Skip to main content
Log in

Regulation of Toll-like receptor-mediated inflammatory response by microRNA-152-3p-mediated demethylation of MyD88 in systemic lupus erythematosus

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

microRNAs (miRNAs) play critical roles in embryogenesis, cell differentiation and the pathogenesis of several human diseases, including systemic lupus erythematosus (SLE). Toll-like receptors (TLRs) are also known to exert crucial functions in the immune response activation occurring in the pathogenesis of autoimmune diseases like SLE. Herein, the current study aimed to explore the potential role of miR-152-3p in TLR-mediated inflammatory response in SLE.

Methods

We determined the miR-152-3p expression profiles in CD4+ T cells and peripheral blood mononuclear cells (PBMCs) harvested from patients with SLE and healthy controls, and analyzed the correlation between miR-152-3p expression and clinicopathological parameters. CD70 and CD40L expression patterns in CD4+ T cells were assessed by RT-qPCR and flow cytometry. ChIP was adopted to determine the enrichment of DNA methyltransferase 1 (DNMT1) in the promoter region of myeloid differentiation factor 88 (MyD88).

Results

The obtained findings revealed that miR-152-3p was highly-expressed in CD4+ T cells and PBMCs of patients with SLE, and this high expression was associated with facial erythema, joint pain, double-stranded DNA, and IgG antibody. DNMT1 could be enriched in the MyD88 promoter, and miR-152-3p inhibited the methylation of MyD88 by targeting DNMT1. We also found that silencing miR-152-3p inhibited MyD88 expression not only to repress the autoreactivity of CD4+ T cells and but also to restrain their cellular inflammation, which were also validated in vivo.

Conclusion

Our study suggests that miR-152-3p promotes TLR-mediated inflammatory response in CD4+ T cells by regulating the DNMT1/MyD88 signaling pathway, which highlights novel anti-inflammatory target for SLE treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data sets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

miRNAs:

MicroRNAs

SLE:

Systemic lupus erythematosus

MyD88:

Myeloid differentiation factor 88

PBMCs:

Peripheral blood mononuclear cells

PB:

Peripheral blood

ELISA:

Enzyme linked-immunosorbent assay

MSP:

Methylation-specific PCR

CHIP:

Chromatin immunoprecipitation

References

  1. Pan L, Lu MP, Wang JH, Xu M, Yang SR. Immunological pathogenesis and treatment of systemic lupus erythematosus. World J Pediatr. 2019. https://doi.org/10.1007/s12519-019-00229-3.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Becker LV, Passos DF, Leal DBR, Morsch VM, Schetinger MRC. ATP signaling and NTPDase in systemic lupus erythematosus (SLE). Immunobiology. 2019;224:419–26.

    Article  CAS  Google Scholar 

  3. Yin ZJ, Ju BM, Zhu L, Hu N, Luo J, He M, Feng XY, Lv XH, Pu D, He L. Increased CD4(+)CD25(−)Foxp3(+) T cells in Chinese systemic lupus erythematosus: correlate with disease activity and organ involvement. Lupus. 2018;27:2057–68.

    Article  CAS  Google Scholar 

  4. Quiroz EN, Quiroz RN, Lugo LP, Martinez GA, Escorcia LG, Torres HG, Bonfanti AC, Marmolejo MDC, Sanchez E, Camacho JLV, Lorenzi H, Torres A, Navarro KF, Rodriguez PN, Villa JL, Fernandez-Ponce C. Integrated analysis of microRNA regulation and its interaction with mechanisms of epigenetic regulation in the etiology of systemic lupus erythematosus. PLoS ONE. 2019;14:e0218116.

    Article  Google Scholar 

  5. Su X, Ye L, Chen X, Zhang H, Zhou Y, Ding X, Chen D, Lin Q, Chen C. MiR-199-3p promotes ERK-mediated IL-10 production by targeting poly (ADP-ribose) polymerase-1 in patients with systemic lupus erythematosus. Chem Biol Interact. 2019;306:110–6.

