Skip to main content
Log in

Arithmetical rank of binomial ideals

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we investigate the arithmetical rank of a binomial ideal J. We provide lower bounds for the binomial arithmetical rank and the J-complete arithmetical rank of J. Special attention is paid to the case where J is the binomial edge ideal of a graph. We compute the arithmetical rank of such an ideal in various cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Banerjee and L. Núnez-Betancourt, Graph connectivity and binomial edge ideals, Proc. Amer. Math. Soc. 145 (2017), 487–499.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. P. Brodmann and R. Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge Studies in Advanced Mathematics, 60, Cambridge University Press, Cambridge, 1998.

  3. W. Bruns and R. Schwänzl, The number of equations defining a determinantal variety, Bull. London Math. Soc. 22 (1990), 439–445.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Charalambous, A. Thoma, and M. Vladoiu, Binomial fibers and indispensable binomials, J. Symbolic Comput. 74 (2016), 578–591.

    Article  MathSciNet  MATH  Google Scholar 

  5. V. Ene, J. Herzog, and T. Hibi, Cohen-Macaulay binomial edge ideals, Nagoya Math. J. 204 (2011), 57–68.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Herzog, T. Hibi, F. Hreinsdóttir, T. Kahle, and J. Rauh, Binomial edge ideals and conditional independence statements, Adv. in Appl. Math. 45 (2010), 317–333.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Katsabekis and I. Ojeda, An indispensable classification of monomial curves in \({\mathbb{A}}^{4}(K)\), Pacific J. Math. 268 (2014), 95–116.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Katsabekis and A. Thoma, Matchings in simplicial complexes, circuits and toric varieties, J. Comb. Theory Ser. A 114 (2007), 300–310.

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Kronecker, Grundzüge einer arithmetischen Theorie der algebraischen Grössen, J. Reine Angew. Math. 92 (1882), 1–122.

    MathSciNet  MATH  Google Scholar 

  10. M. Ohtani, Graphs and ideals generated by some 2-minors, Comm. Algebra 39 (2011), 905–917.

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Sturmfels, Gröbner Bases and Convex Polytopes, University Lecture Series, 8, American Mathematical Society, Providence, RI, 1995.

  12. R. Villarreal, Monomial Algebras, Second Edition, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2015.

Download references

Acknowledgements

The author is grateful to an anonymous referee for useful suggestions and comments that helped improve an earlier version of the manuscript. This work was supported by the Scientific and Technological Research Council of Turkey (TÜBITAK) through BIDEB 2221 Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anargyros Katsabekis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katsabekis, A. Arithmetical rank of binomial ideals. Arch. Math. 109, 323–334 (2017). https://doi.org/10.1007/s00013-017-1071-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-017-1071-y

Mathematics Subject Classification

Keywords

Navigation