):577–583. doi:10.1007/s001250050949
Clementi G, Caruso A, Cutuli VM, de Bernardis E, Prato A, Amico-Roxas M (1996) Amylin given by central or peripheral routes decreases gastric emptying and intestinal transit in the rat. Experientia 52(7):677–679
Jodka CM, Green D, Young A, Gedulin B (1996) Amylin modulation of gastric emptying in rats depends upon an intact vagus. Diabetes 45:A235
Reidelberger RD, Arnelo U, Granqvist L, Permert J (2001) Comparative effects of amylin and cholecystokinin on food intake and gastric emptying in rats. Am J Physiol Regul Integr Comp Physiol 280(3):R605–R611
Young AA, Gedulin BR, Rink TJ (1996) Dose-responses for the slowing of gastric emptying in a rodent model by glucagon-like peptide (7–36) NH2, amylin, cholecystokinin, and other possible regulators of nutrient uptake. Metabolism 45(1):1–3
Asarian L, Eckel LA, Geary N (1998) Behaviorally specific inhibition of sham feeding by amylin. Peptides 19(10):1711–1718
Fitzsimons TJ, Le Magnen J (1969) Eating as a regulatory control of drinking in the rat. J Comp Physiol Psychol 67(3):273–283
Arnelo U, Permert J, Adrian TE, Larsson J, Westermark P, Reidelberger RD (1996) Chronic infusion of islet amyloid polypeptide causes anorexia in rats. Am J Physiol 271(6 Pt 2):R1654–R1659
Becskei C, Grabler V, Edwards GL, Riediger T, Lutz TA (2007) Lesion of the lateral parabrachial nucleus attenuates the anorectic effect of peripheral amylin and CCK. Brain Res 1162:76–84. doi:10.1016/j.brainres.2007.06.016
Mollet A, Meier S, Riediger T, Lutz TA (2003) Histamine H1 receptors in the ventromedial hypothalamus mediate the anorectic action of the pancreatic hormone amylin. Peptides 24(1):155–158
Rinaman L, Hoffman GE, Dohanics J, Le WW, Stricker EM, Verbalis JG (1995) Cholecystokinin activates catecholaminergic neurons in the caudal medulla that innervate the paraventricular nucleus of the hypothalamus in rats. J Comp Neurol 360(2):246–256
Chelikani PK, Haver AC, Reidelberger RD (2004) Comparison of the inhibitory effects of PYY(3–36) and PYY(1–36) on gastric emptying in rats. Am J Physiol Regul Integr Comp Physiol 287(5):R1064–R1070. doi:10.1152/ajpregu.00376.2004
Reidelberger RD, Haver AC, Apenteng BA, Anders KL, Steenson SM (2010) Effects of Exendin-4 alone and with peptide YY(3-36) on food intake and body weight in diet-induced obese rats. Obesity (Silver Spring). doi:10.1038/oby.2010.136
Riediger T, Bothe C, Becskei C, Lutz TA (2004) Peptide YY directly inhibits ghrelin-activated neurons of the arcuate nucleus and reverses fasting-induced c-Fos expression. Neuroendocrinology 79(6):317–326. doi:10.1159/000079842
Machidori H, Sakata T, Yoshimatsu H, Ookuma K, Fujimoto K, Kurokawa M, Yamatodani A, Wada H (1992) Zucker obese rats: defect in brain histamine control of feeding. Brain Res 590(1–2):180–186. doi:10.1016/0006-8993(92)91093-T
Sakata T, Yoshimatsu H, Kurokawa M (1997) Hypothalamic neuronal histamine: implications of its homeostatic control of energy metabolism. Nutrition 13(5):403–411
Sakata T, Fukagawa K, Ookuma K, Fujimoto K, Yoshimatsu H, Yamatodani A, Wada H (1988) Modulation of neuronal histamine in control of food intake. Physiol Behav 44(4–5):539–543. doi:10.1016/0031-9384(88)90316-2
Sakata T, Fukagawa K, Fujimoto K, Yoshimatsu H, Shiraishi T, Wada H (1988) Feeding induced by blockade of histamine H1-receptor in rat brain. Experientia 44(3):216–218
