Skip to main content
Log in

Periodic solutions of singular first-order Hamiltonian systems of N-vortex type

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

We are concerned with the dynamics of N point vortices \({z_1,\dots,z_N\in\Omega\subset\mathbb{R}^2}\) in a planar domain. This is described by a Hamiltonian system

$$\Gamma_k\dot{z}_k(t)=J\nabla_{z_k} H \left(z(t)\right),\quad k=1,\dots,N,$$

where \({\Gamma_1,\dots,\Gamma_N\in\mathbb{R}\setminus\{0\}}\) are the vorticities, \({J\in\mathbb{R}^{2\times2}}\) is the standard symplectic \({2\times2}\) matrix, and the Hamiltonian H is of N-vortex type:

$$H(z_1,\dots,z_N) = -\frac{1}{2\pi} \sum\limits_{\mathop {j,k=1}\limits_{j \neq k}}^N \Gamma_j\Gamma_k\log\mid{z_j-z_k}\mid - \sum_{j,k=1}^N\Gamma_j\Gamma_kg(z_j,z_k).$$

Here \({g:\Omega\times\Omega\to\mathbb{R}}\) is an arbitrary symmetric function of class \({\mathcal{C}^2}\), e.g., the regular part of a hydrodynamic Green function. Given a non-degenerate critical point \({a_0\in\Omega}\) of \({h(z)=g(z,z)}\) and a non-degenerate relative equilibrium \({Z(t)\in\mathbb{R}^{2N}}\) of the Hamiltonian system in the plane with \({g=0}\), we prove the existence of a smooth path of periodic solutions \({z^{(r)}(t)=(z^{(r)}_1(t),\dots,z^{(r)}_N(t))\in\Omega^N}\), \({0<r<r_0}\), with \({z^{(r)}_k(t)\to a_0}\) as \({r\to0}\). In the limit \({r\to0}\), and after a suitable rescaling, the solutions look like \({Z(t)}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aref H., Newton P. K., Stremler M. A., Tokieda T., Vainchtein D.: Vortex crystals. Adv. Appl. Mech. 39, 1–79 (2003)

    Article  Google Scholar 

  2. Bartsch T., Dai Q.: Periodic solutions of the N-vortex Hamiltonian system in planar domains, J. Diff. Eq. 260, 2275–2295 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Bartsch and B. Gebhard, Global continua of periodic solutions of singular first-order Hamiltonian systems of N-vortex type, arXiv:1604.01576.

  4. Bartsch T., Pistoia A.: Critical points of the N-vortex Hamiltonian in bounded planar domains and steady state solutions of the incompressible Euler equations, SIAM J. Appl. Math. 75, 726–744 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bartsch T., Pistoia A., Weth T.: N-vortex equilibria for ideal fluids in bounded planar domains and new nodal solutions of the sinh-Poisson and the Lane-Emden-Fowler equations, Comm. Math. Phys. 297, 653–686 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Bethuel, H. Brezis and F. Helein, Ginzburg–Landau Vortices, Progress in Nonlinear Differential Equations and their Applications, 13, Birkhäuser Boston, Boston, 1994

  7. Caffarelli L. A., Friedman A.: Convexity of solutions of semilinear elliptic equations, Duke Math. J. 52, 431–456 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carminati C., Séré E., Tanaka K.: The fixed energy problem for a class of nonconvex singular Hamiltonian systems, J. Diff. Equ. 230, 362–377 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Colliander J.E., Jerrard H.M.: Vortex dynamics for the Ginzburg–Landau–Schrödinger equation, Int. Math. Res. Notices 1998, 333–358 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Flucher and B. Gustafsson, Vortex motion in two-dimensional hydrodynamics, Preprint in TRITA-MAT-1997-MA-02, 1997.

  11. Kuhl C.: Symmetric equilibria for the N-vortex-problem, J. Fixed Point Theory Appl. 17, 597–694 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kuhl C.: Equilibria for the N-vortex-problem in a general bounded domain, J. Math. Anal. Appl. 433, 1531–1560 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kurzke M., Melcher C., Moser R., Spirn D.: Ginzburg–Landau vortices driven by the Landau-Lifshitz-Gilbert equation, Arch. Rat. Mech. Anal. 199, 843–888 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lin F.-H., Xin J.-X.: A unified approach to vortex motion laws of complex scalar Field equations, Math. Res. Lett. 5, 455–460 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, Cambridge, 2001.

  16. C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous Fluids, Applied mathematical sciences, 96, Springer, New York, 1994.

  17. Micheletti A. M., Pistoia A.: Non degeneracy of critical points of the Robin function with respect to deformations of the domain. Potential Anal. 40, 103–116 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Newton P. K.: The N-Vortex Problem: Analytical Techniques, Applied mathematical sciences. Springer, New York (2001)

    Book  Google Scholar 

  19. Roberts G. E.: Stability of relative equilibria in the planar N-vortex problem. SIAM J. Appl. Dyn. Syst. 12, 1114–1134 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Saffman P.G.: Vortex Dynamics, Cambridge monographs on mechanics and applied mathematics. Cambridge Univ. Press, Cambridge (1995)

    Google Scholar 

  21. Tanaka K.: Periodic solutions for first order singular Hamiltonian systems. Nonlin. Anal. 26, 691–706 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bartsch.

Additional information

Dedicated to Ernst-Ulrich Gekeler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartsch, T. Periodic solutions of singular first-order Hamiltonian systems of N-vortex type. Arch. Math. 107, 413–422 (2016). https://doi.org/10.1007/s00013-016-0928-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-016-0928-9

Mathematics Subject Classification

Keywords

Navigation