Skip to main content

Advertisement

Log in

Role of vasostatin-1 C-terminal region in fibroblast cell adhesion

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Fibroblast adhesion can be modulated by proteins released by neuroendocrine cells and neurons, such as chromogranin A (CgA) and its N-terminal fragment vasostatin-1 (VS-1, CgA1–78). We have investigated the mechanisms of the interaction of VS-1 with fibroblasts and of its pro-adhesive activity and have found that the proadhesive activity of VS-1 relies on its interaction with the fibroblast membrane via a phospholipid-binding amphipathic α-helix located within residues 47–66, as well as on the interaction of the adjacent C-terminal region 67–78, which is structurally similar to ezrin–radixin–moesin-binding phosphoprotein 50 (a membrane-cytoskeleton adapter protein), with other cellular components critical for the regulation of cell cytoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CgA:

Chromogranin A

VS-1:

Recombinant Ser-Thr-Ala-CgA1–78

mAb:

Monoclonal antibody

ERM:

Ezrin–radixin–moesin

EBP50:

ERM-binding phosphoprotein 50

References

  1. Gasparri A, Sidoli A, Sanchez LP, Longhi R, Siccardi AG, Marchisio PC, Corti A (1997) Chromogranin A fragments modulate cell adhesion. Identification and characterization of a pro-adhesive domain. J Biol Chem 272:20835–20843

    Article  PubMed  CAS  Google Scholar 

  2. Fischer-Colbrie R, Kirchmair R, Kahler CM, Wiedermann CJ, Saria A (2005) Secretoneurin: a new player in angiogenesis and chemotaxis linking nerves, blood vessels and the immune system. Curr Protein Pept Sci 6:373–385

    Article  PubMed  CAS  Google Scholar 

  3. Helle KB, Corti A, Metz-Boutigue MH, Tota B (2007) The endocrine role for chromogranin A: a prohormone for peptides with regulatory properties. Cell Mol Life Sci 64:2863–2886

    Article  PubMed  CAS  Google Scholar 

  4. Ratti S, Curnis F, Longhi R, Colombo B, Gasparri A, Magni F, Manera E, Metz-Boutigue MH, Corti A (2000) Structure–activity relationships of chromogranin A in cell adhesion. Identification and characterization of an adhesion site for fibroblasts and smooth muscle cells. J Biol Chem 275:29257–29263

    Article  PubMed  CAS  Google Scholar 

  5. Colombo B, Longhi R, Marinzi C, Magni F, Cattaneo A, Yoo SH, Curnis F, Corti A (2002) Cleavage of chromogranin A N-terminal domain by plasmin provides a new mechanism for regulating cell adhesion. J Biol Chem 277:45911–45919

    Article  PubMed  CAS  Google Scholar 

  6. Ferrero E, Scabini S, Magni E, Foglieni C, Belloni D, Colombo B, Curnis F, Villa A, Ferrero ME, Corti A (2004) Chromogranin A protects vessels against tumor necrosis factor alpha-induced vascular leakage. Faseb J 18:554–556

    PubMed  CAS  Google Scholar 

  7. Eskeland NL, Zhou A, Dinh TQ, Wu H, Parmer RJ, Mains RE, O’Connor DT (1996) Chromogranin A processing and secretion: specific role of endogenous and exogenous prohormone convertases in the regulated secretory pathway. J Clin Invest 98:148–156

    Article  PubMed  CAS  Google Scholar 

  8. Doblinger A, Becker A, Seidah NG, Laslop A (2003) Proteolytic processing of chromogranin A by the prohormone convertase PC2. Reg Pept 111:111–116

    Article  CAS  Google Scholar 

  9. Colombo B, Curnis F, Foglieni C, Monno A, Arrigoni G, Corti A (2002) Chromogranin a expression in neoplastic cells affects tumor growth and morphogenesis in mouse models. Cancer Res 62:941–946

    PubMed  CAS  Google Scholar 

  10. Biswas N, Vaingankar SM, Mahata M, Das M, Gayen JR, Taupenot L, Torpey JW, O’Connor DT, Mahata SK (2008) Proteolytic cleavage of human chromogranin a containing naturally occurring catestatin variants: differential processing at catestatin region by plasmin. Endocrinology 149:749–757

    Article  PubMed  CAS  Google Scholar 

  11. Biswas N, Rodriguez-Flores JL, Courel M, Gayen JR, Vaingankar SM, Mahata M, Torpey JW, Taupenot L, O’Connor DT, Mahata SK (2009) Cathepsin L colocalizes with chromogranin a in chromaffin vesicles to generate active peptides. Endocrinology 150:3547–3557

