Skip to main content
Log in

Inositol trisphosphate 3-kinases: focus on immune and neuronal signaling

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The localized control of second messenger levels sculpts dynamic and persistent changes in cell physiology and structure. Inositol trisphosphate [Ins(1,4,5)P 3] 3-kinases (ITPKs) phosphorylate the intracellular second messenger Ins(1,4,5)P 3. These enzymes terminate the signal to release Ca2+ from the endoplasmic reticulum and produce the messenger inositol tetrakisphosphate [Ins(1,3,4,5)P 4]. Independent of their enzymatic activity, ITPKs regulate the microstructure of the actin cytoskeleton. The immune phenotypes of ITPK knockout mice raise new questions about how ITPKs control inositol phosphate lifetimes within spatial and temporal domains during lymphocyte maturation. The intense concentration of ITPK on actin inside the dendritic spines of pyramidal neurons suggests a role in signal integration and structural plasticity in the dendrite, and mice lacking neuronal ITPK exhibit memory deficits. Thus, the molecular and anatomical features of ITPKs allow them to regulate the spatiotemporal properties of intracellular signals, leading to the formation of persistent molecular memories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACPD:

1-Aminocyclopentane-trans-1, 3-dicarboxylic acid

AMPA:

Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

BCR:

B cell receptor

CaM:

Calmodulin

CamKII:

Ca2+/calmodulin-dependent kinase II

ERK:

Extracellular signal-regulated kinase

ER:

Endoplasmic reticulum

IP:

Inositol phosphate

InsP 3 :

Inositol trisphosphate [Ins(1,4,5)P 3]

InsP 4 :

Inositol tetrakisphosphate [Ins(1,3,4,5)P 4]

IPK:

Inositol polyphosphate kinase

F-actin:

Filamentous actin

INPP5A:

Inositol polyphosphate 5-kinase type 1

IPMK:

Inositol polyphosphate multikinase

ITK:

Interleukin-2 inducible T cell tyrosine kinase

ITPK:

Inositol trisphosphate 3-kinase

ITPR:

Inositol trisphosphate receptor

LTP:

Long term potentiation

NMDA:

N-methyl-d-aspartate

PH:

Pleckstrin homology

PI3K:

Phosphatidylinositol lipid 3-kinase

SOC:

Stores operated channel

TCR:

T cell receptor

References

  1. Kummerow C, Junker C, Kruse K, Rieger H, Quintana A, Hoth M (2009) The immunological synapse controls local and global calcium signals in T lymphocytes. Immunol Rev 231:132–147

    CAS  PubMed  Google Scholar 

  2. Kennedy MB, Beale HC, Carlisle HJ, Washburn LR (2005) Integration of biochemical signalling in spines. Nat Rev Neurosci 6:423–434

    CAS  PubMed  Google Scholar 

  3. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    CAS  PubMed  Google Scholar 

  4. Neves SR, Tsokas P, Sarkar A, Grace EA, Rangamani P, Taubenfeld SM, Alberini CM, Schaff JC, Blitzer RD, Moraru II, Iyengar R (2008) Cell shape and negative links in regulatory motifs together control spatial information flow in signaling networks. Cell 133:666–680

    CAS  PubMed  Google Scholar 

  5. Willoughby D, Cooper DM (2007) Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains. Physiol Rev 87:965–1010

    CAS  PubMed  Google Scholar 

  6. Sabatini BL, Oertner TG, Svoboda K (2002) The life cycle of Ca2+ ions in dendritic spines. Neuron 33:439–452

    CAS  PubMed  Google Scholar 

  7. Augustine GJ, Santamaria F, Tanaka K (2003) Local calcium signaling in neurons. Neuron 40:331–346

    CAS  PubMed  Google Scholar 

  8. Irvine RF, Lloyd-Burton SM, Yu JC, Letcher AJ, Schell MJ (2006) The regulation and function of inositol 1,4,5-trisphosphate 3-kinases. Adv Enzyme Regul 46:314–323

    CAS  PubMed  Google Scholar 

  9. Worley PF, Baraban JM, Supattapone S, Wilson VS, Snyder SH (1987) Characterization of inositol trisphosphate receptor binding in brain. Regulation by pH and calcium. J Biol Chem 262:12132–12136

    CAS  PubMed  Google Scholar 

  10. Irvine RF, Schell MJ (2001) Back in the water: the return of the inositol phosphates. Nat Rev Mol Cell Biol 2:327–338

    CAS  PubMed  Google Scholar 

  11. Seeds AM and York JD (2007) Inositol polyphosphate kinases: regulators of nuclear function. Biochem Soc Symp 183–197

  12. Miller AT, Chamberlain PP, Cooke MP (2008) Beyond IP3: roles for higher order inositol phosphates in immune cell signaling. Cell Cycle 7:463–467

    CAS  PubMed  Google Scholar 

  13. Vanweyenberg V, Communi D, D’Santos CS, Erneux C (1995) Tissue- and cell-specific expression of Ins(1,4,5)P3 3-kinase isoenzymes. Biochem J 306:429–435

    CAS  PubMed  Google Scholar 

  14. Erneux C, Govaerts C, Communi D, Pesesse X (1998) The diversity and possible functions of the inositol polyphosphate 5-phosphatases. Biochim Biophys Acta 1436:185–199

    CAS  PubMed  Google Scholar 

  15. Batty IH, Letcher AJ, Nahorski SR (1989) Accumulation of inositol polyphosphate isomers in agonist-stimulated cerebral-cortex slices. Comparison with metabolic profiles in cell-free preparations. Biochem J 258:23–32

    CAS  PubMed  Google Scholar 

  16. Zilberman Y, Howe LR, Moore JP, Hesketh TR, Metcalfe JC (1987) Calcium regulates inositol 1,3,4,5-tetrakisphosphate production in lysed thymocytes and in intact cells stimulated with concanavalin A. EMBO J 6:957–962

    CAS  PubMed  Google Scholar 

  17. Irvine RF, Moor RM, Pollock WK, Smith PM, Wreggett KA (1988) Inositol phosphates: proliferation, metabolism and function. Philos Trans R Soc Lond B Biol Sci 320:281–298

    CAS  PubMed  Google Scholar 

  18. Moon KH, Lee SY, Rhee SG (1989) Developmental changes in the activities of phospholipase C, 3-kinase, and 5-phosphatase in rat brain. Biochem Biophys Res Commun 164:370–374

    CAS  PubMed  Google Scholar 

  19. Hermosura MC, Takeuchi H, Fleig A, Riley AM, Potter BV, Hirata M, Penner R (2000) InsP4 facilitates store-operated calcium influx by inhibition of InsP3 5-phosphatase. Nature 408:735–740

    CAS  PubMed  Google Scholar 

  20. Irvine R (2001) Inositol phosphates: does IP(4) run a protection racket? Curr Biol 11:R172–R174

    CAS  PubMed  Google Scholar 

  21. Gonzalez B, Schell MJ, Letcher AJ, Veprintsev DB, Irvine RF, Williams RL (2004) Structure of a human inositol 1,4,5-trisphosphate 3-kinase: substrate binding reveals why it is not a phosphoinositide 3-kinase. Mol Cell 15:689–701

    CAS  PubMed  Google Scholar 

  22. Miller GJ, Hurley JH (2004) Crystal structure of the catalytic core of inositol 1,4,5-trisphosphate 3-kinase. Mol Cell 15:703–711

    CAS  PubMed  Google Scholar 

  23. Cheek S, Ginalski K, Zhang H, Grishin NV (2005) A comprehensive update of the sequence and structure classification of kinases. BMC Struct Biol 5:6

