Skip to main content

Advertisement

Log in

RhoA/Rho-kinase and vascular diseases: what is the link?

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

RhoA/Rho-kinase pathway plays an important role in many pathological conditions. RhoA participates in the regulation of smooth muscle tone and activates many downstream kinases. The best characterized are the serine/threonine kinase isoforms (Rho-kinase or ROCK), ROCKα/ROCK2 and ROCKβ/ROCK1. ROCK is necessary for diverse functions such as local blood flow, arterial/pulmonary blood pressure, airway resistance and intestinal peristalsis. ROCK activation permits actin/myosin interactions and smooth muscle cells contraction by maintaining the activity of myosin light-chain kinase, independently of the free cytosolic calcium level. The sensitization of smooth muscle myofilaments to calcium has been implicated in many pathological states, such as hypertension, diabetes, heart attack, stroke, pulmonary hypertension, erectile dysfunction, and cancer. The focus of this review is on the involvement of RhoA/Rho-kinase in diseases. We will briefly describe the ROCK isoforms and the role of RhoA/Rho-kinase in the vasculature, before exploring the most recent findings regarding this pathway and various diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Amano M, Fukata Y, Kaibuchi K (2000) Regulation and functions of Rho-associated kinase. Exp Cell Res 261:44–51

    PubMed  CAS  Google Scholar 

  2. Ridley AJ (2001) Rho family proteins: coordinating cell responses. Trends Cell Biol 11:471–477

    PubMed  CAS  Google Scholar 

  3. Nakagawa O, Fujisawa K, Ishizaki T, Saito Y, Nakao K, Narumiya S (1996) ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett 392:189–193

    PubMed  CAS  Google Scholar 

  4. Wettschureck N, Offermanns S (2002) Rho/Rho-kinase mediated signaling in physiology and pathophysiology. J Mol Med 80:629–638

    PubMed  CAS  Google Scholar 

  5. Shimokawa H (2002) Rho-kinase as a novel therapeutic target in treatment of cardiovascular diseases. J Cardiovasc Pharmacol 39:319–327

    PubMed  CAS  Google Scholar 

  6. Somlyo AP, Somlyo AV (2004) Signal transduction through the RhoA/Rho-kinase pathway in smooth muscle. J Muscle Res Cell Motil 25:613–615

    PubMed  Google Scholar 

  7. Kureishi Y, Kobayashi S, Amano M, Kimura K, Kanaide H, Nakano T, Kaibuchi K, Ito M (1997) Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation. J Biol Chem 272:12257–12260

    PubMed  CAS  Google Scholar 

  8. Berridge MJ (2008) Smooth muscle cell calcium activation mechanisms. J Physiol 586:5047–5061

    PubMed  CAS  Google Scholar 

  9. Hiroki J, Shimokawa H, Higashi M, Morikawa K, Kandabashi T, Kawamura N, Kubota T, Ichiki T, Amano M, Kaibuchi K, Takeshita A (2004) Inflammatory stimuli upregulate Rho-kinase in human coronary vascular smooth muscle cells. J Mol Cell Cardiol 37:537–546

    PubMed  CAS  Google Scholar 

  10. Barman SA, Zhu S, White RE (2009) RhoA/Rho-kinase signaling: a therapeutic target in pulmonary hypertension. Vasc Health Risk Manag 5:663–671

    PubMed  CAS  Google Scholar 

  11. Gao BH, Zhao ST, Meng FW, Shi BK, Liu YQ, Xu ZS (2007) Y-27632 improves the erectile dysfunction with ageing in SD rats through adjusting the imbalance between nNo and the Rho-kinase pathways. Andrologia 39:146–150

    PubMed  CAS  Google Scholar 

  12. Nakamura Y, Kaneto H, Miyatsuka T, Matsuoka TA, Matsuhisa M, Node K, Hori M, Yamasaki Y (2006) Marked increase of insulin gene transcription by suppression of the Rho/Rho-kinase pathway. Biochem Biophys Res Commun 350:68–73

    PubMed  CAS  Google Scholar 

  13. Chang YW, Bean RR, Jakobi R (2009) Targeting RhoA/Rho kinase and p21-activated kinase signaling to prevent cancer development and progression. Recent Pat Anticancer Drug Discov 4:110–124

    PubMed  CAS  Google Scholar 

  14. LoGrasso PV, Feng Y (2009) Rho kinase (ROCK) inhibitors and their application to inflammatory disorders. Curr Top Med Chem 9:704–723

    PubMed  CAS  Google Scholar 

  15. Liao JK, Seto M, Noma K (2007) Rho kinase (ROCK) inhibitors. J Cardiovasc Pharmacol 50:17–24

    PubMed  CAS  Google Scholar 

  16. Sorokina EM, Chernoff J (2005) Rho-GTPases: new members, new pathways. J Cell Biochem 94:225–231

    PubMed  CAS  Google Scholar 

  17. Fukata Y, Amano M, Kaibuchi K (2001) Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol Sci 22:32–39

    PubMed  CAS  Google Scholar 

  18. Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269

    PubMed  CAS  Google Scholar 

  19. Riento K, Ridley AJ (2003) Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol 4:446–456

    PubMed  CAS  Google Scholar 

  20. Komander D, Garg R, Wan PT, Ridley AJ, Barford D (2008) Mechanism of multi-site phosphorylation from a ROCK-I: RhoE complex structure. EMBO J 27:3175–3185

    PubMed  CAS  Google Scholar 

  21. Riento K, Totty N, Villalonga P, Garg R, Guasch R, Ridley AJ (2005) RhoE function is regulated by ROCK I-mediated phosphorylation. EMBO J 24:1170–1180

    PubMed  CAS  Google Scholar 

  22. Kurokawa T, Yumiya Y, Fujisawa H, Shirao S, Kashiwagi S, Sato M, Kishi H, Miwa S, Mogami K, Kato S, Akimura T, Soma M, Ogasawara K, Ogawa A, Kobayashi S, Suzuki M (2009) Elevated concentrations of sphingosylphosphorylcholine in cerebrospinal fluid after subarachnoid hemorrhage: a possible role as a spasmogen. J Clin Neurosci 16:1064–1068