Mercer LP, Kelley DS, Humphries LL, Dunn JD (1994) Manipulation of central nervous system histamine or histaminergic receptors (H1) affects food intake in rats. J Nutr 124(7):1029–1036
Mercer LD, Beart PM (1997) Histochemistry in rat brain and spinal cord with an antibody directed at the cholecystokininA receptor. Neurosci Lett 225(2):97–100 (pii: S0304-3940(97)00197-3)
Schwartz JC, Arrang JM, Garbarg M, Pollard H, Ruat M (1991) Histaminergic transmission in the mammalian brain. Physiol Rev 71:1–51
Arrang J-M, Garbarg M, Lancelot J-C, Lecomte J-M, Pollard H, Robba M, Schunack W, Schwartz J-C (1987) Highly potent and selective ligands for histamine H3-receptors. Nature 327:117–123
Mollet A, Lutz TA, Meier S, Riediger T, Rushing PA, Scharrer E (2001) Histamine H1 receptors mediate the anorectic action of the pancreatic hormone amylin. Am J Physiol Regul Integr Comp Physiol 281(5):R1442–R1448
Boyle CN, Stöcker D, Lutz TA (2011) Involvement of the histaminergic system in amylin and leptin action. Appetite 57(Suppl 1):S7
Cooper GJ (1994) Amylin compared with calcitonin gene-related peptide: structure, biology, and relevance to metabolic disease. Endocr Rev 15(2):163–201
Lutz TA, Tschudy S, Rushing PA, Scharrer E (2000) Amylin receptors mediate the anorectic action of salmon calcitonin (sCT). Peptides 21(2):233–238
Muff R, Born W, Fischer JA (1995) Calcitonin, calcitonin gene-related peptide, adrenomedullin and amylin: homologous peptides, separate receptors and overlapping biological actions. Eur J Endocrinol 133(1):17–20
Riediger T, Schmid HA, Young AA, Simon E (1999) Pharmacological characterisation of amylin-related peptides activating subfornical organ neurones. Brain Res 837(1–2):161–168
Lutz TA, Del Prete E, Walzer B, Scharrer E (1996) The histaminergic, but not the serotoninergic, system mediates amylin’s anorectic effect. Peptides 17(8):1317–1322
Morimoto T, Yamamoto Y, Mobarakeh JI, Yanai K, Watanabe T, Yamatodani A (1999) Involvement of the histaminergic system in leptin-induced suppression of food intake. Physiol Behav 67(5):679–683 (pii: S0031-9384(99)00123-7)
Yoshimatsu H, Itateyama E, Kondou S, Tajima D, Himeno K, Hidaka S, Kurokawa M, Sakata T (1999) Hypothalamic neuronal histamine as a target of leptin in feeding behavior. Diabetes 48(12):2286–2291
Masaki T, Yoshimatsu H, Chiba S, Watanabe T, Sakata T (2001) Targeted disruption of histamine H1-receptor attenuates regulatory effects of leptin on feeding, adiposity, and UCP family in mice. Diabetes 50(2):385–391
Woods SC, D’Alessio DA (2008) Central control of body weight and appetite. J Clin Endocrinol Metab 93(11 Suppl 1):S37–S50. doi:10.1210/jc.2008-1630
Irani BG, Le Foll C, Dunn-Meynell AA, Levin BE (2009) Ventromedial nucleus neurons are less sensitive to leptin excitation in rats bred to develop diet-induced obesity. Am J Physiol Regul Integr Comp Physiol 296(3):R521–R527. doi:10.1152/ajpregu.90842.2008
Roth JD, Roland BL, Cole RL, Trevaskis JL, Weyer C, Koda JE, Anderson CM, Parkes DG, Baron AD (2008) Leptin responsiveness restored by amylin agonism in diet-induced obesity: evidence from nonclinical and clinical studies. Proc Natl Acad Sci USA 105(20):7257–7262. doi:10.1073/pnas.0706473105
Turek VF, Trevaskis JL, Levin BE, Dunn-Meynell AA, Irani B, Gu G, Wittmer C, Griffin PS, Vu C, Parkes DG, Roth JD (2010) Mechanisms of amylin/leptin synergy in rodent models. Endocrinology 151(1):143–152. doi:10.1210/en.2009-0546