    Article  CAS  Google Scholar 

  6. Geng L, Tang X, Zhou K, Wang D, Wang S, Yao G, Chen W, Gao X, Chen W, Shi S, Shen N, Feng X, Sun L. MicroRNA-663 induces immune dysregulation by inhibiting TGF-beta1 production in bone marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Cell Mol Immunol. 2019;16:260–74.

    Article  CAS  Google Scholar 

  7. Luo S, Ding S, Liao J, Zhang P, Liu Y, Zhao M, Lu Q. Excessive miR-152-3p results in increased BAFF expression in SLE B-cells by inhibiting the KLF5 expression. Front Immunol. 2019;10:1127.

    Article  CAS  Google Scholar 

  8. Wu Z, Mei X, Ying Z, Sun Y, Song J, Shi W. Ultraviolet B inhibition of DNMT1 activity via AhR activation dependent SIRT1 suppression in CD4+ T cells from systemic lupus erythematosus patients. J Dermatol Sci. 2017;86:230–7.

    Article  CAS  Google Scholar 

  9. Tsuruta T, Kozaki K, Uesugi A, Furuta M, Hirasawa A, Imoto I, Susumu N, Aoki D, Inazawa J. miR-152 is a tumor suppressor microRNA that is silenced by DNA hypermethylation in endometrial cancer. Cancer Res. 2011;71:6450–62.

    Article  CAS  Google Scholar 

  10. Xu Q, Jiang Y, Yin Y, Li Q, He J, Jing Y, Qi YT, Xu Q, Li W, Lu B, Peiper SS, Jiang BH, Liu LZ. A regulatory circuit of miR-148a/152 and DNMT1 in modulating cell transformation and tumor angiogenesis through IGF-IR and IRS1. J Mol Cell Biol. 2013;5:3–13.

    Article  CAS  Google Scholar 

  11. Zhang X, Xu X, Shen Y, Fang Y, Zhang J, Bai Y, Gu S, Wang R, Chen T, Li J. Myeloid differentiation factor 88 (Myd88) is involved in the innate immunity of black carp (Mylopharyngodon piceus) defense against pathogen infection. Fish Shellfish Immunol. 2019;94:220–9.

    Article  CAS  Google Scholar 

  12. Foster SL, Hargreaves DC, Medzhitov R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature. 2007;447:972–8.

    Article  CAS  Google Scholar 

  13. Ma K, Li J, Fang Y, Lu L. Roles of B cell-intrinsic TLR signals in systemic lupus erythematosus. Int J Mol Sci. 2015;16:13084–105.

    Article  CAS  Google Scholar 

  14. Meng R, Li D, Feng Z, Xu Q. MyD88 hypermethylation mediated by DNMT1 is associated with LTA-induced inflammatory response in human odontoblast-like cells. Cell Tissue Res. 2019;376:413–23.

    Article  CAS  Google Scholar 

  15. Engelbertsen D, Rattik S, Wigren M, Vallejo J, Marinkovic G, Schiopu A, Bjorkbacka H, Nilsson J, Bengtsson E. IL-1R and MyD88 signalling in CD4+ T cells promote Th17 immunity and atherosclerosis. Cardiovasc Res. 2018;114:180–7.

    Article  CAS  Google Scholar 

  16. Neubert K, Meister S, Moser K, Weisel F, Maseda D, Amann K, Wiethe C, Winkler TH, Kalden JR, Manz RA, Voll RE. The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat Med. 2008;14:748–55.

    Article  CAS  Google Scholar 

  17. Huang J, Wang Y, Guo Y, Sun S. Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology. 2010;52:60–70.

    Article  CAS  Google Scholar 

  18. Pacheco GV, Noh IBN, Cardenas RMV, Ramirez AVA, Villanueva RFL, Ortiz IGQ, Salomon LGA, Ruz NP, Cardenas NAR. Expression of TLR-7, MyD88, NF-kB, and INF-alpha in B lymphocytes of mayan women with systemic lupus erythematosus in Mexico. Front Immunol. 2016;7:22.