    PubMed  CAS  Google Scholar 

  23. Matsui T, Amano M, Yamamoto T, Chihara K, Nakafuku M, Ito M, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J 15:2208–2216

    PubMed  CAS  Google Scholar 

  24. Yoneda A, Multhaupt HA, Couchman JR (2005) The Rho kinases I and II regulate different aspects of myosin II activity. J Cell Biol 170:443–453

    PubMed  CAS  Google Scholar 

  25. Sebbagh M, Renvoize C, Hamelin J, Riche N, Bertoglio J, Breard J (2001) Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat Cell Biol 3:346–352

    PubMed  CAS  Google Scholar 

  26. Wang Y, Zheng XR, Riddick N, Bryden M, Baur W, Zhang X, Surks HK (2009) ROCK isoform regulation of myosin phosphatase and contractility in vascular smooth muscle cells. Circ Res 104:531–540

    PubMed  CAS  Google Scholar 

  27. Thumkeo D, Keel J, Ishizaki T, Hirose M, Nonomura K, Oshima H, Oshima M, Taketo MM, Narumiya S (2003) Targeted disruption of the mouse rho-associated kinase 2 gene results in intrauterine growth retardation and fetal death. Mol Cell Biol 23:5043–5055

    PubMed  CAS  Google Scholar 

  28. Loirand G, Guerin P, Pacaud P (2006) Rho kinases in cardiovascular physiology and pathophysiology. Circ Res 98:322–334

    PubMed  CAS  Google Scholar 

  29. Wei L, Roberts W, Wang L, Yamada M, Zhang S, Zhao Z, Rivkees SA, Schwartz RJ, Imanaka-Yoshida K (2001) Rho kinases play an obligatory role in vertebrate embryonic organogenesis. Development 128:2953–2962

    PubMed  CAS  Google Scholar 

  30. Di Cunto F, Imarisio S, Hirsch E, Broccoli V, Bulfone A, Migheli A, Atzori C, Turco E, Triolo R, Dotto GP, Silengo L, Altruda F (2000) Defective neurogenesis in citron kinase knockout mice by altered cytokinesis and massive apoptosis. Neuron 28:115–127

    PubMed  CAS  Google Scholar 

  31. Yamashita K, Kotani Y, Nakajima Y, Shimazawa M, Yoshimura S, Nakashima S, Iwama T, Hara H (2007) Fasudil, a Rho kinase (ROCK) inhibitor, protects against ischemic neuronal damage in vitro and in vivo by acting directly on neurons. Brain Res 1154:215–224

    PubMed  CAS  Google Scholar 

  32. Leung T, Manser E, Tan L, Lim L (1995) A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J Biol Chem 270:29051–29054

    PubMed  CAS  Google Scholar 

  33. Chevrier V, Piel M, Collomb N, Saoudi Y, Frank R, Paintrand M, Narumiya S, Bornens M, Job D (2002) The Rho-associated protein kinase p160ROCK is required for centrosome positioning. J Cell Biol 157:807–817

    PubMed  CAS  Google Scholar 

  34. Sah VP, Seasholtz TM, Sagi SA, Brown JH (2000) The role of Rho in G protein-coupled receptor signal transduction. Annu Rev Pharmacol Toxicol 40:459–489

    PubMed  CAS  Google Scholar 

  35. Mizuno Y, Isotani E, Huang J, Ding H, Stull JT, Kamm KE (2008) Myosin light chain kinase activation and calcium sensitization in smooth muscle in vivo. Am J Physiol Cell Physiol 295:C358–C364

    PubMed  CAS  Google Scholar 

  36. Newton AC (1995) Protein kinase C: structure, function, and regulation. J Biol Chem 270:28495–28498

    PubMed  CAS  Google Scholar 

  37. Hilgers RH, Webb RC (2005) Molecular aspects of arterial smooth muscle contraction: focus on Rho. Exp Biol Med (Maywood) 230:829–835

    CAS  Google Scholar 

  38. Muranyi A, Derkach D, Erdodi F, Kiss A, Ito M, Hartshorne DJ (2005) Phosphorylation of Thr695 and Thr850 on the myosin phosphatase target subunit: inhibitory effects and occurrence in A7r5 cells. FEBS Lett 579:6611–6615

    PubMed  CAS  Google Scholar 

  39. Eto M, Ohmori T, Suzuki M, Furuya K, Morita F (1995) A novel protein phosphatase-1 inhibitory protein potentiated by protein kinase C. Isolation from porcine aorta media and characterization. J Biochem 118:1104–1107

    PubMed  CAS  Google Scholar 

  40. Koyama M, Ito M, Feng J, Seko T, Shiraki K, Takase K, Hartshorne DJ, Nakano T (2000) Phosphorylation of CPI-17, an inhibitory phosphoprotein of smooth muscle myosin phosphatase, by Rho-kinase. FEBS Lett 475:197–200

    PubMed  CAS  Google Scholar 

  41. Surks HK, Riddick N, Ohtani K (2005) M-RIP targets myosin phosphatase to stress fibers to regulate myosin light chain phosphorylation in vascular smooth muscle cells. J Biol Chem 280:42543–42551

    PubMed  CAS  Google Scholar 

  42. Koga Y, Ikebe M (2005) p116Rip decreases myosin II phosphorylation by activating myosin light chain phosphatase and by inactivating RhoA. J Biol Chem 280:4983–4991

    PubMed  CAS  Google Scholar 

  43. Jin L, Ying Z, Hilgers RH, Yin J, Zhao X, Imig JD, Webb RC (2006) Increased RhoA/Rho-kinase signaling mediates spontaneous tone in aorta from angiotensin II-induced hypertensive rats. J Pharmacol Exp Ther 318:288–295

    PubMed  CAS  Google Scholar 

  44. Zhou Q, Liao JK (2009) Rho kinase: an important mediator of atherosclerosis and vascular disease. Curr Pharm Des 15:3108–3115