    Article  PubMed  CAS  Google Scholar 

  12. Corti A, Ferrero E (2004) Chromogranin A: more than a marker for tumor diagnosis and prognosis. Curr Med Chem Immunol Endocr Metab Agents 4:161–167

    Article  CAS  Google Scholar 

  13. Gayen JR, Saberi M, Schenk S, Biswas N, Vaingankar SM, Cheung WW, Najjar SM, O’Connor DT, Bandyopadhyay G, Mahata SK (2009) A novel pathway of insulin sensitivity in chromogranin A null mice: a crucial role for pancreastatin in glucose homeostasis. J Biol Chem 284:28498–28509

    Article  PubMed  CAS  Google Scholar 

  14. Gonzalez-Yanes C, Sanchez-Margalet V (2003) Pancreastatin, a chromogranin A-derived peptide, inhibits leptin and enhances UCP-2 expression in isolated rat adipocytes. Cell Mol Life Sci 60:2749–2756

    Article  PubMed  CAS  Google Scholar 

  15. Mahata SK, Mahata M, Yoo SH, Taupenot L, Wu H, Aroda VR, Livsey CV, Taulane JP, Goodman M, Parmer RJ, O’Connor DT (1998) A novel, catecholamine release-inhibitory peptide from chromogranin A: autocrine control of nicotinic cholinergic-stimulated exocytosis. Adv Pharmacol (New York) 42:260–264

    CAS  Google Scholar 

  16. Mahata SK, Mahata M, Parmer RJ, O’Connor DT (1999) Desensitization of catecholamine release. The novel catecholamine release-inhibitory peptide catestatin (chromogranin a344–364) acts at the receptor to prevent nicotinic cholinergic tolerance. J Biol Chem 274:2920–2928

    Article  PubMed  CAS  Google Scholar 

  17. Mahata SK, O’Connor DT, Mahata M, Yoo SH, Taupenot L, Wu H, Gill BM, Parmer RJ (1997) Novel autocrine feedback control of catecholamine release. A discrete chromogranin a fragment is a noncompetitive nicotinic cholinergic antagonist. J Clin Invest 100:1623–1633

    Article  PubMed  CAS  Google Scholar 

  18. Mazza R, Gattuso A, Mannarino C, Brar BK, Barbieri SF, Tota B, Mahata SK (2008) Catestatin (chromogranin A344–364) is a novel cardiosuppressive agent: inhibition of isoproterenol and endothelin signaling in the frog heart. Am J Physiol Heart Circ Physiol 295:113–122

    Article  CAS  Google Scholar 

  19. Ferrero E, Magni E, Curnis F, Villa A, Ferrero ME, Corti A (2002) Regulation of endothelial cell shape and barrier function by chromogranin A. Ann N Y Acad Sci 971:355–358

    Article  PubMed  CAS  Google Scholar 

  20. Belloni D, Scabini S, Foglieni C, Veschini L, Giazzon A, Colombo B, Fulgenzi A, Helle KB, Ferrero ME, Corti A, Ferrero E (2007) The vasostatin-I fragment of chromogranin A inhibits VEGF-induced endothelial cell proliferation and migration. FASEB J 21:3052–3062

    Article  PubMed  CAS  Google Scholar 

  21. Blois A, Srebro B, Mandalà M, Corti A, Helle KB, Serck-Hanssen G (2006) The chromogranin A peptide vasostatin-I inhibits gap formation and signal transduction mediated by inflammatory agents in cultured bovine pulmonary and coronary arterial endothelial cells. Regul Pept 135:78–84

    Article  PubMed  CAS  Google Scholar 

  22. Aardal S, Helle KB (1992) The vasoinhibitory activity of bovine chromogranin A fragment (vasostatin) and its independence of extracellular calcium in isolated segments of human blood vessels. Regul Pept 41:9–18

    Article  PubMed  CAS  Google Scholar 

  23. Brekke JF, Osol GJ, Helle KB (2002) N-terminal chromogranin-derived peptides as dilators of bovine coronary resistance arteries. Regul Pept 105:93–100

    Article  PubMed  CAS  Google Scholar 

  24. Corti A, Mannarino C, Mazza R, Angelone T, Longhi R, Tota B (2004) Chromogranin A N-terminal fragments vasostatin-1 and the synthetic CGA 7–57 peptide act as cardiostatins on the isolated working frog heart. Gen Comp Endocrinol 136:217–224

    Article  PubMed  CAS  Google Scholar 

  25. Imbrogno S, Angelone T, Corti A, Adamo C, Helle KB, Tota B (2004) Influence of vasostatins, the chromogranin A-derived peptides, on the working heart of the eel (Anguilla anguilla): negative inotropy and mechanism of action. Gen Comp Endocrinol 139:20–28