    PubMed  Google Scholar 

  24. Resnick AC, Saiardi A (2008) Inositol polyphosphate multikinase: metabolic architect of nuclear inositides. Front Biosci 13:856–866

    CAS  PubMed  Google Scholar 

  25. Saiardi A, Erdjument-Bromage H, Snowman AM, Tempst P, Snyder SH (1999) Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Curr Biol 9:1323–1326

    CAS  PubMed  Google Scholar 

  26. York JD, Odom AR, Murphy R, Ives EB, Wente SR (1999) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285:96–100

    CAS  PubMed  Google Scholar 

  27. Holmes W, Jogl G (2006) Crystal structure of inositol phosphate multikinase 2 and implications for substrate specificity. J Biol Chem 281:38109–38116

    CAS  PubMed  Google Scholar 

  28. Chang SC, Miller AL, Feng Y, Wente SR, Majerus PW (2002) The human homolog of the rat inositol phosphate multikinase is an inositol 1,3,4,6-tetrakisphosphate 5-kinase. J Biol Chem 277:43836–43843

    CAS  PubMed  Google Scholar 

  29. Stevenson-Paulik J, Bastidas RJ, Chiou ST, Frye RA, York JD (2005) Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Proc Natl Acad Sci USA 102:12612–12617

    CAS  PubMed  Google Scholar 

  30. Zhang T, Caffrey JJ, Shears SB (2001) The transcriptional regulator, Arg82, is a hybrid kinase with both monophosphoinositol and diphosphoinositol polyphosphate synthase activity. FEBS Lett 494:208–212

    CAS  PubMed  Google Scholar 

  31. Resnick AC, Snowman AM, Kang BN, Hurt KJ, Snyder SH, Saiardi A (2005) Inositol polyphosphate multikinase is a nuclear PI3-kinase with transcriptional regulatory activity. Proc Natl Acad Sci USA 102:12783–12788

    CAS  PubMed  Google Scholar 

  32. Bennett M, Onnebo SM, Azevedo C, Saiardi A (2006) Inositol pyrophosphates: metabolism and signaling. Cell Mol Life Sci 63:552–564

    CAS  PubMed  Google Scholar 

  33. Saiardi A, Caffrey JJ, Snyder SH, Shears SB (2000) The inositol hexakisphosphate kinase family. Catalytic flexibility and function in yeast vacuole biogenesis. J Biol Chem 275:24686–24692

    CAS  PubMed  Google Scholar 

  34. Fujii M, York JD (2005) A role for rat inositol polyphosphate kinases rIPK2 and rIPK1 in inositol pentakisphosphate and inositol hexakisphosphate production in rat-1 cells. J Biol Chem 280:1156–1164

    CAS  PubMed  Google Scholar 

  35. Seeds AM, Bastidas RJ, York JD (2005) Molecular definition of a novel inositol polyphosphate metabolic pathway initiated by inositol 1,4,5-trisphosphate 3-kinase activity in Saccharomyces cerevisiae. J Biol Chem 280:27654–27661

    CAS  PubMed  Google Scholar 

  36. Leyman A, Pouillon V, Bostan A, Schurmans S, Erneux C, Pesesse X (2007) The absence of expression of the three isoenzymes of the inositol 1,4,5-trisphosphate 3-kinase does not prevent the formation of inositol pentakisphosphate and hexakisphosphate in mouse embryonic fibroblasts. Cell Signal 19:1497–1504

    CAS  PubMed  Google Scholar 

  37. Seeds AM, Frederick JP, Tsui MM, York JD (2007) Roles for inositol polyphosphate kinases in the regulation of nuclear processes and developmental biology. Adv Enzyme Regul 47:10–25

    CAS  PubMed  Google Scholar 

  38. Clandinin TR, DeModena JA, Sternberg PW (1998) Inositol trisphosphate mediates a RAS-independent response to LET-23 receptor tyrosine kinase activation in C. elegans. Cell 92:523–533

    CAS  PubMed  Google Scholar 

  39. Kashyap L, Tabish M, Ganesh G, Dubey D (2007) Computational and molecular characterization of multiple isoforms of lfe-2 gene in nematode C. elegans. Bioinformation 2:17–21

    PubMed  Google Scholar 

  40. Bui YK, Sternberg PW (2002) Caenorhabditis elegans inositol 5-phosphatase homolog negatively regulates inositol 1,4,5-triphosphate signaling in ovulation. Mol Biol Cell 13:1641–1651

    CAS  PubMed  Google Scholar 

  41. Pilipiuk J, Lefebvre C, Wiesenfahrt T, Legouis R, Bossinger O (2008) Increased IP3/Ca2+ signaling compensates depletion of LET-413/DLG-1 in C. elegans epithelial junction assembly. Dev Biol 327:34–47

    PubMed  Google Scholar 

  42. Seeds AM, Sandquist JC, Spana EP, York JD (2004) A molecular basis for inositol polyphosphate synthesis in Drosophila melanogaster. J Biol Chem 279:47222–47232

    CAS  PubMed  Google Scholar 

  43. Dobie KW, Kennedy CD, Velasco VM, McGrath TL, Weko J, Patterson RW, Karpen GH (2001) Identification of chromosome inheritance modifiers in Drosophila melanogaster. Genetics 157:1623–1637

    CAS  PubMed  Google Scholar 

  44. Monnier V, Girardot F, Audin W, Tricoire H (2002) Control of oxidative stress resistance by IP3 kinase in Drosophila melanogaster. Free Radic Biol Med 33:1250–1259

    CAS  PubMed  Google Scholar 

  45. Lloyd-Burton SM, Yu JC, Irvine RF, Schell MJ (2007) Regulation of inositol 1,4,5-trisphosphate 3-kinases by calcium and localization in cells. J Biol Chem 282:9526–9535

    CAS  PubMed  Google Scholar 

  46. Kucharski R, Maleszka R (2002) Molecular profiling of behavioural development: differential expression of mRNAs for inositol 1,4,5-trisphosphate 3-kinase isoforms in naive and experienced honeybees (Apis mellifera). Brain Res Mol Brain Res 99:92–101

    CAS  PubMed  Google Scholar 

  47. Go M, Uchida T, Takazawa K, Endo T, Erneux C, Mailleux P, Onaya T (1993) Inositol 1,4,5-trisphosphate 3-kinase highest levels in the dendritic spines of cerebellar Purkinje cells and hippocampal CA1 pyramidal cells. A pre- and post-embedding immunoelectron microscopic study. Neurosci Lett 158:135–138

    CAS  PubMed  Google Scholar 

  48. Jun K, Choi G, Yang SG, Choi KY, Kim H, Chan GC, Storm DR, Albert C, Mayr GW, Lee CJ, Shin HS (1998) Enhanced hippocampal CA1 LTP but normal spatial learning in inositol 1,4,5-trisphosphate 3-kinase(A)-deficient mice. Learn Mem 5:317–330

    CAS  PubMed  Google Scholar 

  49. Kim IH, Park SK, Sun W, Kang Y, Kim HT, Kim H (2004) Spatial learning enhances the expression of inositol 1,4,5-trisphosphate 3-kinase A in the hippocampal formation of rat. Brain Res Mol Brain Res 124:12–19

    CAS  PubMed  Google Scholar 

  50. Hascakova-Bartova R, Pouillon V, Dewaste V, Moreau C, Jacques C, Banting G, Schurmans S, Erneux C (2004) Identification and subcellular distribution of endogenous Ins(1,4,5)P3 3-kinase B in mouse tissues. Biochem Biophys Res Commun 323:920–925