    PubMed  CAS  Google Scholar 

  45. Hamid SA, Bower HS, Baxter GF (2007) Rho kinase activation plays a major role as a mediator of irreversible injury in reperfused myocardium. Am J Physiol Heart Circ Physiol 292:H2598–H2606

    PubMed  CAS  Google Scholar 

  46. Rikitake Y, Kim HH, Huang Z, Seto M, Yano K, Asano T, Moskowitz MA, Liao JK (2005) Inhibition of Rho kinase (ROCK) leads to increased cerebral blood flow and stroke protection. Stroke 36:2251–2257

    PubMed  CAS  Google Scholar 

  47. Sato M, Tani E, Fujikawa H, Kaibuchi K (2000) Involvement of Rho-kinase-mediated phosphorylation of myosin light chain in enhancement of cerebral vasospasm. Circ Res 87:195–200

    PubMed  CAS  Google Scholar 

  48. Higashi M, Shimokawa H, Hattori T, Hiroki J, Mukai Y, Morikawa K, Ichiki T, Takahashi S, Takeshita A (2003) Long-term inhibition of Rho-kinase suppresses angiotensin II-induced cardiovascular hypertrophy in rats in vivo: effect on endothelial NAD(P)H oxidase system. Circ Res 93:767–775

    PubMed  CAS  Google Scholar 

  49. Bao W, Hu E, Tao L, Boyce R, Mirabile R, Thudium DT, Ma XL, Willette RN, Yue TL (2004) Inhibition of Rho-kinase protects the heart against ischemia/reperfusion injury. Cardiovasc Res 61:548–558

    PubMed  CAS  Google Scholar 

  50. Miyata K, Shimokawa H, Kandabashi T, Higo T, Morishige K, Eto Y, Egashira K, Kaibuchi K, Takeshita A (2000) Rho-kinase is involved in macrophage-mediated formation of coronary vascular lesions in pigs in vivo. Arterioscler Thromb Vasc Biol 20:2351–2358

    PubMed  CAS  Google Scholar 

  51. Ming XF, Viswambharan H, Barandier C, Ruffieux J, Kaibuchi K, Rusconi S, Yang Z (2002) Rho GTPase/Rho kinase negatively regulates endothelial nitric oxide synthase phosphorylation through the inhibition of protein kinase B/Akt in human endothelial cells. Mol Cell Biol 22:8467–8477

    PubMed  CAS  Google Scholar 

  52. Wolfrum S, Dendorfer A, Rikitake Y, Stalker TJ, Gong Y, Scalia R, Dominiak P, Liao JK (2004) Inhibition of Rho-kinase leads to rapid activation of phosphatidylinositol 3-kinase/protein kinase Akt and cardiovascular protection. Arterioscler Thromb Vasc Biol 24:1842–1847

    PubMed  CAS  Google Scholar 

  53. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605

    PubMed  CAS  Google Scholar 

  54. Chen ZP, Mitchelhill KI, Michell BJ, Stapleton D, Rodriguez-Crespo I, Witters LA, Power DA, Ortiz de Montellano PR, Kemp BE (1999) AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Lett 443:285–289

    PubMed  CAS  Google Scholar 

  55. Kishi T, Hirooka Y, Masumoto A, Ito K, Kimura Y, Inokuchi K, Tagawa T, Shimokawa H, Takeshita A, Sunagawa K (2005) Rho-kinase inhibitor improves increased vascular resistance and impaired vasodilation of the forearm in patients with heart failure. Circulation 111:2741–2747

    PubMed  CAS  Google Scholar 

  56. Shimokawa H, Hiramori K, Iinuma H, Hosoda S, Kishida H, Osada H, Katagiri T, Yamauchi K, Yui Y, Minamino T, Nakashima M, Kato K (2002) Anti-anginal effect of fasudil, a Rho-kinase inhibitor, in patients with stable effort angina: a multicenter study. J Cardiovasc Pharmacol 40:751–761

    PubMed  CAS  Google Scholar 

  57. Miao L, Calvert JW, Tang J, Parent AD, Zhang JH (2001) Age-related RhoA expression in blood vessels of rats. Mech Ageing Dev 122:1757–1770

    PubMed  CAS  Google Scholar 

  58. Kai H, Kudo H, Takayama N, Yasuoka S, Kajimoto H, Imaizumi T (2009) Large blood pressure variability and hypertensive cardiac remodeling—role of cardiac inflammation. Circ J 73:2198–2203

    PubMed  Google Scholar 

  59. Cousin M, Custaud MA, Baron-Menguy C, Toutain B, Dumont O, Guihot AL, Vessieres E, Subra JF, Henrion D, Loufrani L (2010) Role of angiotensin II in the remodeling induced by a chronic increase in flow in rat mesenteric resistance arteries. Hypertension 55:109–115

    Google Scholar 

  60. Wesselman JP, De Mey JG (2002) Angiotensin and cytoskeletal proteins: role in vascular remodeling. Curr Hypertens Rep 4:63–70

    PubMed  Google Scholar 

  61. Wynne BM, Chiao C-W, Webb RC (2009) Vascular smooth muscle cell signaling mechanism for construction to angiotensin II and endothelin-1. J Am Soc Hypertension 3:84–95

    Google Scholar 

  62. Zhong Y, Hennig B, Toborek M (2010) Intact lipid rafts regulate HIV-1 Tat protein-induced activation of the Rho signaling and upregulation of P-glycoprotein in brain endothelial cells. J Cereb Blood Flow Metab 30:522–533

    Google Scholar 

  63. Xiao H, Neuveut C, Tiffany HL, Benkirane M, Rich EA, Murphy PM, Jeang KT (2000) Selective CXCR4 antagonism by Tat: implications for in vivo expansion of coreceptor use by HIV-1. Proc Natl Acad Sci USA 97:11466–11471

    PubMed  CAS  Google Scholar 

  64. Fukumoto Y, Tawara S, Shimokawa H (2007) Recent progress in the treatment of pulmonary arterial hypertension: expectation for rho-kinase inhibitors. Tohoku J Exp Med 211:309–320

