Skip to main content
Log in

Reverse Brascamp–Lieb inequality and the dual Bollobás–Thomason inequality

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

We prove that if \(f:{\mathbb {R}}^n\rightarrow [0,\infty )\) is an integrable log-concave function with \(f(0)=1\) and \(F_1,\ldots ,F_r\) are linear subspaces of \({\mathbb {R}}^n\) such that \(sI_n=\sum _{i=1}^rc_iP_i\) where \(I_n\) is the identity operator and \(P_i\) is the orthogonal projection onto \(F_i\), then

$$\begin{aligned} n^n\int \limits _{{\mathbb {R}}^n}f(y)^ndy\geqslant \prod _{i=1}^r\left( \,\int \limits _{F_i}f(x_i)dx_i\right) ^{c_i/s}. \end{aligned}$$

As an application we obtain the dual version of the Bollobás–Thomason inequality: if K is a convex body in \({\mathbb {R}}^n\) with \(0\in \mathrm{int}(K)\) and \((\sigma _1,\ldots ,\sigma _r)\) is an s-uniform cover of [n], then

$$\begin{aligned} |K|^s\geqslant \frac{1}{(n!)^s}\prod _{i=1}^r|\sigma _i|!\prod _{i=1}^r|K\cap F_i|. \end{aligned}$$

This is a sharp generalization of Meyer’s dual Loomis–Whitney inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alonso–Gutiérrez, D., Artstein–Avidan, S., González Merino, B., Jiménez, C. H., Villa, R.: Rogers–Shephard and local Loomis–Whitney type inequalities. Preprint (2017). arXiv:1706.01499

  2. Artstein-Avidan, S., Giannopoulos, A., Milman, V.D.: Asymptotic Geometric Analysis, Vol. I, Mathematical Surveys and Monographs, vol. 202. American Mathematical Society, Providence (2015)

    MATH  Google Scholar 

  3. Ball, K.M.: Shadows of convex bodies. Trans. Am. Math. Soc. 327, 891–901 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ball, K.M.: Convex geometry and functional analysis. In: Johnson, Lindenstrauss, (eds.) Handbook of the Geometry of Banach Spaces, vol. I, pp. 161–194. North-Holland, Amsterdam (2001)

    Chapter  Google Scholar 

  5. Barthe, F.: On a reverse form of the Brascamp–Lieb inequality. Invent. Math. 134, 335–361 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barthe, F.: A Continuous Version of the Brascamp-Lieb Inequalities, Geometric Aspects of Functional Analysis, Lecture Notes in Mathematics, vol. 1805, pp. 53–63. Springer, Berlin (2004)

    MATH  Google Scholar 

  7. Barthe, F., Cordero-Erausquin, D.: Invariance in variance estimates. Proc. Lond. Math. Soc. 106, 33–64 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bollobás, B., Thomason, A.: Projections of bodies and hereditary properties of hypergraphs. Bull. Lond. Math. Soc. 27, 417–424 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brazitikos, S., Giannopoulos, A., Liakopoulos, D.-M.: Uniform cover inequalities for the volume of coordinate sections and projections of convex bodies. Adv. Geom. 18, 345–354 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Burago, Y.D., Zalgaller, V.A.: Geometric Inequalities, Springer Series in Soviet Mathematics. Springer, Berlin (1988)

    Book  Google Scholar 

  11. Campi, S., Gronchi, P.: Estimates of Loomis–Whitney type for intrinsic volumes. Adv. Appl. Math. 47, 545–561 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Campi, S., Gardner, R.J., Gronchi, P.: Reverse and dual Loomis–Whitney-type inequalities. Trans. Am. Math. Soc. 368, 5093–5124 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Finner, H.: A generalization of Hölder’s inequality and some probability inequalities. Ann. Probab. 20(4), 1893–1901 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gardner, R.J.: Geometric Tomography. Encyclopedia of Mathematics and its Applications, vol. 58, 2nd edn. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  15. Li, A.-J., Huang, Q.: The dual Loomis–Whitney inequality. Bull. Lond. Math. Soc. 48, 676–690 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lutwak, E., Yang, D., Zhang, G.: Volume inequalities for subspaces of \(L_p\). J. Differ. Geom. 56, 111–132 (2000)

    Article  Google Scholar 

  17. Loomis, L.H., Whitney, H.: An inequality related to the isoperimetric inequality. Bull. Am. Math. Soc. 55, 961–962 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  18. Meyer, M.: A volume inequality concerning sections of convex sets. Bull. Lond. Math. Soc. 20, 151–155 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, Second expanded edition. Encyclopedia of Mathematics and Its Applications, vol. 151. Cambridge University Press, Cambridge (2014)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank Apostolos Giannopoulos and Franck Barthe for useful discussions and the referee for comments and valuable suggestions on the presentation of the results of this article. He also acknowledges support by the Department of Mathematics through a University of Athens Special Account Research Grant. Funding was provided by National and Kapodistrian University of Athens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris-Marios Liakopoulos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liakopoulos, DM. Reverse Brascamp–Lieb inequality and the dual Bollobás–Thomason inequality. Arch. Math. 112, 293–304 (2019). https://doi.org/10.1007/s00013-018-1262-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-018-1262-1

Keywords

Mathematics Subject Classification

Navigation