    Article  Google Scholar 

  19. Georg I, Diaz-Barreiro A, Morell M, Pey AL, Alarcon-Riquelme ME. BANK1 interacts with TRAF6 and MyD88 in innate immune signaling in B cells. Cell Mol Immunol. 2020;17:954–65.

    Article  CAS  Google Scholar 

  20. Pasoto SG, de Martins VAO, Bonfa E. Sjogren’s syndrome and systemic lupus erythematosus: links and risks. Open Access Rheumatol. 2019;11:33–45.

    Article  CAS  Google Scholar 

  21. Husakova M. MicroRNAs in the key events of systemic lupus erythematosus pathogenesis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2016;160:327–42.

    Article  Google Scholar 

  22. Li HS, Ning Y, Li SB, Shao PY, Chen SJ, Ye Q, Heng X. Expression and clinical significance of miR-181a and miR-203 in systemic lupus erythematosus patients. Eur Rev Med Pharmacol Sci. 2017;21:4790–6.

    PubMed  Google Scholar 

  23. Shumnalieva R, Kachakova D, Shoumnalieva-Ivanova V, Miteva P, Kaneva R, Monov S. Whole peripheral blood miR-146a and miR-155 expression levels in Systemic lupus erythematosus patients. Acta Reumatol Port. 2018;43:217–25.

    PubMed  Google Scholar 

  24. Chen JQ, Papp G, Poliska S, Szabo K, Tarr T, Balint BL, Szodoray P, Zeher M. MicroRNA expression profiles identify disease-specific alterations in systemic lupus erythematosus and primary Sjogren’s syndrome. PLoS ONE. 2017;12:e0174585.

    Article  Google Scholar 

  25. Jentho E, Bodden M, Schulz C, Jung AL, Seidel K, Schmeck B, Bertrams W. microRNA-125a-3p is regulated by MyD88 in Legionella pneumophila infection and targets NTAN1. PLoS ONE. 2017;12:e0176204.

    Article  Google Scholar 

  26. Xiang Y, Ma N, Wang D, Zhang Y, Zhou J, Wu G, Zhao R, Huang H, Wang X, Qiao Y, Li F, Han D, Wang L, Zhang G, Gao X. MiR-152 and miR-185 co-contribute to ovarian cancer cells cisplatin sensitivity by targeting DNMT1 directly: a novel epigenetic therapy independent of decitabine. Oncogene. 2014;33:378–86.

    Article  CAS  Google Scholar 

  27. Liao W, Li M, Wu H, Jia S, Zhang N, Dai Y, Zhao M, Lu Q. Down-regulation of MBD4 contributes to hypomethylation and overexpression of CD70 in CD4(+) T cells in systemic lupus erythematosus. Clin Epigenetics. 2017;9:104.

    Article  Google Scholar 

  28. Sun J, Shao TJ, Zhang DY, Huang XQ, Xie ZJ, Wen CP. Effect of Lang-Chuang-Ding Decoction () on DNA methylation of CD70 gene promoter in peripheral blood mononuclear cells of female patients with systemic lupus erythematosus. Chin J Integr Med. 2018;24:348–52.

    Article  CAS  Google Scholar 

  29. Mousa TG, Omar HH, Emad R, Salama MI, Omar W, Fawzy M, Hassoba HM. The association of CD40 polymorphism (rs1883832C/T) and soluble CD40 with the risk of systemic lupus erythematosus among Egyptian patients. Clin Rheumatol. 2019;38:777–84.