    PubMed  CAS  Google Scholar 

  65. Wakino S, Kanda T, Hayashi K (2005) Rho/Rho kinase as a potential target for the treatment of renal disease. Drug News Perspect 18:639–643

    PubMed  CAS  Google Scholar 

  66. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ (2003) The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA 289:2560–2572

    PubMed  CAS  Google Scholar 

  67. Kokubo Y, Kamide K (2009) High-normal blood pressure and the risk of cardiovascular disease. Circ J 73:1381–1385

    PubMed  Google Scholar 

  68. Masumoto A, Hirooka Y, Shimokawa H, Hironaga K, Setoguchi S, Takeshita A (2001) Possible involvement of Rho-kinase in the pathogenesis of hypertension in humans. Hypertension 38:1307–1310

    PubMed  CAS  Google Scholar 

  69. Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, Tamakawa H, Yamagami K, Inui J, Maekawa M, Narumiya S (1997) Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389:990–994

    PubMed  CAS  Google Scholar 

  70. Ito K, Hirooka Y, Sakai K, Kishi T, Kaibuchi K, Shimokawa H, Takeshita A (2003) Rho/Rho-kinase pathway in brain stem contributes to blood pressure regulation via sympathetic nervous system: possible involvement in neural mechanisms of hypertension. Circ Res 92:1337–1343

    PubMed  CAS  Google Scholar 

  71. Ito K, Hirooka Y, Kishi T, Kimura Y, Kaibuchi K, Shimokawa H, Takeshita A (2004) Rho/Rho-kinase pathway in the brainstem contributes to hypertension caused by chronic nitric oxide synthase inhibition. Hypertension 43:156–162

    PubMed  CAS  Google Scholar 

  72. Takemoto M, Sun J, Hiroki J, Shimokawa H, Liao JK (2002) Rho-kinase mediates hypoxia-induced downregulation of endothelial nitric oxide synthase. Circulation 106:57–62

    PubMed  CAS  Google Scholar 

  73. Shin HK, Salomone S, Potts EM, Lee SW, Millican E, Noma K, Huang PL, Boas DA, Liao JK, Moskowitz MA, Ayata C (2007) Rho-kinase inhibition acutely augments blood flow in focal cerebral ischemia via endothelial mechanisms. J Cereb Blood Flow Metab 27:998–1009

    PubMed  CAS  Google Scholar 

  74. Mukai Y, Shimokawa H, Matoba T, Kandabashi T, Satoh S, Hiroki J, Kaibuchi K, Takeshita A (2001) Involvement of Rho-kinase in hypertensive vascular disease: a novel therapeutic target in hypertension. FASEB J 15:1062–1064

    PubMed  CAS  Google Scholar 

  75. Moriki N, Ito M, Seko T, Kureishi Y, Okamoto R, Nakakuki T, Kongo M, Isaka N, Kaibuchi K, Nakano T (2004) RhoA activation in vascular smooth muscle cells from stroke-prone spontaneously hypertensive rats. Hypertens Res 27:263–270

    PubMed  CAS  Google Scholar 

  76. Hahmann C, Schroeter T (2010) Rho-kinase inhibitors as therapeutics: from pan inhibition to isoform selectivity. Cell Mol Life Sci 67:171–177

    Google Scholar 

  77. Lohn M, Plettenburg O, Ivashchenko Y, Kannt A, Hofmeister A, Kadereit D, Schaefer M, Linz W, Kohlmann M, Herbert JM, Janiak P, O’Connor SE, Ruetten H (2009) Pharmacological characterization of SAR407899, a novel rho-kinase inhibitor. Hypertension 54:676–683

    PubMed  Google Scholar 

  78. Mallat Z, Gojova A, Sauzeau V, Brun V, Silvestre JS, Esposito B, Merval R, Groux H, Loirand G, Tedgui A (2003) Rho-associated protein kinase contributes to early atherosclerotic lesion formation in mice. Circ Res 93:884–888

    PubMed  CAS  Google Scholar 

  79. Wang HW, Liu PY, Oyama N, Rikitake Y, Kitamoto S, Gitlin J, Liao JK, Boisvert WA (2008) Deficiency of ROCK1 in bone marrow-derived cells protects against atherosclerosis in LDLR−/− mice. FASEB J 22:3561–3570

    PubMed  CAS  Google Scholar 

  80. Cannon CP, Braunwald E, McCabe CH, Rader DJ, Rouleau JL, Belder R, Joyal SV, Hill KA, Pfeffer MA, Skene AM (2004) Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 350:1495–1504

    PubMed  CAS  Google Scholar 

  81. Ito T, Ikeda U, Shimpo M, Ohki R, Takahashi M, Yamamoto K, Shimada K (2002) HMG-CoA reductase inhibitors reduce interleukin-6 synthesis in human vascular smooth muscle cells. Cardiovasc Drugs Ther 16:121–126

    PubMed  CAS  Google Scholar 

  82. Rikitake Y, Liao JK (2005) Rho-kinase mediates hyperglycemia-induced plasminogen activator inhibitor-1 expression in vascular endothelial cells. Circulation 111:3261–3268

    PubMed  CAS  Google Scholar 

  83. Laufs U, Endres M, Stagliano N, Amin-Hanjani S, Chui DS, Yang SX, Simoncini T, Yamada M, Rabkin E, Allen PG, Huang PL, Bohm M, Schoen FJ, Moskowitz MA, Liao JK (2000) Neuroprotection mediated by changes in the endothelial actin cytoskeleton. J Clin Invest 106:15–24

    PubMed  CAS  Google Scholar 

  84. Nohria A, Prsic A, Liu PY, Okamoto R, Creager MA, Selwyn A, Liao JK, Ganz P (2009) Statins inhibit Rho kinase activity in patients with atherosclerosis. Atherosclerosis 205:517–521

    PubMed  CAS  Google Scholar 

  85. Rekhter M, Chandrasekhar K, Gifford-Moore D, Huang XD, Rutherford P, Hanson J, Kauffman R (2007) Immunohistochemical analysis of target proteins of Rho-kinase in a mouse model of accelerated atherosclerosis. Exp Clin Cardiol 12:169–174