    CAS  PubMed  Google Scholar 

  51. Pouillon V, Hascakova-Bartova R, Pajak B, Adam E, Bex F, Dewaste V, Van Lint C, Leo O, Erneux C, Schurmans S (2003) Inositol 1,3,4,5-tetrakisphosphate is essential for T lymphocyte development. Nat Immunol 4:1136–1143

    CAS  PubMed  Google Scholar 

  52. Wen BG, Pletcher MT, Warashina M, Choe SH, Ziaee N, Wiltshire T, Sauer K, Cooke MP (2004) Inositol (1,4,5) trisphosphate 3 kinase B controls positive selection of T cells and modulates Erk activity. Proc Natl Acad Sci USA 101:5604–5609

    CAS  PubMed  Google Scholar 

  53. Jia Y, Subramanian KK, Erneux C, Pouillon V, Hattori H, Jo H, You J, Zhu D, Schurmans S, Luo HR (2007) Inositol 1,3,4,5-tetrakisphosphate negatively regulates phosphatidylinositol-3,4,5-trisphosphate signaling in neutrophils. Immunity 27:453–467

    CAS  PubMed  Google Scholar 

  54. Jia Y, Loison F, Hattori H, Li Y, Erneux C, Park SY, Gao C, Chai L, Silberstein LE, Schurmans S, Luo HR (2008) Inositol trisphosphate 3-kinase B (InsP3KB) as a physiological modulator of myelopoiesis. Proc Natl Acad Sci USA 105:4739–4744

    CAS  PubMed  Google Scholar 

  55. Mailleux P, Takazawa K, Albala N, Erneux C, Vanderhaeghen JJ (1992) Astrocytic localization of the messenger RNA encoding the isoenzyme B of inositol (1,4,5) 3-kinase in the human brain. Neurosci Lett 148:177–180

    CAS  PubMed  Google Scholar 

  56. Communi D, Dewaste V, Erneux C (1999) Calcium-calmodulin-dependent protein kinase II and protein kinase C-mediated phosphorylation and activation of D-myo-inositol 1,4,5-trisphosphate 3-kinase B in astrocytes. J Biol Chem 274:14734–14742

    CAS  PubMed  Google Scholar 

  57. Dewaste V, Pouillon V, Moreau C, Shears S, Takazawa K, Erneux C (2000) Cloning and expression of a cDNA encoding human inositol 1,4,5-trisphosphate 3-kinase C. Biochem J 352(Pt 2):343–351

    CAS  PubMed  Google Scholar 

  58. Nalaskowski MM, Bertsch U, Fanick W, Stockebrand MC, Schmale H, Mayr GW (2003) Rat inositol 1,4,5-trisphosphate 3-kinase C is enzymatically specialized for basal cellular inositol trisphosphate phosphorylation and shuttles actively between nucleus and cytoplasm. J Biol Chem 278:19765–19776

    CAS  PubMed  Google Scholar 

  59. Onouchi Y, Gunji T, Burns JC, Shimizu C, Newburger JW, Yashiro M, Nakamura Y, Yanagawa H, Wakui K, Fukushima Y, Kishi F, Hamamoto K, Terai M, Sato Y, Ouchi K, Saji T, Nariai A, Kaburagi Y, Yoshikawa T, Suzuki K, Tanaka T, Nagai T, Cho H, Fujino A, Sekine A, Nakamichi R, Tsunoda T, Kawasaki T, Nakamura Y, Hata A (2008) ITPKC functional polymorphism associated with Kawasaki disease susceptibility and formation of coronary artery aneurysms. Nat Genet 40:35–42

    CAS  PubMed  Google Scholar 

  60. Communi D, Vanweyenberg V, Erneux C (1997) D-myo-inositol 1,4,5-trisphosphate 3-kinase A is activated by receptor activation through a calcium:calmodulin-dependent protein kinase II phosphorylation mechanism. EMBO J 16:1943–1952

    CAS  PubMed  Google Scholar 

  61. Communi D, Gevaert K, Demol H, Vandekerckhove J, Erneux C (2001) A novel receptor-mediated regulation mechanism of type I inositol polyphosphate 5-phosphatase by calcium/calmodulin-dependent protein kinase II phosphorylation. J Biol Chem 276:38738–38747

    CAS  PubMed  Google Scholar 

  62. Sim SS, Kim JW, Rhee SG (1990) Regulation of D-myo-inositol 1,4,5-trisphosphate 3-kinase by cAMP-dependent protein kinase and protein kinase C. J Biol Chem 265:10367–10372

    CAS  PubMed  Google Scholar 

  63. Woodring PJ, Garrison JC (1997) Expression, purification, and regulation of two isoforms of the inositol 1,4,5-trisphosphate 3-kinase. J Biol Chem 272:30447–30454

    CAS  PubMed  Google Scholar 

  64. Biden TJ, Altin JG, Karjalainen A, Bygrave FL (1988) Stimulation of hepatic inositol 1,4,5-trisphosphate kinase activity by Ca2+-dependent and -independent mechanisms. Biochem J 256:697–701

    CAS  PubMed  Google Scholar 

  65. Takazawa K, Passareiro H, Dumont JE, Erneux C (1989) Purification of bovine brain inositol 1,4,5-trisphosphate 3-kinase. Identification of the enzyme by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Biochem J 261:483–488

    CAS  PubMed  Google Scholar 

  66. Lee SY, Sim SS, Kim JW, Moon KH, Kim JH, Rhee SG (1990) Purification and properties of D-myo-inositol 1,4,5-trisphosphate 3-kinase from rat brain. Susceptibility to calpain. J Biol Chem 265:9434–9440

    CAS  PubMed  Google Scholar 

  67. Choi KY, Kim HK, Lee SY, Moon KH, Sim SS, Kim JW, Chung HK, Rhee SG (1990) Molecular cloning and expression of a complementary DNA for inositol 1,4,5-trisphosphate 3-kinase. Science 248:64–66

    CAS  PubMed  Google Scholar 

  68. Rechsteiner M, Rogers SW (1996) PEST sequences and regulation by proteolysis. Trends Biochem Sci 21:267–271

    CAS  PubMed  Google Scholar 

  69. Barnes JA, Gomes AV (1995) PEST sequences in calmodulin-binding proteins. Mol Cell Biochem 149–150:17–27

    PubMed  Google Scholar 

  70. Pattni K, Banting G (2004) Ins(1,4,5)P3 metabolism and the family of IP3–3 Kinases. Cell Signal 16:643–654

    CAS  PubMed  Google Scholar 

  71. Molinari M, Anagli J, Carafoli E (1995) PEST sequences do not influence substrate susceptibility to calpain proteolysis. J Biol Chem 270:2032–2035

    CAS  PubMed  Google Scholar 

  72. Yamada M, Kakita A, Mizuguchi M, Rhee SG, Kim SU, Ikuta F (1993) Specific expression of inositol 1,4,5-trisphosphate 3-kinase in dendritic spines. Brain Res 606:335–340

    CAS  PubMed  Google Scholar 

  73. Dewaste V, Roymans D, Moreau C, Erneux C (2002) Cloning and expression of a full-length cDNA encoding human inositol 1,4,5-trisphosphate 3-kinase B. Biochem Biophys Res Commun 291:400–405

    CAS  PubMed  Google Scholar 

  74. Pattni K, Millard TH, Banting G (2003) Calpain cleavage of the B isoform of Ins(1,4,5)P3 3-kinase separates the catalytic domain from the membrane anchoring domain. Biochem J 375:643–651

    CAS  PubMed  Google Scholar 

  75. Yu JC, Lloyd-Burton SM, Irvine RF, Schell MJ (2005) Regulation of the localization and activity of inositol 1,4,5-trisphosphate 3-kinase B in intact cells by proteolysis. Biochem J 392:435–441