    Article  Google Scholar 

  30. Arkatkar T, Du SW, Jacobs HM, Dam EM, Hou B, Buckner JH, Rawlings DJ, Jackson SW. B cell-derived IL-6 initiates spontaneous germinal center formation during systemic autoimmunity. J Exp Med. 2017;214:3207–17.

    Article  CAS  Google Scholar 

  31. Raymond W, Ostli-Eilertsen G, Griffiths S, Nossent J. IL-17A levels in systemic lupus erythematosus associated with inflammatory markers and lower rates of malignancy and heart damage: evidence for a dual role. Eur J Rheumatol. 2017;4:29–35.

    Article  Google Scholar 

  32. Tang Y, Tao H, Gong Y, Chen F, Li C, Yang X. Changes of serum IL-6, IL-17, and complements in systemic lupus erythematosus patients. J Interferon Cytokine Res. 2019;39:410–5.

    Article  CAS  Google Scholar 

  33. McHugh J. Systemic lupus erythematosus: B cell-derived IL-6 promotes disease. Nat Rev Rheumatol. 2017;13:633.

    Article  Google Scholar 

  34. Yang ZC, Xu F, Tang M, Xiong X. Association between TNF-alpha promoter-308 A/G polymorphism and systemic lupus erythematosus susceptibility: a case-control study and meta-analysis. Scand J Immunol. 2017;85:197–210.

    Article  CAS  Google Scholar 

  35. Friedrich M, Pracht K, Mashreghi MF, Jack HM, Radbruch A, Seliger B. The role of the miR-148/-152 family in physiology and disease. Eur J Immunol. 2017;47:2026–38.

    Article  CAS  Google Scholar 

  36. Bosisio D, Gianello V, Salvi V, Sozzani S. Extracellular miRNAs as activators of innate immune receptors. Cancer Lett. 2019;452:59–65.

    Article  CAS  Google Scholar 

  37. Makkawi H, Hoch S, Burns E, Hosur K, Hajishengallis G, Kirschning CJ, Nussbaum G. Porphyromonas gingivalis stimulates TLR2-PI3K signaling to escape immune clearance and induce bone resorption independently of MyD88. Front Cell Infect Microbiol. 2017;7:359.

    Article  Google Scholar 

  38. Liu Y, Liao J, Zhao M, Wu H, Yung S, Chan TM, Yoshimura A, Lu Q. Increased expression of TLR2 in CD4(+) T cells from SLE patients enhances immune reactivity and promotes IL-17 expression through histone modifications. Eur J Immunol. 2015;45:2683–93.

    Article  CAS  Google Scholar 

  39. Van Pham L, Germaud N, Ramadan A, Thieblemont N. MyD88 modulates eosinophil and neutrophil recruitment as well as IL-17A production during allergic inflammation. Cell Immunol. 2016;310:116–22.

    Article  Google Scholar 

Download references

Acknowledgements

We give our sincere gratitude to the reviewers for their valuable suggestions.

Funding

This study is supported by the Project Program of Neurosurgical Clinical Research Center of Sichuan Province, Science and Technology Foundation of Luzhou (2015-S-45(2/5)), Science and Technology Foundation of Southwest Medical University (2017-ZRQN-180, 2017-ZRQN-110).

Author information

Authors and Affiliations

Authors

Contributions

BT and WX designed the study. XL and CH collated the data, conducted data analyses. LC, XX and TP completed the initial draft of the manuscript. LP, XY and CZ contributed to drafting the manuscript. All authors have read and approved the final submitted manuscript.

Corresponding author

Correspondence to Chuanhong Zhong.

Ethics declarations

Conflict of interest

The author declares no competing interest exists.

Additional information

Handling Editor John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, B., Xiang, W., Li, X. et al. Regulation of Toll-like receptor-mediated inflammatory response by microRNA-152-3p-mediated demethylation of MyD88 in systemic lupus erythematosus. Inflamm. Res. 70, 285–296 (2021). https://doi.org/10.1007/s00011-020-01433-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-020-01433-y

Keywords

Navigation