    PubMed  CAS  Google Scholar 

  86. Mueller BK, Mack H, Teusch N (2005) Rho kinase, a promising drug target for neurological disorders. Nat Rev Drug Discov 4:387–398

    PubMed  CAS  Google Scholar 

  87. Borisoff JF, Chan CC, Hiebert GW, Oschipok L, Robertson GS, Zamboni R, Steeves JD, Tetzlaff W (2003) Suppression of Rho-kinase activity promotes axonal growth on inhibitory CNS substrates. Mol Cell Neurosci 22:405–416

    PubMed  CAS  Google Scholar 

  88. Masumoto A, Mohri M, Shimokawa H, Urakami L, Usui M, Takeshita A (2002) Suppression of coronary artery spasm by the Rho-kinase inhibitor fasudil in patients with vasospastic angina. Circulation 105:1545–1547

    PubMed  CAS  Google Scholar 

  89. Mills JC, Stone NL, Pittman RN (1999) Extranuclear apoptosis. The role of the cytoplasm in the execution phase. J Cell Biol 146:703–708

    PubMed  CAS  Google Scholar 

  90. Satoh S, Toshima Y, Hitomi A, Ikegaki I, Seto M, Asano T (2008) Wide therapeutic time window for Rho-kinase inhibition therapy in ischemic brain damage in a rat cerebral thrombosis model. Brain Res 1193:102–108

    PubMed  CAS  Google Scholar 

  91. Hitomi A, Satoh S, Ikegaki I, Suzuki Y, Shibuya M, Asano T (2000) Hemorheological abnormalities in experimental cerebral ischemia and effects of protein kinase inhibitor on blood fluidity. Life Sci 67:1929–1939

    PubMed  CAS  Google Scholar 

  92. Satoh S, Kobayashi T, Hitomi A, Ikegaki I, Suzuki Y, Shibuya M, Yoshida J, Asano T (1999) Inhibition of neutrophil migration by a protein kinase inhibitor for the treatment of ischemic brain infarction. Jpn J Pharmacol 80:41–48

    PubMed  CAS  Google Scholar 

  93. Ding J, Li QY, Yu JZ, Wang X, Sun CH, Lu CZ, Xiao BG (2010) Fasudil, a Rho kinase inhibitor, drives mobilization of adult neural stem cells after hypoxia/reoxygenation injury in mice. Mol Cell Neurosci 43:201–208

    Google Scholar 

  94. Suematsu N, Satoh S, Kinugawa S, Tsutsui H, Hayashidani S, Nakamura R, Egashira K, Makino N, Takeshita A (2001) Alpha1-adrenoceptor-Gq-RhoA signaling is upregulated to increase myofibrillar Ca2+ sensitivity in failing hearts. Am J Physiol Heart Circ Physiol 281:H637–H646

    PubMed  CAS  Google Scholar 

  95. Kobayashi N, Horinaka S, Mita S, Nakano S, Honda T, Yoshida K, Kobayashi T, Matsuoka H (2002) Critical role of Rho-kinase pathway for cardiac performance and remodeling in failing rat hearts. Cardiovasc Res 55:757–767

    PubMed  CAS  Google Scholar 

  96. Demiryurek S, Kara AF, Celik A, Babul A, Tarakcioglu M, Demiryurek AT (2005) Effects of fasudil, a Rho-kinase inhibitor, on myocardial preconditioning in anesthetized rats. Eur J Pharmacol 527:129–140

    PubMed  Google Scholar 

  97. Sanada S, Asanuma H, Tsukamoto O, Minamino T, Node K, Takashima S, Fukushima T, Ogai A, Shinozaki Y, Fujita M, Hirata A, Okuda H, Shimokawa H, Tomoike H, Hori M, Kitakaze M (2004) Protein kinase A as another mediator of ischemic preconditioning independent of protein kinase C. Circulation 110:51–57

    PubMed  CAS  Google Scholar 

  98. Manintveld OC, Verdouw PD, Duncker DJ (2007) The RISK of ROCK. Am J Physiol Heart Circ Physiol 292:H2563–H2565

    PubMed  CAS  Google Scholar 

  99. Kobayashi N, Takeshima H, Fukushima H, Koguchi W, Mamada Y, Hirata H, Machida Y, Shinoda M, Suzuki N, Yokotsuka F, Tabei K, Matsuoka H (2009) Cardioprotective effects of pitavastatin on cardiac performance and remodeling in failing rat hearts. Am J Hypertension 22:176–182

    CAS  Google Scholar 

  100. Dulak J, Jozkowicz A (2005) Anti-angiogenic and anti-inflammatory effects of statins: relevance to anti-cancer therapy. Curr Cancer Drug Targets 5:579–594

    PubMed  CAS  Google Scholar 

  101. Fritz G, Kaina B (2006) Rho GTPases: promising cellular targets for novel anticancer drugs. Curr Cancer Drug Targets 6:1–14

    PubMed  CAS  Google Scholar 

  102. Isezuo SA (2006) The metabolic syndrome: review of current concepts. Niger Postgrad Med J 13:247–255

    PubMed  CAS  Google Scholar 

  103. Okon EB, Szado T, Laher I, McManus B, van Breemen C (2003) Augmented contractile response of vascular smooth muscle in a diabetic mouse model. J Vasc Res 40:520–530

    PubMed  Google Scholar 

  104. Sowers JR, Lester MA (1999) Diabetes and cardiovascular disease. Diabetes Care 22(Suppl 3):C14–C20

    PubMed  Google Scholar 

  105. Goldin A, Beckman JA, Schmidt AM, Creager MA (2006) Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114:597–605

    PubMed  CAS  Google Scholar 

  106. Hirose A, Tanikawa T, Mori H, Okada Y, Tanaka Y (2010) Advanced glycation end products increase endothelial permeability through the RAGE/Rho signaling pathway. FEBS Lett 584:61–66

    PubMed  CAS  Google Scholar 

  107. Massey AR, Miao L, Smith BN, Liu J, Kusaka I, Zhang JH, Tang J (2003) Increased RhoA translocation in renal cortex of diabetic rats. Life Sci 72:2943–2952

