Skip to main content

Advertisement

Log in

Circular RNA circPTK2 modulates migration and invasion via miR-136/NFIB signaling on triple-negative breast cancer cells in vitro

  • Original Research Article
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and background

Triple-negative breast cancer (TNBC) is an aggressive breast type of cancer with poor prognosis and high mortality rates. CircRNAs have been widely investigated, due to their crucial role in cancer progression. We aimed to elucidate the function of circPTK2 (has_circ_0003221) in TNBC and explore the mechanism in progression of TNBC.

Methods

qPCR was performed to validate the expression of circPTK2 and related mRNA in TNBC tissue and cell lines. CCK-8, EdU, Transwell assay were conducted to detect the proliferation, migration and invasion of circPTK2 and miR-136 on TNBC cells. RIP and dual-luciferase reporter assay were used to confirm the interaction among circPTK2, miR-136 and NFIB. Si-circPTK2, mimic and inhibitor of miR-136 were transfected in TNBC cells to confirm the mechanism of circPTK2 and miR-136 in TNBC cells.

Results

CircPTK2 were downregulated in TNBC tissues and cell lines. CircPTK2 significantly promoted the proliferation, migration, and invasion of TNBC cells. CircPTK2 was confirmed to be a sponge of miR-136, and directly regulated NFBI and AKT/PI3K pathway. A rescue assay validated circPTK2/miR-136/NFIB axis in TNBC cells.

Conclusion

CircPTK2 promoted TNBC progression and development. circPTK2/miR-136/NFIB might be an effective biomarker for TNBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lianto P, Hutchinson SA, Moore JB, Hughes TA, Thorne JL. Characterization and prognostic value of LXR splice variants in triple-negative breast cancer. iScience. 2021;24(10):103212–312.

    Article  CAS  Google Scholar 

  2. Dass SA, Tan KL, Selva Rajan R, Mokhtar NF, Mohd Adzmi ER, Wan Abdul Rahman WF, et al. Triple negative breast cancer: a review of present and future diagnostic modalities. Medicina (Kaunas). 2021;57(1):62.

    Article  Google Scholar 

  3. Oeffinger KC, Fontham ET, Etzioni R, Herzig A, Michaelson JS, Shih YC, et al. Breast cancer screening for women at average risk: 2015 guideline update From the American Cancer Society. JAMA. 2015;314(15):1599–614.

    Article  CAS  Google Scholar 

  4. Wu H-J, Chu P-Y. Recent discoveries of macromolecule- and cell-based biomarkers and therapeutic implications in breast cancer. Int J Mol Sci. 2021;22(2):636.

    Article  CAS  Google Scholar 

  5. Guney Eskiler G, Ozturk M. Therapeutic potential of the PI3K inhibitor LY294002 and PARP inhibitor Talazoparib combination in BRCA-deficient triple negative breast cancer cells. Cell Signal. 2022;91:110229.

    Article  Google Scholar 

  6. Kang C, Syed YY. Atezolizumab (in combination with Nab-paclitaxel): a review in advanced triple-negative breast cancer. Drugs. 2020;80(6):601–7.

    Article  CAS  Google Scholar 

  7. Pérez-García J, Soberino J, Racca F, Gion M, Stradella A, Cortés J. Atezolizumab in the treatment of metastatic triple-negative breast cancer. Expert Opin Biol Ther. 2020;20(9):981–9.

    Article  Google Scholar 

  8. Tang Q, Hann SS. Biological roles and mechanisms of circular RNA in human cancers. Onco Targets Ther. 2020;13:2067–92.

    Article  CAS  Google Scholar 

  9. Wang Q, Li Z, Hu Y, Zheng W, Tang W, Zhai C, et al. Circ-TFCP2L1 promotes the proliferation and migration of triple negative breast cancer through sponging miR-7 by inhibiting PAK1. J Mamm Gland Biol Neoplasia. 2019;24(4):323–31.

    Article  CAS  Google Scholar 

  10. Chen B, Wei W, Huang X, Xie X, Kong Y, Dai D, et al. circEPSTI1 as a prognostic marker and mediator of triple-negative breast cancer progression. Theranostics. 2018;8(14):4003–15.

    Article  CAS  Google Scholar 

  11. Zheng X, Huang M, Xing L, Yang R, Wang X, Jiang R, et al. The circRNA circSEPT9 mediated by E2F1 and EIF4A3 facilitates the carcinogenesis and development of triple-negative breast cancer. Mol Cancer. 2020;19(1):73.