    CAS  PubMed  Google Scholar 

  76. Dewaste V, Moreau C, De Smedt F, Bex F, De Smedt H, Wuytack F, Missiaen L, Erneux C (2003) The three isoenzymes of human inositol-1,4,5-trisphosphate 3-kinase show specific intracellular localization but comparable Ca2+ responses on transfection in COS-7 cells. Biochem J 374:41–49

    CAS  PubMed  Google Scholar 

  77. Brehm MA, Schreiber I, Bertsch U, Wegner A, Mayr GW (2004) Identification of the actin-binding domain of Ins(1,4,5)P3 3-kinase isoform B (IP3K-B). Biochem J 382:353–362

    CAS  PubMed  Google Scholar 

  78. Terasaki M, Slater NT, Fein A, Schmidek A, Reese TS (1994) Continuous network of endoplasmic reticulum in cerebellar Purkinje neurons. Proc Natl Acad Sci USA 91:7510–7514

    CAS  PubMed  Google Scholar 

  79. Park MK, Petersen OH, Tepikin AV (2000) The endoplasmic reticulum as one continuous Ca2+ pool: visualization of rapid Ca2+ movements and equilibration. EMBO J 19:5729–5739

    CAS  PubMed  Google Scholar 

  80. Mogami H, Nakano K, Tepikin AV, Petersen OH (1997) Ca2+ flow via tunnels in polarized cells: recharging of apical Ca2+ stores by focal Ca2+ entry through basal membrane patch. Cell 88:49–55

    CAS  PubMed  Google Scholar 

  81. Dargan SL, Schwaller B, Parker I (2004) Spatiotemporal patterning of IP3-mediated Ca2+ signals in Xenopus oocytes by Ca2+-binding proteins. J Physiol 556:447–461

    CAS  PubMed  Google Scholar 

  82. Korkotian E, Segal M (2006) Spatially confined diffusion of calcium in dendrites of hippocampal neurons revealed by flash photolysis of caged calcium. Cell Calcium 40:441–449

    CAS  PubMed  Google Scholar 

  83. Santamaria F, Wils S, De Schutter E, Augustine GJ (2006) Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron 52:635–648

    CAS  PubMed  Google Scholar 

  84. Wang SS, Alousi AA, Thompson SH (1995) The lifetime of inositol 1,4,5-trisphosphate in single cells. J Gen Physiol 105:149–171

    CAS  PubMed  Google Scholar 

  85. Sims CE, Allbritton NL (1998) Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate by the oocytes of Xenopus laevis. J Biol Chem 273:4052–4058

    CAS  PubMed  Google Scholar 

  86. Sarkisov DV, Gelber SE, Walker JW, Wang SS (2007) Synapse specificity of calcium release probed by chemical two-photon uncaging of inositol 1,4,5-trisphosphate. J Biol Chem 282:25517–25526

    CAS  PubMed  Google Scholar 

  87. Manita S and Ross WN (2009) IP3 mobilization and diffusion determine the timing window of Ca2+ release by synaptic stimulation and a spike in rat CA1 pyramidal cells. Hippocampus

  88. Speed CJ, Neylon CB, Little PJ, Mitchell CA (1999) Underexpression of the 43 kDa inositol polyphosphate 5-phosphatase is associated with spontaneous calcium oscillations and enhanced calcium responses following endothelin-1 stimulation. J Cell Sci 112:669–679

    CAS  PubMed  Google Scholar 

  89. Connolly TM, Bansal VS, Bross TE, Irvine RF, Majerus PW (1987) The metabolism of tris- and tetraphosphates of inositol by 5-phosphomonoesterase and 3-kinase enzymes. J Biol Chem 262:2146–2149

    CAS  PubMed  Google Scholar 

  90. Petersen CC, Toescu EC, Potter BV, Petersen OH (1991) Inositol triphosphate produces different patterns of cytoplasmic Ca2+ spiking depending on its concentration. FEBS Lett 293:179–182

    CAS  PubMed  Google Scholar 

  91. Taylor CW, Thorn P (2001) Calcium signalling: IP3 rises again and again. Curr Biol 11:R352–R355

    CAS  PubMed  Google Scholar 

  92. Nash MS, Schell MJ, Atkinson PJ, Johnston NR, Nahorski SR, Challiss RA (2002) Determinants of metabotropic glutamate receptor-5-mediated Ca2+ and inositol 1,4,5-trisphosphate oscillation frequency. Receptor density versus agonist concentration. J Biol Chem 277:35947–35960

    CAS  PubMed  Google Scholar 

  93. Dupont G, Erneux C (1997) Simulations of the effects of inositol 1,4,5-trisphosphate 3-kinase and 5-phosphatase activities on Ca2+ oscillations. Cell Calcium 22:321–331

    CAS  PubMed  Google Scholar 

  94. Mishra J, Bhalla US (2002) Simulations of inositol phosphate metabolism and its interaction with InsP3-mediated calcium release. Biophys J 83:1298–1316

    CAS  PubMed  Google Scholar 

  95. Politi A, Gaspers LD, Thomas AP, Hofer T (2006) Models of IP3 and Ca2+ oscillations: frequency encoding and identification of underlying feedbacks. Biophys J 90:3120–3133

    CAS  PubMed  Google Scholar 

  96. Dupont G, Combettes L, Leybaert L (2007) Calcium dynamics: spatio-temporal organization from the subcellular to the organ level. Int Rev Cytol 261:193–245

    CAS  PubMed  Google Scholar 

  97. Hirose K, Kadowaki S, Tanabe M, Takeshima H, Iino M (1999) Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex Ca2+ mobilization patterns. Science 284:1527–1530

    CAS  PubMed  Google Scholar 

  98. Nash MS, Young KW, Challiss RA, Nahorski SR (2001) Intracellular signalling. Receptor-specific messenger oscillations. Nature 413:381–382

    CAS  PubMed  Google Scholar 

  99. Thore S, Dyachok O, Tengholm A (2004) Oscillations of phospholipase C activity triggered by depolarization and Ca2+ influx in insulin-secreting cells. J Biol Chem 279:19396–19400

    CAS  PubMed  Google Scholar 

  100. Irvine RF (1992) Is inositol tetrakisphosphate the second messenger that controls Ca2+ entry into cells? Adv Second Messenger Phosphoprotein Res 26:161–185

    CAS  PubMed  Google Scholar 

  101. Theibert AB, Estevez VA, Mourey RJ, Marecek JF, Barrow RK, Prestwich GD, Snyder SH (1992) Photoaffinity labeling and characterization of isolated inositol 1,3,4,5-tetrakisphosphate- and inositol hexakisphosphate-binding proteins. J Biol Chem 267:9071–9079

    CAS  PubMed  Google Scholar 

  102. Donie F, Reiser G (1991) Purification of a high-affinity inositol 1,3,4,5-tetrakisphosphate receptor from brain. Biochem J 275(Pt 2):453–457

    CAS  PubMed  Google Scholar 

  103. Cullen PJ, Irvine RF (1992) Inositol 1,3,4,5-tetrakisphosphate binding sites in neuronal and non-neuronal tissues. Properties, comparisons and potential physiological significance. Biochem J 288:149–154

    CAS  PubMed  Google Scholar 

  104. Hammonds-Odie LP, Jackson TR, Profit AA, Blader IJ, Turck CW, Prestwich GD, Theibert AB (1996) Identification and cloning of centaurin-alpha. A novel phosphatidylinositol 3,4,5-trisphosphate-binding protein from rat brain. J Biol Chem 271:18859–18868