    PubMed  CAS  Google Scholar 

  108. Peng F, Wu D, Gao B, Ingram AJ, Zhang B, Chorneyko K, McKenzie R, Krepinsky JC (2008) RhoA/Rho-kinase contribute to the pathogenesis of diabetic renal disease. Diabetes 57:1683–1692

    PubMed  CAS  Google Scholar 

  109. Nuno DW, Harrod JS, Lamping KG (2009) Sex-dependent differences in Rho activation contribute to contractile dysfunction in type 2 diabetic mice. Am J Physiol Heart Circ Physiol 297:H1469–H1477

    PubMed  CAS  Google Scholar 

  110. Kanda T, Wakino S, Homma K, Yoshioka K, Tatematsu S, Hasegawa K, Takamatsu I, Sugano N, Hayashi K, Saruta T (2006) Rho-kinase as a molecular target for insulin resistance and hypertension. FASEB J 20:169–171

    PubMed  CAS  Google Scholar 

  111. Hu E, Lee D (2005) Rho kinase as potential therapeutic target for cardiovascular diseases: opportunities and challenges. Expert Opin Ther Targets 9:715–736

    PubMed  CAS  Google Scholar 

  112. Kolavennu V, Zeng L, Peng H, Wang Y, Danesh FR (2008) Targeting of RhoA/ROCK signaling ameliorates progression of diabetic nephropathy independent of glucose control. Diabetes 57:714–723

    PubMed  CAS  Google Scholar 

  113. Furukawa N, Ongusaha P, Jahng WJ, Araki K, Choi CS, Kim HJ, Lee YH, Kaibuchi K, Kahn BB, Masuzaki H, Kim JK, Lee SW, Kim YB (2005) Role of Rho-kinase in regulation of insulin action and glucose homeostasis. Cell Metab 2:119–129

    PubMed  CAS  Google Scholar 

  114. Lee DH, Shi J, Jeoung NH, Kim MS, Zabolotny JM, Lee SW, White MF, Wei L, Kim YB (2009) Targeted disruption of ROCK1 causes insulin resistance in vivo. J Biol Chem 284:11776–11780

    PubMed  CAS  Google Scholar 

  115. Chang S, Hypolite JA, Changolkar A, Wein AJ, Chacko S, DiSanto ME (2003) Increased contractility of diabetic rabbit corpora smooth muscle in response to endothelin is mediated via Rho-kinase beta. Int J Impot Res 15:53–62

    PubMed  CAS  Google Scholar 

  116. Bivalacqua TJ, Champion HC, Usta MF, Cellek S, Chitaley K, Webb RC, Lewis RL, Mills TM, Hellstrom WJ, Kadowitz PJ (2004) RhoA/Rho-kinase suppresses endothelial nitric oxide synthase in the penis: a mechanism for diabetes-associated erectile dysfunction. Proc Natl Acad Sci USA 101:9121–9126

    PubMed  CAS  Google Scholar 

  117. Sahai E, Marshall CJ (2002) RHO-GTPases and cancer. Nat Rev Cancer 2:133–142

    PubMed  Google Scholar 

  118. Keely PJ (2001) Rho GTPases as early markers for tumour progression. Lancet 358:1744–1745

    PubMed  CAS  Google Scholar 

  119. Jaffe AB, Hall A (2002) Rho GTPases in transformation and metastasis. Adv Cancer Res 84:57–80

    PubMed  CAS  Google Scholar 

  120. Abraham MT, Kuriakose MA, Sacks PG, Yee H, Chiriboga L, Bearer EL, Delacure MD (2001) Motility-related proteins as markers for head and neck squamous cell cancer. Laryngoscope 111:1285–1289

    PubMed  CAS  Google Scholar 

  121. Itoh K, Yoshioka K, Akedo H, Uehata M, Ishizaki T, Narumiya S (1999) An essential part for Rho-associated kinase in the transcellular invasion of tumor cells. Nat Med 5:221–225

    PubMed  CAS  Google Scholar 

  122. Ogata S, Morishige K, Sawada K, Hashimoto K, Mabuchi S, Kawase C, Ooyagi C, Sakata M, Kimura T (2009) Fasudil inhibits lysophosphatidic acid-induced invasiveness of human ovarian cancer cells. Int J Gynecol Cancer 19:1473–1480

    PubMed  Google Scholar 

  123. Somlyo AV, Bradshaw D, Ramos S, Murphy C, Myers CE, Somlyo AP (2000) Rho-kinase inhibitor retards migration and in vivo dissemination of human prostate cancer cells. Biochem Biophys Res Commun 269:652–659

    PubMed  CAS  Google Scholar 

  124. Lin MT, Lin BR, Chang CC, Chu CY, Su HJ, Chen ST, Jeng YM, Kuo ML (2007) IL-6 induces AGS gastric cancer cell invasion via activation of the c-Src/RhoA/ROCK signaling pathway. Int J Cancer 120:2600–2608

    PubMed  CAS  Google Scholar 

  125. Yoshioka K, Matsumura F, Akedo H, Itoh K (1998) Small GTP-binding protein Rho stimulates the actomyosin system, leading to invasion of tumor cells. J Biol Chem 273:5146–5154

    PubMed  CAS  Google Scholar 

  126. del Peso L, Hernandez-Alcoceba R, Embade N, Carnero A, Esteve P, Paje C, Lacal JC (1997) Rho proteins induce metastatic properties in vivo. Oncogene 15:3047–3057

    PubMed  CAS  Google Scholar 

  127. Sun HW, Tong SL, He J, Wang Q, Zou L, Ma SJ, Tan HY, Luo JF, Wu HX (2007) RhoA and RhoC-siRNA inhibit the proliferation and invasiveness activity of human gastric carcinoma by Rho/PI3K/Akt pathway. World J Gastroenterol 13:3517–3522