    Article  PubMed  CAS  Google Scholar 

  26. Cerra MC, De Iuri L, Angelone T, Corti A, Tota B (2006) Recombinant N-terminal fragments of chromogranin-A modulate cardiac function of the Langendorff-perfused rat heart. Basic Res Cardiol 101:43–52

    Article  PubMed  CAS  Google Scholar 

  27. O’Connor DT, Bernstein KN (1984) Radioimmunoassay of chromogranin A in plasma as a measure of exocytotic sympathoadrenal activity in normal subjects and patients with pheochromocytoma. N Engl J Med 311:764–770

    PubMed  Google Scholar 

  28. Ceconi C, Ferrari R, Bachetti T, Opasich C, Volterrani M, Colombo B, Parrinello G, Corti A (2002) Chromogranin A in heart failure; a novel neurohumoral factor and a predictor for mortality. Eur Heart J 23:967–974

    Article  PubMed  CAS  Google Scholar 

  29. Pieroni M, Corti A, Tota B, Curnis F, Angelone T, Colombo B, Cerra MC, Bellocci F, Crea F, Maseri A (2007) Myocardial production of chromogranin A in human heart: a new regulatory peptide of cardiac function. Eur Heart J 9:1052–1053

    Google Scholar 

  30. Taupenot L, Harper KL, O’Connor DT (2003) The chromogranin-secretogranin family. N Engl J Med 348:1134–1149

    Article  PubMed  CAS  Google Scholar 

  31. Corti A, Ferrari R, Ceconi C (2000) Chromogranin A and tumor necrosis factor alpha in heart failure. Chromogranins: functional and clinical aspects. Adv Exp Med Biol 482:351–359

    Article  PubMed  CAS  Google Scholar 

  32. Zhang D, Lavaux T, Sapin R, Lavigne T, Castelain V, Aunis D, Metz-Boutigue MH, Schneider F (2009) Serum concentration of chromogranin A at admission: an early biomarker of severity in critically ill patients. Ann Med 41:38–44

    Article  PubMed  CAS  Google Scholar 

  33. Lugardon K, Chasserot-Golaz S, Kieffer AE, Maget-Dana R, Nullans G, Kieffer B, Aunis D, Metz-Boutigue MH (2001) Structural and biological characterization of chromofungin, the antifungal chromogranin A-(47–66)-derived peptide. J Biol Chem 276:35875–35882

    Article  PubMed  CAS  Google Scholar 

  34. Blois A, Holmsen H, Martino G, Corti A, Metz-Boutigue MH, Helle KB (2006) Interactions of chromogranin A-derived vasostatins and monolayers of phosphatidylserine, phosphatidylcholine and phosphatidylethanolamine. Regul Pept 134:30–37

    Article  PubMed  CAS  Google Scholar 

  35. Bretscher A, Reczek D, Berryman M (1997) Ezrin: a protein requiring conformational activation to link microfilaments to the plasma membrane in the assembly of cell surface structures. J Cell Sci 110(Pt 24):3011–3018

    PubMed  CAS  Google Scholar 

  36. Corti A, Longhi R, Gasparri A, Chen F, Pelagi M, Siccardi AG (1996) Antigenic regions of human chromogranin A and their topographic relationships with structural/functional domains. Eur J Biochem 235:275–280

    Article  PubMed  CAS  Google Scholar 

  37. Curnis F, Gasparri A, Sacchi A, Longhi R, Corti A (2004) Coupling tumor necrosis factor-alpha with alphaV integrin ligands improves its antineoplastic activity. Cancer Res 64:565–571

    Article  PubMed  CAS  Google Scholar 

  38. Corti A, Sanchez LP, Gasparri A, Flavio C, Longhi R, Brandazza A, Siccardi A, Sidoli A (1997) Production and structure characterization of recombinant chromogranin A N-terminal fragments (vasostatins): evidence of dimer-monomer equilibria. Eur J Biochem 248:692–699

    Article  PubMed  CAS  Google Scholar 

  39. Ruoslahti E, Pierschbacher D (1986) Arg-Gly-Asp: a versatile cell recognition signal. Cell 44:517–518

    Article  PubMed  CAS  Google Scholar 

  40. Metz-Boutigue MH, Garcia-Sablone P, Hogue-Angeletti R, Aunis D (1993) Intracellular and extracellular processing of chromogranin A. Determination of cleavage sites. Eur J Biochem 217:247–257