    CAS  PubMed  Google Scholar 

  105. Stricker R, Adelt S, Vogel G, Reiser G (1999) Translocation between membranes and cytosol of p42IP4, a specific inositol 1,3,4,5-tetrakisphosphate/phosphatidylinositol 3,4,5-trisphosphate-receptor protein from brain, is induced by inositol 1,3,4, 5-tetrakisphosphate and regulated by a membrane-associated 5-phosphatase. Eur J Biochem 265:815–824

    CAS  PubMed  Google Scholar 

  106. Cozier GE, Lockyer PJ, Reynolds JS, Kupzig S, Bottomley JR, Millard TH, Banting G, Cullen PJ (2000) GAP1IP4BP contains a novel group I pleckstrin homology domain that directs constitutive plasma membrane association. J Biol Chem 275:28261–28268

    CAS  PubMed  Google Scholar 

  107. Cullen PJ, Hsuan JJ, Truong O, Letcher AJ, Jackson TR, Dawson AP, Irvine RF (1995) Identification of a specific Ins(1,3,4,5)P4-binding protein as a member of the GAP1 family. Nature 376:527–530

    CAS  PubMed  Google Scholar 

  108. Loomis-Husselbee JW, Walker CD, Bottomley JR, Cullen PJ, Irvine RF, Dawson AP (1998) Modulation of Ins(2,4,5)P3-stimulated Ca2 + mobilization by ins(1,3,4,5)P4: enhancement by activated G-proteins, and evidence for the involvement of a GAP1 protein, a putative Ins(1,3,4,5)P4 receptor. Biochem J 331:947–952

    CAS  PubMed  Google Scholar 

  109. Stokes AJ, Shimoda LM, Lee JW, Rillero C, Chang YT, Turner H (2006) Fcepsilon RI control of Ras via inositol (1,4,5) trisphosphate 3-kinase and inositol tetrakisphosphate. Cell Signal 18:640–651

    CAS  PubMed  Google Scholar 

  110. Marechal Y, Pesesse X, Jia Y, Pouillon V, Perez-Morga D, Daniel J, Izui S, Cullen PJ, Leo O, Luo HR, Erneux C, Schurmans S (2007) Inositol 1,3,4,5-tetrakisphosphate controls proapoptotic Bim gene expression and survival in B cells. Proc Natl Acad Sci USA 104:13978–13983

    CAS  PubMed  Google Scholar 

  111. Kupzig S, Deaconescu D, Bouyoucef D, Walker SA, Liu Q, Polte CL, Daumke O, Ishizaki T, Lockyer PJ, Wittinghofer A, Cullen PJ (2006) GAP1 family members constitute bifunctional Ras and Rap GTPase-activating proteins. J Biol Chem 281:9891–9900

    CAS  PubMed  Google Scholar 

  112. Bivona TG, Perez De Castro I, Ahearn IM, Grana TM, Chiu VK, Lockyer PJ, Cullen PJ, Pellicer A, Cox AD, Philips MR (2003) Phospholipase Cgamma activates Ras on the Golgi apparatus by means of RasGRP1. Nature 424:694–698

    CAS  PubMed  Google Scholar 

  113. Yasuda T, Kurosaki T (2008) Regulation of lymphocyte fate by Ras/ERK signals. Cell Cycle 7:3634–3640

    CAS  PubMed  Google Scholar 

  114. Morris AP, Gallacher DV, Irvine RF, Petersen OH (1987) Synergism of inositol trisphosphate and tetrakisphosphate in activating Ca2+-dependent K+ channels. Nature 330:653–655

    CAS  PubMed  Google Scholar 

  115. Higashida H, Taketo M, Takahashi H, Yokoyama S, Hashii M (1999) Potential mechanism for bradykinin-activated and inositol tetrakisphosphate-dependent Ca2+ influx by Ras and GAP1 in fibroblast cells. Immunopharmacology 45:7–11

    CAS  PubMed  Google Scholar 

  116. Hashii M, Nakashima S, Yokoyama S, Enomoto K, Minabe Y, Nozawa Y, Higashida H (1996) Bradykinin B2 receptor-induced and inositol tetrakisphosphate-evoked Ca2+ entry is sensitive to a protein tyrosine phosphorylation inhibitor in ras-transformed NIH/3T3 fibroblasts. Biochem J 319:649–656

    CAS  PubMed  Google Scholar 

  117. Miller AT, Sandberg M, Huang YH, Young M, Sutton S, Sauer K, Cooke MP (2007) Production of Ins(1,3,4,5)P4 mediated by the kinase Itpkb inhibits store-operated calcium channels and regulates B cell selection and activation. Nat Immunol 8:514–521

    CAS  PubMed  Google Scholar 

  118. Tsubokawa H, Oguro K, Robinson HP, Masuzawa T, Kawai N (1996) Intracellular inositol 1,3,4,5-tetrakisphosphate enhances the calcium current in hippocampal CA1 neurones of the gerbil after ischaemia. J Physiol 497:67–78

    CAS  PubMed  Google Scholar 

  119. Szinyei C, Behnisch T, Reiser G, Reymann KG (1999) Inositol 1,3,4,5-tetrakisphosphate enhances long-term potentiation by regulating Ca2 + entry in rat hippocampus. J Physiol 516:855–868

    CAS  PubMed  Google Scholar 

  120. Jia Y, Schurmans S, Luo HR (2008) Regulation of innate immunity by inositol 1,3,4,5-tetrakisphosphate. Cell Cycle 7:2803–2808

    CAS  PubMed  Google Scholar 

  121. Miller AT, Beisner DR, Liu D, Cooke MP (2009) Inositol 1,4,5-trisphosphate 3-kinase B is a negative regulator of BCR signaling that controls B cell selection and tolerance induction. J Immunol 182:4696–4704

    CAS  PubMed  Google Scholar 

  122. Huang YH, Hoebe K, Sauer K (2008) New therapeutic targets in immune disorders: ItpkB, Orai1 and UNC93B. Expert Opin Ther Targets 12:391–413

    CAS  PubMed  Google Scholar 

  123. Huang YH, Grasis JA, Miller AT, Xu R, Soonthornvacharin S, Andreotti AH, Tsoukas CD, Cooke MP, Sauer K (2007) Positive regulation of Itk PH domain function by soluble IP4. Science 316:886–889

    CAS  PubMed  Google Scholar 

  124. Kupzig S, Walker SA, Cullen PJ (2005) The frequencies of calcium oscillations are optimized for efficient calcium-mediated activation of Ras and the ERK/MAPK cascade. Proc Natl Acad Sci USA 102:7577–7582

    CAS  PubMed  Google Scholar 

  125. Feske S (2007) Calcium signalling in lymphocyte activation and disease. Nat Rev Immunol 7:690–702

    CAS  PubMed  Google Scholar 

  126. Scharenberg AM, Humphries LA, Rawlings DJ (2007) Calcium signalling and cell-fate choice in B cells. Nat Rev Immunol 7:778–789

    CAS  PubMed  Google Scholar 

  127. Engels N, Engelke M, Wienands J (2008) Conformational plasticity and navigation of signaling proteins in antigen-activated B lymphocytes. Adv Immunol 97:251–281

    CAS  PubMed  Google Scholar 

  128. Rao A (2009) Signaling to gene expression: calcium, calcineurin and NFAT. Nat Immunol 10:3–5

    CAS  PubMed  Google Scholar 

  129. Muller MR, Sasaki Y, Stevanovic I, Lamperti ED, Ghosh S, Sharma S, Gelinas C, Rossi DJ, Pipkin ME, Rajewsky K, Hogan PG, Rao A (2009) Requirement for balanced Ca/NFAT signaling in hematopoietic and embryonic development. Proc Natl Acad Sci USA 106:7034–7039