    PubMed  CAS  Google Scholar 

  128. Clark EA, Golub TR, Lander ES, Hynes RO (2000) Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406:532–535

    PubMed  CAS  Google Scholar 

  129. Coleman ML, Olson MF (2002) Rho GTPase signalling pathways in the morphological changes associated with apoptosis. Cell Death Differ 9:493–504

    PubMed  CAS  Google Scholar 

  130. Vishnubhotla R, Sun S, Huq J, Bulic M, Ramesh A, Guzman G, Cho M, Glover SC (2007) ROCK-II mediates colon cancer invasion via regulation of MMP-2 and MMP-13 at the site of invadopodia as revealed by multiphoton imaging. Lab Invest 87:1149–1158

    PubMed  CAS  Google Scholar 

  131. Zhou Z, Meng Y, Asrar S, Todorovski Z, Jia Z (2009) A critical role of Rho-kinase ROCK2 in the regulation of spine and synaptic function. Neuropharmacology 56:81–89

    PubMed  CAS  Google Scholar 

  132. Sterpetti P, Marucci L, Candelaresi C, Toksoz D, Alpini G, Ugili L, Baroni GS, Macarri G, Benedetti A (2006) Cell proliferation and drug resistance in hepatocellular carcinoma are modulated by Rho GTPase signals. Am J Physiol Gastrointest Liver Physiol 290:G624–G632

    PubMed  CAS  Google Scholar 

  133. Lu Q, Longo FM, Zhou H, Massa SM, Chen YH (2009) Signaling through Rho GTPase pathway as viable drug target. Curr Med Chem 16:1355–1365

    PubMed  CAS  Google Scholar 

  134. Fukumoto Y, Matoba T, Ito A, Tanaka H, Kishi T, Hayashidani S, Abe K, Takeshita A, Shimokawa H (2005) Acute vasodilator effects of a Rho-kinase inhibitor, fasudil, in patients with severe pulmonary hypertension. Heart 91:391–392

    PubMed  CAS  Google Scholar 

  135. Li F, Xia W, Li A, Zhao C, Sun R (2007) Long-term inhibition of Rho kinase with fasudil attenuates high flow induced pulmonary artery remodeling in rats. Pharmacol Res 55:64–71

    PubMed  CAS  Google Scholar 

  136. Barst RJ, McGoon M, Torbicki A, Sitbon O, Krowka MJ, Olschewski H, Gaine S (2004) Diagnosis and differential assessment of pulmonary arterial hypertension. J Am Coll Cardiol 43:40S–47S

    PubMed  Google Scholar 

  137. Oka M, Homma N, Taraseviciene-Stewart L, Morris KG, Kraskauskas D, Burns N, Voelkel NF, McMurtry IF (2007) Rho kinase-mediated vasoconstriction is important in severe occlusive pulmonary arterial hypertension in rats. Circ Res 100:923–929

    PubMed  CAS  Google Scholar 

  138. Do e Z, Fukumoto Y, Takaki A, Tawara S, Ohashi J, Nakano M, Tada T, Saji K, Sugimura K, Fujita H, Hoshikawa Y, Nawata J, Kondo T, Shimokawa H (2009) Evidence for Rho-kinase activation in patients with pulmonary arterial hypertension. Circ J 73:1731–1739

    PubMed  Google Scholar 

  139. Li F, Xia W, Yuan S, Sun R (2009) Acute inhibition of Rho-kinase attenuates pulmonary hypertension in patients with congenital heart disease. Pediatr Cardiol 30:363–366

    PubMed  Google Scholar 

  140. Fujita H, Fukumoto Y, Saji K, Sugimura K, Demachi J, Nawata J, Shimokawa H (2010) Acute vasodilator effects of inhaled fasudil, a specific Rho-kinase inhibitor, in patients with pulmonary arterial hypertension. Heart Vessel 25:144–149

    Google Scholar 

  141. Guilluy C, Sauzeau V, Rolli-Derkinderen M, Guerin P, Sagan C, Pacaud P, Loirand G (2005) Inhibition of RhoA/Rho kinase pathway is involved in the beneficial effect of sildenafil on pulmonary hypertension. Br J Pharmacol 146:1010–1018

    PubMed  CAS  Google Scholar 

  142. Hyvelin JM, Howell K, Nichol A, Costello CM, Preston RJ, McLoughlin P (2005) Inhibition of Rho-kinase attenuates hypoxia-induced angiogenesis in the pulmonary circulation. Circ Res 97:185–191

    PubMed  CAS  Google Scholar 

  143. Nagaoka T, Fagan KA, Gebb SA, Morris KG, Suzuki T, Shimokawa H, McMurtry IF, Oka M (2005) Inhaled Rho kinase inhibitors are potent and selective vasodilators in rat pulmonary hypertension. Am J Respir Crit Care Med 171:494–499

    PubMed  Google Scholar 

  144. Homma N, Nagaoka T, Karoor V, Imamura M, Taraseviciene-Stewart L, Walker LA, Fagan KA, McMurtry IF, Oka M (2008) Involvement of RhoA/Rho kinase signaling in protection against monocrotaline-induced pulmonary hypertension in pneumonectomized rats by dehydroepiandrosterone. Am J Physiol Lung Cell Mol Physiol 295:L71–L78

    PubMed  CAS  Google Scholar 

  145. Nagaoka T, Gebb SA, Karoor V, Homma N, Morris KG, McMurtry IF, Oka M (2006) Involvement of RhoA/Rho kinase signaling in pulmonary hypertension of the fawn-hooded rat. J Appl Physiol 100:996–1002

    PubMed  CAS  Google Scholar 

  146. Broughton BR, Walker BR, Resta TC (2008) Chronic hypoxia induces Rho kinase-dependent myogenic tone in small pulmonary arteries. Am J Physiol Lung Cell Mol Physiol 294:L797–L806

    PubMed  CAS  Google Scholar 

  147. Fagan KA, Oka M, Bauer NR, Gebb SA, Ivy DD, Morris KG, McMurtry IF (2004) Attenuation of acute hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension in mice by inhibition of Rho-kinase. Am J Physiol Lung Cell Mol Physiol 287:L656–L664