Lutz TA, Tschudy S, Mollet A, Geary N, Scharrer E (2001) Dopamine D(2) receptors mediate amylin’s acute satiety effect. Am J Physiol Regul Integr Comp Physiol 280(6):R1697–R1703
Qian M, Johnson AE, Kallstrom L, Carrer H, Södersten P (1997) Cholecystokinin, dopamine D2 and N-methyl-d-aspartate binding sites in the nucleus of the solitary tract of the rat: possible relationship to ingestive behavior. Neuroscience 77:1077–1089
Barrachina MD, Martinez V, Wang L, Wei JY, Tache Y (1997) Synergistic interaction between leptin and cholecystokinin to reduce short-term food intake in lean mice. Proc Natl Acad Sci USA 94(19):10455–10460
Riedy CA, Chavez M, Figlewicz DP, Woods SC (1995) Central insulin enhances sensitivity to cholecystokinin. Physiol Behav 58:557–561
Woods SC (2005) Signals that influence food intake and body weight. Physiol Behav 86(5):709–716. doi:10.1016/j.physbeh.2005.08.060
Surina-Baumgartner DM, Langhans W, Geary N (1995) Hepatic portal insulin antibody infusion increases, but insulin does not alter, spontaneous meal size in rats. Am J Physiol 269:R978–R982
Crawley JN, Beinfeld MC (1983) Rapid development of tolerance to the behavioural actions of cholecystokinin. Nature 302(5910):703–706
West DB, Fey D, Woods SC (1984) Cholecystokinin persistently suppresses meal size but not food intake in free-feeding rats. Am J Physiol 246(5 Pt 2):R776–R787
Boyle CN, Rossier MM, Lutz TA (2011) Influence of high-fat feeding, diet-induced obesity, and hyperamylinemia on the sensitivity to acute amylin. Physiol Behav 104(1):20–28. doi:10.1016/j.physbeh.2011.04.044
Woods SC (2004) Gastrointestinal satiety signals I. An overview of gastrointestinal signals that influence food intake. Am J Physiol Gastrointest Liver Physiol 286(1):G7–G13. doi:10.1152/ajpgi.00448.2003
Pieber TR, Roitelman J, Lee Y, Luskey KL, Stein DT (1994) Direct plasma radioimmunoassay for rat amylin-(1–37): concentrations with acquired and genetic obesity. Am J Physiol 267(1 Pt 1):E156–E164
Leckstrom A, Lundquist I, Ma Z, Westermark P (1999) Islet amyloid polypeptide and insulin relationship in a longitudinal study of the genetically obese (ob/ob) mouse. Pancreas 18(3):266–273
Boyle CN, Rossier MM, Lutz TA (2010) Diet-induced obesity hyperamylinemia and amylin sensitivity. Appetite 54(3):636
Enoki S, Mitsukawa T, Takemura J, Nakazato M, Aburaya J, Toshimori H, Matsukara S (1992) Plasma islet amyloid polypeptide levels in obesity, impaired glucose tolerance and non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract 15(1):97–102
Hanabusa T, Kubo K, Oki C, Nakano Y, Okai K, Sanke T, Nanjo K (1992) Islet amyloid polypeptide (IAPP) secretion from islet cells and its plasma concentration in patients with non-insulin-dependent diabetes mellitus. Diabetes Res Clin Pract 15(1):89–96
Gloy VL, Lutz TA, Langhans W, Geary N, Hillebrand JJ (2010) Basal plasma levels of insulin, leptin, ghrelin, and amylin do not signal adiposity in rats recovering from forced overweight. Endocrinology 151(9):4280–4288. doi:10.1210/en.2010-0439
Boyle CN, Lutz TA (2011) Amylinergic control of food intake in lean and obese rodents. Physiol Behav. doi:10.1016/j.physbeh.2011.02.015
Roth JD, Hughes H, Kendall E, Baron AD, Anderson CM (2006) Antiobesity effects of the beta-cell hormone amylin in diet-induced obese rats: effects on food intake, body weight, composition, energy expenditure, and gene expression. Endocrinology 147(12):5855–5864. doi:10.1210/en.2006-0393