    CAS  PubMed  Google Scholar 

  130. Bhakta NR, Oh DY, Lewis RS (2005) Calcium oscillations regulate thymocyte motility during positive selection in the three-dimensional thymic environment. Nat Immunol 6:143–151

    CAS  PubMed  Google Scholar 

  131. Witt CM, Raychaudhuri S, Schaefer B, Chakraborty AK, Robey EA (2005) Directed migration of positively selected thymocytes visualized in real time. PLoS Biol 3:e160

    PubMed  Google Scholar 

  132. Kim IH, Park SK, Hong ST, Jo YS, Kim EJ, Park EH, Han SB, Shin HS, Sun W, Kim HT, Soderling SH, Kim H (2009) Inositol 1,4,5-trisphosphate 3-kinase a functions as a scaffold for synaptic Rac signaling. J Neurosci 29:14039–14049

    CAS  PubMed  Google Scholar 

  133. Johnson HW, Schell MJ (2009) Neuronal IP3 3-Kinase Is an F-actin Bundling Protein: Role in Dendritic Targeting and Regulation of Spine Morphology. Mol Biol Cell 20:5166–5180

    CAS  PubMed  Google Scholar 

  134. Tybulewicz VL, Henderson RB (2009) Rho family GTPases and their regulators in lymphocytes. Nat Rev Immunol 9:630–644

    CAS  PubMed  Google Scholar 

  135. Burgner D, Davila S, Breunis WB, Ng SB, Li Y, Bonnard C, Ling L, Wright VJ, Thalamuthu A, Odam M, Shimizu C, Burns JC, Levin M, Kuijpers TW, Hibberd ML (2009) A genome-wide association study identifies novel and functionally related susceptibility Loci for Kawasaki disease. PLoS Genet 5:e1000319

    PubMed  Google Scholar 

  136. Rowley AH, Baker SC, Orenstein JM, Shulman ST (2008) Searching for the cause of Kawasaki disease—cytoplasmic inclusion bodies provide new insight. Nat Rev Microbiol 6:394–401

    CAS  PubMed  Google Scholar 

  137. Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:13–26

    CAS  PubMed  Google Scholar 

  138. Higley MJ, Sabatini BL (2008) Calcium signaling in dendrites and spines: practical and functional considerations. Neuron 59:902–913

    CAS  PubMed  Google Scholar 

  139. Fisher SK, Agranoff BW (1987) Receptor activation and inositol lipid hydrolysis in neural tissues. J Neurochem 48:999–1017

    CAS  PubMed  Google Scholar 

  140. Sharp AH, Dawson TM, Ross CA, Fotuhi M, Mourey RJ, Snyder SH (1993) Inositol 1,4,5-trisphosphate receptors: immunohistochemical localization to discrete areas of rat central nervous system. Neuroscience 53:927–942

    CAS  PubMed  Google Scholar 

  141. Mailleux P, Takazawa K, Erneux C, Vanderhaeghen JJ (1991) Inositol 1,4,5-trisphosphate 3-kinase distribution in the rat brain. High levels in the hippocampal CA1 pyramidal and cerebellar Purkinje cells suggest its involvement in some memory processes. Brain Res 539:203–210

    CAS  PubMed  Google Scholar 

  142. Mailleux P, Takazawa K, Albala N, Erneux C, Vanderhaeghen JJ (1992) Comparison of neuronal inositol 1,4,5-trisphosphate 3-kinase and receptor mRNA distributions in the human brain using in situ hybridization histochemistry. Neurosci Lett 137:69–71

    CAS  PubMed  Google Scholar 

  143. Heacock AM, Seguin EB, Agranoff BW (1990) Developmental and regional studies of the metabolism of inositol 1,4,5-trisphosphate in rat brain. J Neurochem 54:1405–1411

    CAS  PubMed  Google Scholar 

  144. Worley PF, Baraban JM, Snyder SH (1989) Inositol 1,4,5-trisphosphate receptor binding: autoradiographic localization in rat brain. J Neurosci 9:339–346

    CAS  PubMed  Google Scholar 

  145. Sharp AH, Nucifora FC Jr, Blondel O, Sheppard CA, Zhang C, Snyder SH, Russell JT, Ryugo DK, Ross CA (1999) Differential cellular expression of isoforms of inositol 1,4,5-triphosphate receptors in neurons and glia in brain. J Comp Neurol 406:207–220

    CAS  PubMed  Google Scholar 

  146. Mizuguchi M, Yamada M, Rhee SG, Kim SU (1992) Development of inositol 1,4,5-trisphosphate 3-kinase immunoreactivity in cerebellar Purkinje cells in vivo and in vitro. Brain Res 573:157–160

    CAS  PubMed  Google Scholar 

  147. Schell MJ, Irvine RF (2006) Calcium-triggered exit of F-actin and IP3 3-kinase A from dendritic spines is rapid and reversible. Eur J Neurosci 24:2491–2503

    PubMed  Google Scholar 

  148. Batty IR, Nahorski SR, Irvine RF (1985) Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices. Biochem J 232:211–215

    CAS  PubMed  Google Scholar 

  149. Challiss RA, Nahorski SR (1990) Neurotransmitter and depolarization-stimulated accumulation of inositol 1,3,4,5-tetrakisphosphate mass in rat cerebral cortex slices. J Neurochem 54:2138–2141

    CAS  PubMed  Google Scholar 

  150. Baird JG, Nahorski SR (1990) Increased intracellular calcium stimulates 3H-inositol polyphosphate accumulation in rat cerebral cortical slices. J Neurochem 54:555–561

    CAS  PubMed  Google Scholar 

  151. Baird JG, Challiss RA, Nahorski SR (1991) Role for ionotropic and metabotropic receptors in quisqualate-stimulated inositol polyphosphate accumulation in rat cerebral cortex. Mol Pharmacol 39:745–753

    CAS  PubMed  Google Scholar 

  152. Baird JG, Nahorski SR (1991) Stimulatory and inhibitory effects of N-methyl-D-aspartate on 3H-inositol polyphosphate accumulation in rat cortical slices. J Neurochem 57:629–635

    CAS  PubMed  Google Scholar 

  153. Schmidt BH, Weiss S, Sebben M, Kemp DE, Bockaert J, Sladeczek F (1987) Dual action of excitatory amino acids on the metabolism of inositol phosphates in striatal neurons. Mol Pharmacol 32:364–368

    CAS  PubMed  Google Scholar 

  154. Takazawa K, Lemos M, Delvaux A, Lejeune C, Dumont JE, Erneux C (1990) Rat brain inositol 1,4,5-trisphosphate 3-kinase. Ca2 + -sensitivity, purification and antibody production. Biochem J 268:213–217

    CAS  PubMed  Google Scholar 

  155. Wang SS, Major G (2003) Integrating over time with dendritic wave-fronts. Nat Neurosci 6:906–908

    CAS  PubMed  Google Scholar 

  156. Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9:206–221

    CAS  PubMed  Google Scholar 

  157. Finch EA, Augustine GJ (1998) Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature 396:753–756

    CAS  PubMed  Google Scholar 

  158. Wang SS, Denk W, Hausser M (2000) Coincidence detection in single dendritic spines mediated by calcium release. Nat Neurosci 3:1266–1273

    CAS  PubMed  Google Scholar 

  159. Sarkisov DV, Wang SS (2008) Order-dependent coincidence detection in cerebellar Purkinje neurons at the inositol trisphosphate receptor. J Neurosci 28:133–142

    CAS  PubMed  Google Scholar 

  160. Raymond CR, Redman SJ (2006) Spatial segregation of neuronal calcium signals encodes different forms of LTP in rat hippocampus. J Physiol 570:97–111