    PubMed  CAS  Google Scholar 

  148. Guilluy C, Rolli-Derkinderen M, Tharaux PL, Melino G, Pacaud P, Loirand G (2007) Transglutaminase-dependent RhoA activation and depletion by serotonin in vascular smooth muscle cells. J Biol Chem 282:2918–2928

    PubMed  CAS  Google Scholar 

  149. Guilluy C, Eddahibi S, Agard C, Guignabert C, Izikki M, Tu L, Savale L, Humbert M, Fadel E, Adnot S, Loirand G, Pacaud P (2009) RhoA and Rho kinase activation in human pulmonary hypertension: role of 5-HT signaling. Am J Respir Crit Care Med 179:1151–1158

    PubMed  CAS  Google Scholar 

  150. Taraseviciene-Stewart L, Scerbavicius R, Choe KH, Cool C, Wood K, Tuder RM, Burns N, Kasper M, Voelkel NF (2006) Simvastatin causes endothelial cell apoptosis and attenuates severe pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 291:L668–L676

    PubMed  CAS  Google Scholar 

  151. Toda N, Ayajiki K, Okamura T (2005) Nitric oxide and penile erectile function. Pharmacol Ther 106:233–266

    PubMed  CAS  Google Scholar 

  152. Bivalacqua TJ, Liu T, Musicki B, Champion HC, Burnett AL (2007) Endothelial nitric oxide synthase keeps erection regulatory function balance in the penis. Eur Urol 51:1732–1740

    PubMed  CAS  Google Scholar 

  153. Dean RC, Lue TF (2005) Physiology of penile erection and pathophysiology of erectile dysfunction. Urol Clin North Am 32:379–395

    Google Scholar 

  154. Puetz S, Lubomirov LT, Pfitzer G (2009) Regulation of smooth muscle contraction by small GTPases. Physiology (Bethesda) 24:342–356

    CAS  Google Scholar 

  155. Mills TM, Lewis RW, Wingard CJ, Linder AE, Jin L, Webb RC (2003) Vasoconstriction, RhoA/Rho-kinase and the erectile response. Int J Impot Res 15(Suppl 5):S20–S24

    PubMed  CAS  Google Scholar 

  156. Jin L, Burnett AL (2006) RhoA/Rho-kinase in erectile tissue: mechanisms of disease and therapeutic insights. Clin Sci (Lond) 110:153–165

    CAS  Google Scholar 

  157. Chitaley K, Wingard CJ, Clinton Webb R, Branam H, Stopper VS, Lewis RW, Mills TM (2001) Antagonism of Rho-kinase stimulates rat penile erection via a nitric oxide-independent pathway. Nat Med 7:119–122

    PubMed  CAS  Google Scholar 

  158. Chitaley K, Webb RC, Dorrance AM, Mills TM (2001) Decreased penile erection in DOCA-salt and stroke prone-spontaneously hypertensive rats. Int J Impot Res 13(Suppl 5):S16–S20

    PubMed  Google Scholar 

  159. Burchardt M, Burchardt T, Baer L, Kiss AJ, Pawar RV, Shabsigh A, de la Taille A, Hayek OR, Shabsigh R (2000) Hypertension is associated with severe erectile dysfunction. J Urol 164:1188–1191

    PubMed  CAS  Google Scholar 

  160. Shabsigh R (2004) Testosterone therapy in erectile dysfunction. Aging Male 7:312–318

    PubMed  CAS  Google Scholar 

  161. Feldman HA, Johannes CB, Derby CA, Kleinman KP, Mohr BA, Araujo AB, McKinlay JB (2000) Erectile dysfunction and coronary risk factors: prospective results from the Massachusetts male aging study. Prev Med 30:328–338

    PubMed  CAS  Google Scholar 

  162. Kloner RA (2008) Erectile dysfunction: the new harbinger for major adverse cardiac events in the diabetic patient. J Am Coll Cardiol 51:2051–2052

    PubMed  Google Scholar 

  163. Buyukafsar K, Un I (2003) Effects of the Rho-kinase inhibitors, Y-27632 and fasudil, on the corpus cavernosum from diabetic mice. Eur J Pharmacol 472:235–238

    PubMed  CAS  Google Scholar 

  164. Wingard CJ, Johnson JA, Holmes A, Prikosh A (2003) Improved erectile function after Rho-kinase inhibition in a rat castrate model of erectile dysfunction. Am J Physiol Regul Integr Comp Physiol 284:R1572–R1579

    PubMed  CAS  Google Scholar 

  165. Vignozzi L, Morelli A, Filippi S, Ambrosini S, Mancina R, Luconi M, Mungai S, Vannelli GB, Zhang XH, Forti G, Maggi M (2007) Testosterone regulates RhoA/Rho-kinase signaling in two distinct animal models of chemical diabetes. J Sex Med 4:620–630 (discussion 631–632)

    PubMed  CAS  Google Scholar 

  166. Rajasekaran M, White S, Baquir A, Wilkes N (2005) Rho-kinase inhibition improves erectile function in aging male Brown-Norway rats. J Androl 26:182–188

    PubMed  CAS  Google Scholar 

  167. Jin L, Liu T, Lagoda GA, Champion HC, Bivalacqua TJ, Burnett AL (2006) Elevated RhoA/Rho-kinase activity in the aged rat penis: mechanism for age-associated erectile dysfunction. FASEB J 20:536–538

    PubMed  CAS  Google Scholar 

  168. Seasholtz TM, Wessel J, Rao F, Rana BK, Khandrika S, Kennedy BP, Lillie EO, Ziegler MG, Smith DW, Schork NJ, Brown JH, O’Connor DT (2006) Rho kinase polymorphism influences blood pressure and systemic vascular resistance in human twins: role of heredity. Hypertension 47:937–947

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenia Pedrosa Nunes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nunes, K.P., Rigsby, C.S. & Webb, R.C. RhoA/Rho-kinase and vascular diseases: what is the link?. Cell. Mol. Life Sci. 67, 3823–3836 (2010). https://doi.org/10.1007/s00018-010-0460-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0460-1

Keywords

Navigation