Rushing PA, Hagan MM, Seeley RJ, Lutz TA, Woods SC (2000) Amylin: a novel action in the brain to reduce body weight. Endocrinology 141(2):850–853
Wielinga PY, Alder B, Lutz TA (2007) The acute effect of amylin and salmon calcitonin on energy expenditure. Physiol Behav 91(2–3):212–217. doi:10.1016/j.physbeh.2007.02.012
Wielinga PY, Lowenstein C, Muff S, Munz M, Woods SC, Lutz TA (2010) Central amylin acts as an adiposity signal to control body weight and energy expenditure. Physiol Behav 101(1):45–52. doi:10.1016/j.physbeh.2010.04.012
Chavez M, Kaiyala K, Madden LJ, Schwartz MW, Woods SC (1995) Intraventricular insulin and the level of maintained body weight in rats. Behav Neurosci 109:528–531
Munzberg H (2010) Leptin-signaling pathways and leptin resistance. Forum Nutr 63:123–132. doi:10.1159/000264400
Banks WA (2010) Blood-brain barrier as a regulatory interface. Forum Nutr 63:102–110. doi:10.1159/000264398
Banks WA (2008) The blood-brain barrier: connecting the gut and the brain. Regul Pept 149(1–3):11–14. doi:10.1016/j.regpep.2007.08.027
Banks WA (2001) Leptin transport across the blood-brain barrier: implications for the cause and treatment of obesity. Curr Pharm Des 7(2):125–133
Banks WA, Coon AB, Robinson SM, Moinuddin A, Shultz JM, Nakaoke R, Morley JE (2004) Triglycerides induce leptin resistance at the blood-brain barrier. Diabetes 53(5):1253–1260
Banks WA, DiPalma CR, Farrell CL (1999) Impaired transport of leptin across the blood–brain barrier in obesity. Peptides 20(11):1341–1345 (pii: S0196-9781(99)00139-4)
Benoit SC, Kemp CJ, Elias CF, Abplanalp W, Herman JP, Migrenne S, Lefevre AL, Cruciani-Guglielmacci C, Magnan C, Yu F, Niswender K, Irani BG, Holland WL, Clegg DJ (2009) Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents. J Clin Invest 119(9):2577–2589. doi:10.1172/jci36714
Clegg DJ, Benoit SC, Reed JA, Woods SC, Dunn-Meynell A, Levin BE (2005) Reduced anorexic effects of insulin in obesity-prone rats fed a moderate-fat diet. Am J Physiol Regul Integr Comp Physiol 288(4):R981–R986. doi:10.1152/ajpregu.00675.2004
Clegg DJ, Gotoh K, Kemp C, Wortman MD, Benoit SC, Brown LM, D’Alessio D, Tso P, Seeley RJ, Woods SC (2011) Consumption of a high-fat diet induces central insulin resistance independent of adiposity. Physiol Behav 103(1):10–16. doi:10.1016/j.physbeh.2011.01.010
Knight ZA, Hannan KS, Greenberg ML, Friedman JM (2010) Hyperleptinemia is required for the development of leptin resistance. PLoS ONE 5(6):e11376. doi:10.1371/journal.pone.0011376
Buse JB, Weyer C, Maggs DG (2002) Amylin replacement with pramlintide in type 1 and type 2 diabetes: a physiological approach to overcome barriers with insulin therapy. Clin Diabetes 20(3):137–144
Hollander P, Maggs DG, Ruggles JA, Fineman M, Shen L, Kolterman OG, Weyer C (2004) Effect of pramlintide on weight in overweight and obese insulin-treated type 2 diabetes patients. Obes Res 12(4):661–668. doi:10.1038/oby.2004.76
Trevaskis J, Coffey T, Cole R, Lei C, Wittmer C, Walsh B, Weyer C, Koda J, Baron A, Parkes D, Roth J (2008) Amylin-mediated restoration of leptin responsiveness in diet-induced obesity: magnitude and mechanisms. Endocrinology 149(11):5679–5687
Weyer C, Maggs DG, Young AA, Kolterman OG (2001) Amylin replacement with pramlintide as an adjunct to insulin therapy in type 1 and type 2 diabetes mellitus: a physiological approach toward improved metabolic control. Curr Pharm Des 7(14):1353–1373