    CAS  PubMed  Google Scholar 

  161. Dudman JT, Tsay D, Siegelbaum SA (2007) A role for synaptic inputs at distal dendrites: instructive signals for hippocampal long-term plasticity. Neuron 56:866–879

    CAS  PubMed  Google Scholar 

  162. Patterson RL, Boehning D, Snyder SH (2004) Inositol 1,4,5-trisphosphate receptors as signal integrators. Annu Rev Biochem 73:437–465

    CAS  PubMed  Google Scholar 

  163. Hardingham GE, Arnold FJ, Bading H (2001) Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity. Nat Neurosci 4:261–267

    CAS  PubMed  Google Scholar 

  164. Park MK, Choi YM, Kang YK, Petersen OH (2008) The endoplasmic reticulum as an integrator of multiple dendritic events. Neuroscientist 14:68–77

    CAS  PubMed  Google Scholar 

  165. Nakamura T, Lasser-Ross N, Nakamura K, Ross WN (2002) Spatial segregation and interaction of calcium signalling mechanisms in rat hippocampal CA1 pyramidal neurons. J Physiol 543:465–480

    CAS  PubMed  Google Scholar 

  166. Power JM, Sah P (2002) Nuclear calcium signaling evoked by cholinergic stimulation in hippocampal CA1 pyramidal neurons. J Neurosci 22:3454–3462

    CAS  PubMed  Google Scholar 

  167. Stutzmann GE, LaFerla FM, Parker I (2003) Ca2+ signaling in mouse cortical neurons studied by two-photon imaging and photoreleased inositol triphosphate. J Neurosci 23:758–765

    CAS  PubMed  Google Scholar 

  168. Power JM, Sah P (2007) Distribution of IP3-mediated calcium responses and their role in nuclear signalling in rat basolateral amygdala neurons. J Physiol 580:835–857

    CAS  PubMed  Google Scholar 

  169. Fitzpatrick JS, Hagenston AM, Hertle DN, Gipson KE, Bertetto-D’Angelo L, Yeckel MF (2009) Inositol-1,4,5-trisphosphate receptor-mediated Ca2+ waves in pyramidal neuron dendrites propagate through hot spots and cold spots. J Physiol 587:1439–1459

    CAS  PubMed  Google Scholar 

  170. Irving AJ, Collingridge GL (1998) A characterization of muscarinic receptor-mediated intracellular Ca2+ mobilization in cultured rat hippocampal neurones. J Physiol 511:747–759

    CAS  PubMed  Google Scholar 

  171. Power JM, Sah P (2005) Intracellular calcium store filling by an L-type calcium current in the basolateral amygdala at subthreshold membrane potentials. J Physiol 562:439–453

    CAS  PubMed  Google Scholar 

  172. Hong M, Ross WN (2007) Priming of intracellular calcium stores in rat CA1 pyramidal neurons. J Physiol 584:75–87

    CAS  PubMed  Google Scholar 

  173. Hagenston AM, Fitzpatrick JS, Yeckel MF (2008) MGluR-mediated calcium waves that invade the soma regulate firing in layer V medial prefrontal cortical pyramidal neurons. Cereb Cortex 18:407–423

    PubMed  Google Scholar 

  174. Sharp AH, McPherson PS, Dawson TM, Aoki C, Campbell KP, Snyder SH (1993) Differential immunohistochemical localization of inositol 1,4,5-trisphosphate- and ryanodine-sensitive Ca2+ release channels in rat brain. J Neurosci 13:3051–3063

    CAS  PubMed  Google Scholar 

  175. Jacob SN, Choe CU, Uhlen P, DeGray B, Yeckel MF, Ehrlich BE (2005) Signaling microdomains regulate inositol 1,4,5-trisphosphate-mediated intracellular calcium transients in cultured neurons. J Neurosci 25:2853–2864

    CAS  PubMed  Google Scholar 

  176. Manita S, Ross WN (2009) Synaptic activation and membrane potential changes modulate the frequency of spontaneous elementary Ca2+ release events in the dendrites of pyramidal neurons. J Neurosci 29:7833–7845

    CAS  PubMed  Google Scholar 

  177. Schell MJ, Erneux C, Irvine RF (2001) Inositol 1,4,5-trisphosphate 3-kinase A associates with F-actin and dendritic spines via its N terminus. J Biol Chem 276:37537–37546

    CAS  PubMed  Google Scholar 

  178. Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10:647–658

    CAS  PubMed  Google Scholar 

  179. Windhorst S, Blechner C, Lin HY, Elling C, Nalaskowski M, Kirchberger T, Guse AH, Mayr GW (2008) Ins(1,4,5)P3 3-kinase-A overexpression induces cytoskeletal reorganization via a kinase-independent mechanism. Biochem J 414:407–417

    CAS  PubMed  Google Scholar 

  180. Yamada M, Kakita A, Mizuguchi M, Rhee SG, Kim SU, Ikuta F (1992) Ultrastructural localization of inositol 1,4,5-trisphosphate 3-kinase in rat cerebellar cortex. Brain Res 578:41–48

    CAS  PubMed  Google Scholar 

  181. Yamada M, Kakita A, Mizuguchi M, Rhee SG, Kim SU, Ikuta F (1993) Developmental profile of inositol 1,4,5-trisphosphate 3-kinase in rat cerebellar cortex: light and electron microscopic immunohistochemical studies. Brain Res Dev Brain Res 71:137–145

    CAS  PubMed  Google Scholar 

  182. Capani F, Deerinck TJ, Ellisman MH, Bushong E, Bobik M, Martone ME (2001) Phalloidin-eosin followed by photo-oxidation: a novel method for localizing F-actin at the light and electron microscopic levels. J Histochem Cytochem 49:1351–1361

    CAS  PubMed  Google Scholar 

  183. Capani F, Martone ME, Deerinck TJ, Ellisman MH (2001) Selective localization of high concentrations of F-actin in subpopulations of dendritic spines in rat central nervous system: a three-dimensional electron microscopic study. J Comp Neurol 435:156–170

    CAS  PubMed  Google Scholar 

  184. O’Brien SJ (2008) The platypus genome unraveled. Cell 133:953–955

    PubMed  Google Scholar 

  185. Eilers J, Takechi H, Finch EA, Augustine GJ, Konnerth A (1997) Local dendritic Ca2+ signaling induces cerebellar long-term depression. Learn Mem 4:159–168

    CAS  PubMed  Google Scholar 

  186. Miyata M, Finch EA, Khiroug L, Hashimoto K, Hayasaka S, Oda SI, Inouye M, Takagishi Y, Augustine GJ, Kano M (2000) Local calcium release in dendritic spines required for long-term synaptic depression. Neuron 28:233–244

    CAS  PubMed  Google Scholar 

  187. Spacek J, Harris KM (1997) Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J Neurosci 17:190–203

    CAS  PubMed  Google Scholar 

  188. Holbro N, Grunditz A, Oertner TG (2009) Differential distribution of endoplasmic reticulum controls metabotropic signaling and plasticity at hippocampal synapses. Proc Natl Acad Sci USA 106:15055–15060

    CAS  PubMed  Google Scholar 

  189. Nagase T, Ito KI, Kato K, Kaneko K, Kohda K, Matsumoto M, Hoshino A, Inoue T, Fujii S, Kato H, Mikoshiba K (2003) Long-term potentiation and long-term depression in hippocampal CA1 neurons of mice lacking the IP3 type 1 receptor. Neuroscience 117:821–830