    Article  CAS  Google Scholar 

  12. Tong X, Tanino R, Sun R, Tsubata Y, Okimoto T, Takechi M, et al. Protein tyrosine kinase 2: a novel therapeutic target to overcome acquired EGFR-TKI resistance in non-small cell lung cancer. Respir Res. 2019;20(1):270–370.

    Article  CAS  Google Scholar 

  13. Su M, Xiao Y, Ma J, Tang Y, Tian B, Zhang Y, et al. Circular RNAs in cancer: emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers. Mol Cancer. 2019;18(1):90.

    Article  Google Scholar 

  14. Lee J, Ekambaram P, Carleton N, Hu D, Klei L, Cai Z, et al. MALT1 is a targetable driver of epithelial-to-mesenchymal transition in claudin-low, triple-negative breast cancer. Mol Cancer Res. 2021. https://doi.org/10.1158/1541-7786.MCR-21-0208.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li J, Gao X, Zhang Z, Lai Y, Lin X, Lin B, et al. CircCD44 plays oncogenic roles in triple-negative breast cancer by modulating the miR-502-5p/KRAS and IGF2BP2/Myc axes. Mol Cancer. 2021;20(1):138.

    Article  CAS  Google Scholar 

  16. Ding Z, Sun D, Han J, Shen L, Yang F, Sah S, et al. Novel noncoding RNA CircPTK2 regulates lipolysis and adipogenesis in cachexia. Mol Metab. 2021;53:101310.

    Article  CAS  Google Scholar 

  17. Yang Z, Jin J, Chang T. CircPTK2 (hsa_circ_0003221) contributes to laryngeal squamous cell carcinoma by the miR-1278/YAP1 axis. J Oncol. 2021;2021:2408384.

    PubMed  PubMed Central  Google Scholar 

  18. Gao L, Xia T, Qin M, Xue X, Jiang L, Zhu X. CircPTK2 suppresses the progression of gastric cancer by targeting the MiR-196a-3p/AATK axis. Front Oncol. 2021;11:706415.

    Article  Google Scholar 

  19. Chen W, Wang N, Lian M. CircRNA circPTK2 might suppress cancer cell invasion and migration of glioblastoma by inhibiting miR-23a maturation. Neuropsychiatr Dis Treat. 2021;17:2767–74.

    Article  Google Scholar 

  20. Qattan A. Novel miRNA targets and therapies in the triple-negative breast cancer microenvironment: an emerging hope for a challenging disease. Int J Mol Sci. 2020;21(23):8905.

    Article  CAS  Google Scholar 

  21. Huang Y, Zheng S, Lin Y, Ke L. CircRNA circ-ERBB2 elevates Warburg effect and facilitates triple-negative breast cancer growth by the miR-136-5p/PDK4 axis. Mol Cell Biol. 2021. https://doi.org/10.1128/MCB.00609-20.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Han C, Fu Y, Zeng N, Yin J, Li Q. LncRNA FAM83H-AS1 promotes triple-negative breast cancer progression by regulating the miR-136-5p/metadherin axis. Aging (Albany NY). 2020;12(4):3594–616.

    Article  CAS  Google Scholar 

  23. Paszek S, Gabło N, Barnaś E, Szybka M, Morawiec J, Kołacińska A, et al. Dysregulation of microRNAs in triple-negative breast cancer. Ginekol Pol. 2017;88(10):530–6.

    Article  Google Scholar 

  24. Yan M, Li X, Tong D, Han C, Zhao R, He Y, et al. miR-136 suppresses tumor invasion and metastasis by targeting RASAL2 in triple-negative breast cancer. Oncol Rep. 2016;36(1):65–71.

    Article  CAS  Google Scholar 

  25. Rong-Zong L, Vo TM, Jain S, et al. NFIB promotes cell survival by directly suppressing p21 transcription in p53-mutated triple-negative breast cancer. J Pathol. 2018;247:186–98.

    Google Scholar 

  26. Han W, Jung E, Cho J, Lee J, Hwang K, Yang S, et al. DNA copy number alterations and expression of relevant genes in triple-negative breast cancer. Genes Chromosomes Cancer. 2008;47(6):490–9.

    Article  CAS  Google Scholar 

  27. Chen T, Wang X, Li C, Zhang H, Liu Y, Han D, et al. CircHIF1A regulated by FUS accelerates triple-negative breast cancer progression by modulating NFIB expression and translocation. Oncogene. 2021;40(15):2756–71.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengyu Luo.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Chen, D., Zhang, H. et al. Circular RNA circPTK2 modulates migration and invasion via miR-136/NFIB signaling on triple-negative breast cancer cells in vitro. Inflamm. Res. 71, 409–421 (2022). https://doi.org/10.1007/s00011-022-01548-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-022-01548-4

Keywords

Navigation