Ashwell M, Meade CJ (1978) Obesity: do fat cells from genetically obese mice (C57BL/6 J ob/ob) have an innate capacity for increased fat storage? Diabetologia 15(6):465–470
Roth JD, Trevaskis JL, Turek VF, Parkes DG (2010) “Weighing in” on synergy: preclinical research on neurohormonal anti-obesity combinations. Brain Res 1350:86–94. doi:10.1016/j.brainres.2010.01.027
Ravussin E, Smith SR, Mitchell JA, Shringarpure R, Shan K, Maier H, Koda JE, Weyer C (2009) Enhanced weight loss with pramlintide/metreleptin: an integrated neurohormonal approach to obesity pharmacotherapy. Obesity (Silver Spring) 17(9):1736–1743. doi:10.1038/oby.2009.184
Covasa M, Marcuson JK, Ritter RC (2001) Diminished satiation in rats exposed to elevated levels of endogenous or exogenous cholecystokinin. Am J Physiol Regul Integr Comp Physiol 280(2):R331–R337
Covasa M, Ritter RC (1998) Rats maintained on high-fat diets exhibit reduced satiety in response to CCK and bombesin. Peptides 19(8):1407–1415 (pii: S0196-9781(98)00096-5)
Covasa M, Ritter RC (1999) Reduced sensitivity to the satiation effect of intestinal oleate in rats adapted to high-fat diet. Am J Physiol 277(1 Pt 2):R279–R285
Swartz TD, Duca FA, Covasa M (2010) Differential feeding behavior and neuronal responses to CCK in obesity-prone and -resistant rats. Brain Res 1308:79–86. doi:10.1016/j.brainres.2009.10.045
Banks WA, Kastin AJ, Maness LM, Huang W, Jaspan JB (1995) Permeability of the blood-brain barrier to amylin. Life Sci 57(22):1993–2001 (pii: 002432059502197Q)
Banks WA, Kastin AJ (1998) Differential permeability of the blood-brain barrier to two pancreatic peptides: insulin and amylin. Peptides 19(5):883–889 (pii: S0196-9781(98)00018-7)
Reinehr T, de Sousa G, Niklowitz P, Roth CL (2007) Amylin and its relation to insulin and lipids in obese children before and after weight loss. Obesity (Silver Spring) 15(8):2006–2011. doi:10.1038/oby.2007.239
Levin BE, Dunn-Meynell AA (2002) Reduced central leptin sensitivity in rats with diet-induced obesity. Am J Physiol Regul Integr Comp Physiol 283(4):R941–R948. doi:10.1152/ajpregu.00245.2002
Levin BE, Dunn-Meynell AA (2002) Defense of body weight depends on dietary composition and palatability in rats with diet-induced obesity. Am J Physiol Regul Integr Comp Physiol 282(1):R46–R54
Boyle CN, Munz M, Wielinga PY, Stöcker D, Lutz TA (2010) Short-term, but not extended, access to palatable diet diminishes amylin responsiveness in rat. Appetite 54(3):636
Baldo BA, Kelley AE (2001) Amylin infusion into rat nucleus accumbens potently depresses motor activity and ingestive behavior. Am J Physiol Regul Integr Comp Physiol 281(4):R1232–R1242
Levin BE, Dunn-Meynell AA (2000) Defense of body weight against chronic caloric restriction in obesity-prone and -resistant rats. Am J Physiol Regul Integr Comp Physiol 278(1):R231–R237
Levin BE, Dunn-Meynell AA, Balkan B, Keesey RE (1997) Selective breeding for diet-induced obesity and resistance in Sprague-Dawley rats. Am J Physiol 273(2 Pt 2):R725–R730
Ogawa A, Harris V, McCorkle SK, Unger RH, Luskey KL (1990) Amylin secretion from the rat pancreas and its selective loss after streptozotocin treatment. J Clin Invest 85(3):973–976. doi:10.1172/JCI114528
