Skip to main content
Log in

Around Schwenninger and Zwart’s zero-two law for cosine families

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

It is proved that for a cosine family \({\{c(t)\}_{t \in \mathbb{R}}}\) in a normed algebra with a unity e, the following assertions hold: (1) If \({\sup_{t \in \mathbb{R}}\| c(t) - e \| < 2}\), then c(t) =  e for every \({t \in \mathbb{R}}\). (2) If \({\lim sup_{t \to 0}\| c(t) - e \| < 2}\), then \({\lim_{t \to 0} c(t) = e}\). It is also shown that the two respective results, each specific for one of the assertions, are equivalent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.D. Aliprantis and K.C. Border, Infinite Dimensional Analysis: A Hitchhiker’s Guide, Third edn., Springer, Berlin, 2006.

  2. Allan G.R., Ransford T.J.: Power-dominated elements in a Banach algebra. Studia Math. 94, 63–79 (1989)

    MathSciNet  MATH  Google Scholar 

  3. W. Arendt, A 0–3/2-law for cosine functions, In: Funktionalanalysis und Evolutionsgleichungen, no. 17 in Ulmer Seminare über Funktionalanalysis und Differentialgleichungen, pp. 349–350, Institut für Angewandte Analysis, Universität Ulm, 2012.

  4. W. Arendt, A. Grabosch, G. Greiner, U. Groh, H.P. Lotz, U. Moustakas, R. Nagel, F. Neubrander, and U. Schlotterbeck, One-parameter semigroups of positive operators, Lecture Notes in Mathematics, vol. 1184, Springer, Berlin, 1986.

  5. Bobrowski A., Chojnacki W.: Isolated points of some sets of bounded cosine families, bounded semigroups, and bounded groups on a Banach space. Studia Math. 217, 219–241 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bobrowski A., Chojnacki W., Gregosiewicz A.: On close-to-scalar one-parameter cosine families. J. Math. Anal. Appl. 429, 383–394 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourbaki N.: General Topology, Chapters 1–4. Springer, Berlin (1998)

    MATH  Google Scholar 

  8. I. Chalendar, J. Esterle, and J.R. Partington, Dichotomy results for norm estimates in operator semigroups, In: W. Arendt, R. Chill, Y. Tomilov (eds.) Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics, Oper. Theory Adv. Appl., vol. 250, pp. 119–131, Springer International Publishing, Cham, 2015.

  9. Chojnacki W.: On cosine families close to scalar cosine families. J. Aust. Math. Soc. 99, 166–174 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dales H.G., Aiena P., Eschmeier J., Laursen K., Willis G.A.: Introduction to Banach Algebras, Operators, and Harmonic Analysis. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  11. Diestel J., Jarchow H., Tonge A.: Absolutely Summing Operators. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  12. Drissi D., Zemánek J.: Gelfand-Hille theorems for Cesàro means. Quaest. Math. 23, 375– (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Esterle J.: Zero-\({\sqrt 3}\) and zero-2 laws for representations of locally compact abelian groups. J. Contemp. Math. Anal., Armen. Acad. Sci. 38, 9–19 (2003)

    MathSciNet  MATH  Google Scholar 

  14. J. Esterle, Zero-one and zero-two laws for the behavior of semigroups near the origin, In: Banach algebras and their applications, Contemp. Math., vol. 363, pp. 69–79, Amer. Math. Soc., Providence, RI, 2004.

  15. J. Esterle, Bounded cosine functions close to continuous scalar bounded cosine functions, arXiv:1502.00150 (2015).

  16. Fackler S.: Regularity of semigroups via the asymptotic behaviour at zero. Semigroup Forum 87, 1–17 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gelfand I.: Zur Theorie der Charaktere der Abelschen topologischen Gruppen. Rec. Math. [Mat. Sbornik] N. S. 9(51), 49–50 (1941)

    MathSciNet  MATH  Google Scholar 

  18. Haase M.: The group reduction for bounded cosine functions on UMD spaces. Math. Z. 262, 281–299 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Heinrich S.: Ultraproducts in Banach space theory. J. Reine Angew. Math. 313, 72–104 (1980)

    MathSciNet  MATH  Google Scholar 

  20. Hille E.: On the theory of characters of groups and semi-groups in normed vector rings. Proc. Nat. Acad. Sci. U.S.A. 30, 58–60 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  21. E. Hille and R.S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc., Providence, RI, 1957.

  22. Kato T.: A characterization of holomorphic semigroups. Proc. Amer. Math. Soc. 25, 495–498 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  23. Morris S.A.: Pontryagin Duality and the Structure of Locally Compact Abelian Groups. Cambridge University Press, Cambridge (1977)

    Book  MATH  Google Scholar 

  24. Neuberger J.W.: Analyticity and quasi-analyticity for one-parameter semigroups. Proc. Amer. Math. Soc. 25, 488–494 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  25. M.M. Neumann, Decomposable operators and generalized intertwining linear transformations, In: H. Helson, C.M. Pearcy, F.H. Vasilescu, D. Voiculescu (eds.) Special Classes of Linear Operators and Other Topics, Oper. Theory Adv. Appl., vol. 28, pp. 209–222, Birkhäuser, Basel, 1988.

  26. Pazy A.: Approximations of the identity operator by semigroups of linear operators. Proc. Amer. Math. Soc. 30, 147–150 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pazy A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  28. Schwenninger F., Zwart H.: Zero-two law for cosine families. J. Evol. Equ. 15, 559–569 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Staffans O.: Well-posed Linear Systems, Encyclopedia of Mathematics and its Applications, vol. 103. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  30. J. Zemánek, On the Gelfand–Hille theorems, In: J. Zemánek (ed.) Functional Analysis and Operator Theory, Banach Center Publ., vol. 30, pp. 369–385, Inst. of Math., Polish Acad. Sci., Warsaw, 1994.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Chojnacki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chojnacki, W. Around Schwenninger and Zwart’s zero-two law for cosine families. Arch. Math. 106, 561–571 (2016). https://doi.org/10.1007/s00013-016-0898-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-016-0898-y

Mathematics Subject Classification

Keywords

Navigation