    Article  PubMed  CAS  Google Scholar 

  41. Hancock RE (1997) Peptide antibiotics. Lancet 349:418–422

    Article  PubMed  CAS  Google Scholar 

  42. Bretscher A, Edwards K, Fehon RG (2002) ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 3:586–599

    Article  PubMed  CAS  Google Scholar 

  43. Cao TT, Deacon HW, Reczek D, Bretscher A, von Zastrow M (1999) A kinase-regulated PDZ-domain interaction controls endocytic sorting of the beta2-adrenergic receptor. Nature 401:286–290

    Article  PubMed  CAS  Google Scholar 

  44. Reczek D, Berryman M, Bretscher A (1997) Identification of EBP50: a PDZ-containing phosphoprotein that associates with members of the ezrin–radixin–moesin family. J Cell Biol 139:169–179

    Article  PubMed  CAS  Google Scholar 

  45. Hall RA, Ostedgaard LS, Premont RT, Blitzer JT, Rahman N, Welsh MJ, Lefkowitz RJ (1998) A C-terminal motif found in the beta2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins. Proc Natl Acad Sci USA 95:8496–8501

    Article  PubMed  CAS  Google Scholar 

  46. Hall RA, Premont RT, Chow CW, Blitzer JT, Pitcher JA, Clain A, Stoffel RH, Barak LS, Shenolikar S, Weinman EJ, Grinstein S, Lefkowitz RJ (1998) The beta2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange. Nature 392:626–630

    Article  PubMed  CAS  Google Scholar 

  47. Denker SP, Huang DC, Orlowski J, Furthmayr H, Barber DL (2000) Direct binding of the Na–H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H(+) translocation. Mol Cell 6:1425–1436

    Article  PubMed  CAS  Google Scholar 

  48. Short DB, Trotter KW, Reczek D, Kreda SM, Bretscher A, Boucher RC, Stutts MJ, Milgram SL (1998) An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton. J Biol Chem 273:19797–19801

    Article  PubMed  CAS  Google Scholar 

  49. Takahashi Y, Morales FC, Kreimann EL, Georgescu MM (2006) PTEN tumor suppressor associates with NHERF proteins to attenuate PDGF receptor signaling. EMBO J 25:910–920

    Article  PubMed  CAS  Google Scholar 

  50. Zhang D, Shooshtarizadeh P, Laventie BJ, Colin DA, Chich JF, Vidic J, de Barry J, Chasserot-Golaz S, Delalande F, Van Dorsselaer A, Schneider F, Helle K, Aunis D, Prévost G, Metz-Boutigue MH (2009) Two chromogranin A-derived peptides induce calcium entry in human neutrophils by calmodulin-regulated calcium independent phospholipase A2. PLoS One 4:e4501

    Article  PubMed  CAS  Google Scholar 

  51. Yoo SH (1992) Identification of the Ca(2+)-dependent calmodulin-binding region of chromogranin A. Biochem 31:6134–6140

    Article  CAS  Google Scholar 

  52. Kang S, Kang J, Yoo SH, Park S (2007) Recombinant preparation and characterization of interactions for a calmodulin-binding chromogranin A peptide and calmodulin. J Pept Sci 13:237–244

    Article  PubMed  CAS  Google Scholar 

  53. Ginsberg MH, Du X, Plow EF (1992) Inside-out integrin signalling. Curr Opin Cell Biol 4:766–771

    Article  PubMed  CAS  Google Scholar 

  54. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  PubMed  CAS  Google Scholar 

  55. Stridsberg M, Angeletti RH, Helle KB (2000) Characterisation of N-terminal chromogranin A and chromogranin B in mammals by region-specific radioimmunoassays and chromatographic separation methods. J Endocrinol 165:703–714

    Article  PubMed  CAS  Google Scholar 

  56. O’Connor DT, Deftos LJ (1986) Secretion of chromogranin A by peptide-producing endocrine neoplasms. N Engl J Med 314:1145–1151

    Article  PubMed  Google Scholar 

  57. Syrovets T, Simmet T (2004) Novel aspects and new roles for the serine protease plasmin. Cell Mol Life Sci 61:873–885

    Article  PubMed  CAS  Google Scholar 

  58. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    Article  PubMed  CAS  Google Scholar 

  59. Konecki DS, Benedum UM, Gerdes HH, Huttner WB (1987) The primary structure of human chromogranin A and pancreastatin. J Biol Chem 262:17026–17030

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Associazione Italiana per la Ricerca sul Cancro (AIRC) and Ministero della Sanità of Italy. We thank Alessandra Boletta for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Corti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dondossola, E., Gasparri, A., Bachi, A. et al. Role of vasostatin-1 C-terminal region in fibroblast cell adhesion. Cell. Mol. Life Sci. 67, 2107–2118 (2010). https://doi.org/10.1007/s00018-010-0319-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0319-5

Keywords

Navigation