Pieber TR, Stein DT, Ogawa A, Alam T, Ohneda M, McCorkle K, Chen L, McGarry JD, Unger RH (1993) Amylin-insulin relationships in insulin resistance with and without diabetic hyperglycemia. Am J Physiol 265(3 Pt 1):E446–E453
Blackard WG, Clore JN, Kellum JM (1994) Amylin/insulin secretory ratios in morbidly obese man: inverse relationship with glucose disappearance rate. J Clin Endocrinol Metab 78(5):1257–1260
Qi D, Cai K, Wang O, Li Z, Chen J, Deng B, Qian L, Le Y (2009) Fatty acids induce amylin expression and secretion by pancreatic {beta}-cells. Am J Physiol Endocrinol Metab. doi:10.1152/ajpendo.00242.2009
Isaksson B, Wang F, Permert J, Olsson M, Fruin B, Herrington MK, Enochsson L, Erlanson-Albertsson C, Arnelo U (2005) Chronically administered islet amyloid polypeptide in rats serves as an adiposity inhibitor and regulates energy homeostasis. Pancreatology 5(1):29–36. doi:10.1159/000084488
Osaka T, Tsukamoto A, Koyama Y, Inoue S (2008) Central and peripheral administration of amylin induces energy expenditure in anesthetized rats. Peptides 29(6):1028–1035. doi:10.1016/j.peptides.2008.02.002
Wielinga PY, Löwenstein C, Alder B, Lutz TA (2008) Effect of peripheral and central amylin on energy expenditure and body temperature. Appetite 91:409
Osto M, Wielinga PY, Alder B, Walser N, Lutz TA (2007) Modulation of the satiating effect of amylin by central ghrelin, leptin and insulin. Physiol Behav 91(5):566–572. doi:10.1016/j.physbeh.2007.03.017
Rushing PA, Lutz TA, Seeley RJ, Woods SC (2000) Amylin and insulin interact to reduce food intake in rats. Horm Metab Res 32(2):62–65. doi:10.1055/s-2007-978590
Seth R, Knight WD, Overton JM (2010) Combined amylin-leptin treatment lowers blood pressure and adiposity in lean and obese rats. Int J Obes (Lond). doi:10.1038/ijo.2010.262
Trevaskis JL, Lei C, Koda JE, Weyer C, Parkes DG, Roth JD (2009) Interaction of leptin and amylin in the long-term maintenance of weight loss in diet-induced obese rats. Obesity (Silver Spring). doi:10.1038/oby.2009.187
Schwartz MW, Woods SC, Seeley RJ, Barsh GS, Baskin DG, Leibel RL (2003) Is the energy homeostasis system inherently biased toward weight gain? Diabetes 52(2):232–238
Chapman I, Parker B, Doran S, Feinle-Bisset C, Wishart J, Lush CW, Chen K, Lacerte C, Burns C, McKay R, Weyer C, Horowitz M (2007) Low-dose pramlintide reduced food intake and meal duration in healthy, normal-weight subjects. Obesity (Silver Spring) 15(5):1179–1186. doi:10.1038/oby.2007.626
Chapman I, Parker B, Doran S, Feinle-Bisset C, Wishart J, Strobel S, Wang Y, Burns C, Lush C, Weyer C, Horowitz M (2005) Effect of pramlintide on satiety and food intake in obese subjects and subjects with type 2 diabetes. Diabetologia 48(5):838–848. doi:10.1007/s00125-005-1732-4
Aronne L, Fujioka K, Aroda V, Chen K, Halseth A, Kesty NC, Burns C, Lush CW, Weyer C (2007) Progressive reduction in body weight after treatment with the amylin analog pramlintide in obese subjects: a phase 2, randomized, placebo-controlled, dose-escalation study. J Clin Endocrinol Metab 92(8):2977–2983. doi:10.1210/jc.2006-2003
Smith SR, Aronne LJ, Burns CM, Kesty NC, Halseth AE, Weyer C (2008) Sustained weight loss following 12-month pramlintide treatment as an adjunct to lifestyle intervention in obesity. Diabetes Care 31(9):1816–1823. doi:10.2337/dc08-0029