    CAS  PubMed  Google Scholar 

  190. Wilsch VW, Behnisch T, Jager T, Reymann KG, Balschun D (1998) When are class I metabotropic glutamate receptors necessary for long-term potentiation? J Neurosci 18:6071–6080

    CAS  PubMed  Google Scholar 

  191. Fernandez de Sevilla D, Nunez A, Borde M, Malinow R, Buno W (2008) Cholinergic-mediated IP3-receptor activation induces long-lasting synaptic enhancement in CA1 pyramidal neurons. J Neurosci 28:1469–1478

    CAS  PubMed  Google Scholar 

  192. Baba H, Fuss B, Urano J, Poullet P, Watson JB, Tamanoi F, Macklin WB (1995) GapIII, a new brain-enriched member of the GTPase-activating protein family. J Neurosci Res 41:846–858

    CAS  PubMed  Google Scholar 

  193. Vazquez LE, Chen HJ, Sokolova I, Knuesel I, Kennedy MB (2004) SynGAP regulates spine formation. J Neurosci 24:8862–8872

    CAS  PubMed  Google Scholar 

  194. Carlisle HJ, Manzerra P, Marcora E, Kennedy MB (2008) SynGAP regulates steady-state and activity-dependent phosphorylation of cofilin. J Neurosci 28:13673–13683

    CAS  PubMed  Google Scholar 

  195. Yasuda R, Harvey CD, Zhong H, Sobczyk A, van Aelst L, Svoboda K (2006) Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging. Nat Neurosci 9:283–291

    CAS  PubMed  Google Scholar 

  196. Harvey CD, Yasuda R, Zhong H, Svoboda K (2008) The spread of Ras activity triggered by activation of a single dendritic spine. Science 321:136–140

    CAS  PubMed  Google Scholar 

  197. Ryu J, Futai K, Feliu M, Weinberg R, Sheng M (2008) Constitutively active Rap2 transgenic mice display fewer dendritic spines, reduced extracellular signal-regulated kinase signaling, enhanced long-term depression, and impaired spatial learning and fear extinction. J Neurosci 28:8178–8188

    CAS  PubMed  Google Scholar 

  198. Zhou L, Martinez SJ, Haber M, Jones EV, Bouvier D, Doucet G, Corera AT, Fon EA, Zisch AH, Murai KK (2007) EphA4 signaling regulates phospholipase Cgamma1 activation, cofilin membrane association, and dendritic spine morphology. J Neurosci 27:5127–5138

    CAS  PubMed  Google Scholar 

  199. Choi G, Chang YT, Chung SK, Choi KY (1997) Molecular interactions of all possible regioisomers of synthetic myo-inositol phosphates with inositol 1,4,5-trisphosphate 3-kinase. Bioorg Med Chem Lett 7:2709–2714

    CAS  Google Scholar 

  200. Chang YT, Choi G, Bae YS, Burdett M, Moon HS, Lee JW, Gray NS, Schultz PG, Meijer L, Chung SK, Choi KY, Suh PG, Ryu SH (2002) Purine-based inhibitors of inositol-1,4,5-trisphosphate-3-kinase. Chembiochem 3:897–901

    CAS  PubMed  Google Scholar 

  201. Mayr GW, Windhorst S, Hillemeier K (2005) Antiproliferative plant and synthetic polyphenolics are specific inhibitors of vertebrate inositol-1,4,5-trisphosphate 3-kinases and inositol polyphosphate multikinase. J Biol Chem 280:13229–13240

    CAS  PubMed  Google Scholar 

  202. Kwon YU, Im J, Choi G, Kim YS, Choi KY, Chung SK (2003) Synthesis of three enantiomeric pairs of scyllo-inositol phosphate and molecular interactions between all possible regioisomers of scyllo-inositol phosphate and inositol 1,4,5-trisphosphate 3-kinase. Bioorg Med Chem Lett 13:2981–2984

    CAS  PubMed  Google Scholar 

  203. Suh BC, Kim MJ, Choi G, Choi KY, Han JK, Chung SK, Kim KT (2000) Differential stereoselectivity of D- and L-myo-inositol 1,2,4,5-tetrakisphosphate binding to the inositol 1,4,5-trisphosphate receptor and 3-kinase. Neurochem Int 37:47–52

    CAS  PubMed  Google Scholar 

  204. Legraverend M, Grierson DS (2006) The purines: potent and versatile small molecule inhibitors and modulators of key biological targets. Bioorg Med Chem 14:3987–4006

    CAS  PubMed  Google Scholar 

  205. Padmanabhan U, Dollins DE, Fridy PC, York JD, Downes CP (2009) Characterization of a selective inhibitor of inositol hexakisphosphate kinases: use in defining biological roles and metabolic relationships of inositol pyrophosphates. J Biol Chem 284:10571–10582

    CAS  PubMed  Google Scholar 

  206. Chamberlain PP, Sandberg ML, Sauer K, Cooke MP, Lesley SA, Spraggon G (2005) Structural insights into enzyme regulation for inositol 1,4,5-trisphosphate 3-kinase B. Biochemistry 44:14486–14493

    CAS  PubMed  Google Scholar 

  207. Balla T, Sim SS, Iida T, Choi KY, Catt KJ, Rhee SG (1991) Agonist-induced calcium signaling is impaired in fibroblasts overproducing inositol 1,3,4,5-tetrakisphosphate. J Biol Chem 266:24719–24726

    CAS  PubMed  Google Scholar 

  208. Balla T, Sim SS, Baukal AJ, Rhee SG, Catt KJ (1994) Inositol polyphosphates are not increased by overexpression of Ins(1,4,5)P3 3-kinase but show cell-cycle dependent changes in growth factor-stimulated fibroblasts. Mol Biol Cell 5:17–27

    CAS  PubMed  Google Scholar 

  209. Verjans B, Petersen CC, Berridge MJ (1994) Overexpression of inositol 1,4,5-trisphosphate 3-kinase in Xenopus oocytes inhibits agonist-evoked capacitative calcium entry. Biochem J 304:679–682

    CAS  PubMed  Google Scholar 

  210. Millard TH, Cullen PJ, Banting G (2000) Effects of elevated expression of inositol 1,4,5-trisphosphate 3-kinase B on Ca2+ homoeostasis in HeLa cells. Biochem J 352:709–715

    CAS  PubMed  Google Scholar 

  211. Shears SB (2009) Molecular basis for the integration of inositol phosphate signaling pathways via human ITPK1. Adv Enzyme Regul 49:87–96

    CAS  PubMed  Google Scholar 

  212. Rao VD, Misra S, Boronenkov IV, Anderson RA, Hurley JH (1998) Structure of type IIbeta phosphatidylinositol phosphate kinase: a protein kinase fold flattened for interfacial phosphorylation. Cell 94:829–839

    CAS  PubMed  Google Scholar 

  213. Nalaskowski MM, Windhorst S, Stockebrand MC, Mayr GW (2006) Subcellular localisation of human inositol 1,4,5-trisphosphate 3-kinase C: species-specific use of alternative export sites for nucleo-cytoplasmic shuttling indicates divergent roles of the catalytic and N-terminal domains. Biol Chem 387:583–593

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Pavel Gusev for critical reading and Gudrun Ihrke for assistance with the figures. The author is supported by USU grants RO75NX and RO75PJ, and a Research Starter grant from the PhRMA Foundation. The opinions or assertions contained herein are the private ones of the author and are not to be construed as official or reflecting the view of the Department of Defense or the Uniformed Services University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Schell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schell, M.J. Inositol trisphosphate 3-kinases: focus on immune and neuronal signaling. Cell. Mol. Life Sci. 67, 1755–1778 (2010). https://doi.org/10.1007/s00018-009-0238-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0238-5

Keywords

Navigation