Skip to main content

Advertisement

Log in

Fluoxetine alleviates postoperative cognitive dysfunction by attenuating TLR4/MyD88/NF-κB signaling pathway activation in aged mice

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

Postoperative cognitive dysfunction (POCD) is a common complication following surgery among elderly patients. Emerging evidence demonstrates that neuroinflammation plays a pivotal role in the pathogenesis of POCD. This study tested the hypothesis that fluoxetine can protect against POCD by suppressing hippocampal neuroinflammation through attenuating TLR4/MyD88/NF-κB signaling pathway activation.

Subjects

Aged C57BL/6 J male mice (18 months old) were studied.

Treatment

Aged mice were intraperitoneally injected with fluoxetine (10 mg/kg) or saline for seven days before splenectomy. In addition, aged mice received an intracerebroventricular injection of a TLR4 agonist or saline seven days before splenectomy in the rescue experiment.

Methods

On postoperative days 1, 3, and 7, we assessed hippocampus-dependent memory, microglial activation status, proinflammatory cytokine levels, protein levels related to the TLR4/MyD88/NF-κB signaling pathway, and hippocampal neural apoptosis in our aged mouse model.

Results

Splenectomy induced a decline in spatial cognition, paralleled by parameters indicating exacerbation of hippocampal neuroinflammation. Fluoxetine pretreatment partially restored the deteriorated cognitive function, downregulated proinflammatory cytokine levels, restrained microglial activation, alleviated neural apoptosis, and suppressed the increase in TLR4, MyD88, and p-NF-κB p65 in microglia. Intracerebroventricular injection of LPS (1 μg, 0.5 μg/μL) before surgery weakened the effect of fluoxetine.

Conclusion

Fluoxetine pretreatment suppressed hippocampal neuroinflammation and mitigated POCD by inhibiting microglial TLR4/MyD88/NF-κB pathway activation in aged mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Vizcaychipi MP, Watts HR, O’Dea KP, et al. The therapeutic potential of atorvastatin in a mouse model of postoperative cognitive decline. Ann Surg. 2014;259:1235–44.

    Article  PubMed  Google Scholar 

  2. Evered L, Silbert B, Knopman DS, et al. Recommendations for the nomenclature of cognitive change associated with anesthesia and surgery-2018. Br J Anaesth. 2018;121:1005–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu B, Huang D, Guo Y, et al. Recent advances and perspectives of postoperative neurological disorders in the elderly surgical patients. CNS Neurosci Ther. 2021. https://doi.org/10.1111/cns.13763.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hovens IB, Schoemaker RG, van der Zee EA, Absalom AR, Heineman E, van Leeuwen BL. Postoperative cognitive dysfunction: involvement of neuroinflammation and neuronal functioning. Brain Behav Immun. 2014;38:202–10.

    Article  CAS  PubMed  Google Scholar 

  5. Mu RH, Tan YZ, Fu LL, et al. 1-Methylnicotinamide attenuates lipopolysaccharide-induced cognitive deficits by targeting neuroinflammation and neuronal apoptosis. Int Immunopharmacol. 2019;77: 105918.

    Article  CAS  PubMed  Google Scholar 

  6. Fakih D, Zhao Z, Nicolle P, et al. Chronic dry eye induced corneal hypersensitivity, neuroinflammatory responses, and synaptic plasticity in the mouse trigeminal brainstem. J Neuroinflammation. 2019;16:268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rahimifard M, Maqbool F, Moeini-Nodeh S, et al. Targeting the TLR4 signaling pathway by polyphenols: a novel therapeutic strategy for neuroinflammation. Aging Res Rev. 2017;36:11–9.

    Article  CAS  Google Scholar 

  8. El-Sahar AE, Shiha NA, El Sayed NS, Ahmed LA. Alogliptin attenuates lipopolysaccharide-induced neuroinflammation in mice through modulation of TLR4/MYD88/NF-kappaB and miRNA-155/SOCS-1 signaling pathways. Int J Neuropsychopharmacol. 2021;24:158–69.