Smith SR, Blundell JE, Burns C, Ellero C, Schroeder BE, Kesty NC, Chen KS, Halseth AE, Lush CW, Weyer C (2007) Pramlintide treatment reduces 24-h caloric intake and meal sizes and improves control of eating in obese subjects: a 6-wk translational research study. Am J Physiol Endocrinol Metab 293(2):E620–E627. doi:10.1152/ajpendo.00217.2007
Trevaskis JL, Parkes DG, Roth JD (2010) Insights into amylin-leptin synergy. Trends Endocrinol Metab 21(8):473–479. doi:10.1016/j.tem.2010.03.006
Trevaskis JL, Lei C, Koda JE, Weyer C, Parkes DG, Roth JD (2010) Interaction of leptin and amylin in the long-term maintenance of weight loss in diet-induced obese rats. Obesity (Silver Spring) 18(1):21–26. doi:10.1038/oby.2009.187
Asarian L, Geary N (2007) Estradiol enhances cholecystokinin-dependent lipid-induced satiation and activates estrogen receptor-alpha-expressing cells in the nucleus tractus solitarius of ovariectomized rats. Endocrinology 148(12):5656–5666. doi:10.1210/en.2007-0341
Asarian L, Geary N (2002) Cyclic estradiol treatment normalizes body weight and restores physiological patterns of spontaneous feeding and sexual receptivity in ovariectomized rats. Horm Behav 42(4):461–471 (pii: S0018506X02918350)
Thammacharoen S, Geary N, Lutz TA, Ogawa S, Asarian L (2009) Divergent effects of estradiol and the estrogen receptor-alpha agonist PPT on eating and activation of PVN CRH neurons in ovariectomized rats and mice. Brain Res 1268:88–96. doi:10.1016/j.brainres.2009.02.067
Thammacharoen S, Lutz TA, Geary N, Asarian L (2008) Hindbrain administration of estradiol inhibits feeding and activates estrogen receptor-alpha-expressing cells in the nucleus tractus solitarius of ovariectomized rats. Endocrinology 149(4):1609–1617. doi:10.1210/en.2007-0340
Meyer MR, Clegg DJ, Prossnitz ER, Barton M (2011) Obesity, insulin resistance and diabetes: sex differences and role of oestrogen receptors. Acta Physiol (Oxf). doi:10.1111/j.1748-1716.2010.02237.x
Park CJ, Zhao Z, Glidewell-Kenney C, Lazic M, Chambon P, Krust A, Weiss J, Clegg DJ, Dunaif A, Jameson JL, Levine JE (2011) Genetic rescue of nonclassical ERalpha signaling normalizes energy balance in obese Eralpha-null mutant mice. J Clin Invest 121(2):604–612. doi:10.1172/jci41702
Eckel LA, Geary N (1999) Endogenous cholecystokinin’s satiating action increases during estrus in female rats. Peptides 20(4):451–456
Trevaskis JL, Turek VF, Wittmer C, Griffin PS, Wilson JK, Reynolds JM, Zhao Y, Mack CM, Parkes DG, Roth JD (2010) Enhanced amylin-mediated body weight loss in estradiol-deficient diet-induced obese rats. Endocrinology 151(12):5657–5668. doi:10.1210/en.2010-0590
Lutz TA (2011) Amylin may offer (more) help to treat postmenopausal obesity. Endocrinology 152(1):1–3. doi:10.1210/en.2010-1158
Asarian L, Boyle CN, Lutz TA (2011) Estradiol (E2) increases the acute eating-inhibitory effect of amylin in ovariectomized (OVX) rats. Appetite 57(Suppl 1):S2
Acknowledgments
The continued financial support of the Swiss National Science Foundation, the support of the Zurich Center of Integrative Human Physiology, the Novartis Foundation, the Ciba-Geigy Foundation, the Olga Mayenfisch Foundation, and the Vontobel Foundation are gratefully acknowledged. We thank Amylin Pharmaceuticals Inc. for some supply of amylin.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lutz, T.A. Control of energy homeostasis by amylin. Cell. Mol. Life Sci. 69, 1947–1965 (2012). https://doi.org/10.1007/s00018-011-0905-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00018-011-0905-1