    Article  CAS  PubMed  Google Scholar 

  9. Qiu LL, Pan W, Luo D, et al. Dysregulation of BDNF/TrkB signaling mediated by NMDAR/Ca(2+)/calpain might contribute to postoperative cognitive dysfunction in aging mice. J Neuroinflammation. 2020;17:23.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Houwing DJ, Esquivel-Franco DC, Ramsteijn AS, et al. Perinatal fluoxetine treatment and dams’ early life stress history have opposite effects on aggressive behavior while having little impact on sexual behavior of male rat offspring. Psychopharmacology. 2020;237:2589–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Park BK, Kim NS, Kim YR, et al. Antidepressant and anti-neuroinflammatory effects of bangpungtongsung-san. Front Pharmacol. 2020;11:958.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Park J, Jang KM, Park KK. Apamin suppresses LPS-induced neuroinflammatory responses by regulating SK channels and TLR4-mediated signaling pathways. Int J Mol Sci. 2020;21:4319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cho KH, Kim DC, Yoon CS, et al. Anti-neuroinflammatory effects of citreohybridonol involving TLR4-MyD88-mediated inhibition of NF-small ka, CyrillicB and MAPK signaling pathways in lipopolysaccharide-stimulated BV2 cells. Neurochem Int. 2016;95:55–62.

    Article  CAS  PubMed  Google Scholar 

  14. Sierksma AS, de Nijs L, Hoogland G, et al. Fluoxetine treatment induces seizure behavior and premature death in APPswe/PS1dE9 mice. J Alzheimers Dis. 2016;51:677–82.

    Article  CAS  PubMed  Google Scholar 

  15. Boggio PS, Fregni F, Bermpohl F, et al. Effect of repetitive TMS and fluoxetine on cognitive function in patients with Parkinson’s disease and concurrent depression. Mov Disord. 2005;20:1178–84.

    Article  PubMed  Google Scholar 

  16. Zheng ZH, Tu JL, Li XH, et al. Neuroinflammation induces anxiety- and depressive-like behavior by modulating neuronal plasticity in the basolateral amygdala. Brain Behav Immun. 2021;91:505–18.

    Article  CAS  PubMed  Google Scholar 

  17. Wang L, Yang JW, Lin LT, et al. Acupuncture attenuates inflammation in microglia of vascular dementia rats by inhibiting miR-93-mediated TLR4/MyD88/NF-kappaB signaling pathway. Oxid Med Cell Longev. 2020;2020:8253904.

    PubMed  PubMed Central  Google Scholar 

  18. Qian B, Yang Y, Yao Y, Liao Y, Lin Y. Upregulation of vascular endothelial growth factor receptor-1 contributes to sevoflurane preconditioning-mediated cardioprotection. Drug Des Devel Ther. 2018;12:769–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu Q, Sun YM, Huang H, et al. Sirtuin 3 protects against anesthesia/surgery-induced cognitive decline in aged mice by suppressing hippocampal neuroinflammation. J Neuroinflammation. 2021;18:41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Feng X, Valdearcos M, Uchida Y, Lutrin D, Maze M, Koliwad SK. Microglia mediate postoperative hippocampal inflammation and cognitive decline in mice. JCI Insight. 2017;2: e91229.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang X, Dong H, Li N, et al. Activated brain mast cells contribute to postoperative cognitive dysfunction by evoking microglia activation and neuronal apoptosis. J Neuroinflammation. 2016;13:127.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lin D, Zuo Z. Isoflurane induces hippocampal cell injury and cognitive impairments in adult rats. Neuropharmacology. 2011;61:1354–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xiao JY, Xiong BR, Zhang W, et al. PGE2-EP3 signaling exacerbates hippocampus-dependent cognitive impairment after laparotomy by reducing expression levels of hippocampal synaptic plasticity-related proteins in aged mice. CNS Neurosci Ther. 2018;24:917–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Netto MB, de Oliveira Junior AN, Goldim M, et al. Oxidative stress and mitochondrial dysfunction contributes to postoperative cognitive dysfunction in elderly rats. Brain Behav Immun. 2018;73:661–9.

    Article  CAS  PubMed  Google Scholar 

  25. Meng B, Li X, Lu B, et al. The investigation of hippocampus-dependent cognitive decline induced by anesthesia/surgery in mice through integrated behavioral Z-scoring. Front Behav Neurosci. 2019;13:282.

    Article  CAS  PubMed  Google Scholar 

  26. Hovens IB, Schoemaker RG, van der Zee EA, Heineman E, Nyakas C, van Leeuwen BL. Surgery-induced behavioral changes in aged rats. Exp Gerontol. 2013;48:1204–11.

    Article  PubMed  Google Scholar 

  27. Tian M, Yang M, Li Z, et al. Fluoxetine suppresses inflammatory reaction in microglia under OGD/R challenge via modulation of NF-κB signaling. 2019. Biosci Rep. https://doi.org/10.1042/BSR20181584.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rammes G, Starker LK, Haseneder R, et al. Isoflurane anesthesia reversibly improves cognitive function and long-term potentiation (LTP) via an up-regulation in NMDA receptor 2B subunit expression. Neuropharmacology. 2009;56:626–36.

    Article  CAS  PubMed  Google Scholar 

  29. Gu J, Su S, Guo J, Zhu Y, Zhao M, Duan J. Anti-inflammatory and anti-apoptotic effects of the combination of ligusticum chuanxiong and radix paeoniae against focal cerebral ischemia via TLR4/MyD88/MAPK/NF-κB signaling pathway in MCAO rats. J Pharm Pharmacol. 2018;70:268–77.

    Article  CAS  PubMed  Google Scholar 

  30. Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18:41–58.

    Article  CAS  PubMed  Google Scholar 

  31. Orgeta V, Tabet N, Nilforooshan R, Howard R. Efficacy of antidepressants for depression in alzheimer’s disease: systematic review and meta-analysis. J Alzheimers Dis. 2017;58:725–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chollet F, Tardy J, Albucher JF, et al. Fluoxetine for motor recovery after acute ischemic stroke (FLAME): a randomized placebo-controlled trial. Lancet Neurol. 2011;10:123–30.

    Article  CAS  PubMed  Google Scholar 

  33. Wang Y, Neumann M, Hansen K, et al. Fluoxetine increases hippocampal neurogenesis and induces epigenetic factors but does not improve functional recovery after traumatic brain injury. J Neurotrauma. 2011;28:259–68.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liepert J. Update on pharmacotherapy for stroke and traumatic brain injury recovery during rehabilitation. Curr Opin Neurol. 2016;29:700–5.

    Article  CAS  PubMed  Google Scholar 

  35. Collaboration ET. Safety and efficacy of fluoxetine on functional recovery after acute stroke (EFFECTS): a randomized, double-blind, placebo-controlled trial. Lancet Neurol. 2020;19:661–9.

    Article  Google Scholar 

  36. Lin D, Yu L, Chen J, et al. Fluoxetine for reducing postoperative cognitive dysfunction in elderly patients after total knee replacement: study protocol for a single-center, double-blind, randomized, parallel-group, superiority, placebo-controlled trial. BMJ Open. 2022;12: e057000.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Needham MJ, Webb CE, Bryden DC. Postoperative cognitive dysfunction and dementia: what we need to know and do. Br J Anaesth. 2017;119:i115–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Medical Innovation Project of Fujian Province (Grant No. 2022CXA007), Fujian Medical University Startup Fund for scientific research (Grant No. 2020QH1162), the Natural Science Foundation of Fujian Province (Grant No. 2021J01378), and the National Natural Science Foundation of China (Grant No. 821711186).

Author information

Authors and Affiliations

Authors

Contributions

YY, DL, and XZ: conceived and designed the experiments. DL, LL, and YW: performed the experiments. YC and YW: analyzed the data. DL and YC: wrote the draft. YY and XZ: revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaochun Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Lin, D., Chen, Y. et al. Fluoxetine alleviates postoperative cognitive dysfunction by attenuating TLR4/MyD88/NF-κB signaling pathway activation in aged mice. Inflamm. Res. 72, 1161–1173 (2023). https://doi.org/10.1007/s00011-023-01738-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-023-01738-8

Keywords

Navigation