Skip to main content

Advertisement

Log in

The role of interferon-γ in cardiovascular disease: an update

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Purpose

Cardiovascular disease (CVD) is the leading cause of death, globally, and its prevalence is only expected to rise due to the increasing incidence of co-morbidities such as obesity and diabetes. Medical treatment of CVD is directed primarily at slowing or reversing the underlying atherosclerotic process by managing circulating lipids with an emphasis on control of low-density lipoprotein (LDL) cholesterol. However, over the past several decades, there has been increasing recognition that chronic inflammation and immune system activation are important contributors to atherosclerosis. This shift in focus has led to the elucidation of the complex interplay between cholesterol and cellular secretion of cytokines involved in CVD pathogenesis. Of the vast array of cytokine promoting atherosclerosis, interferon (IFN)-γ is highly implicated and, therefore, of great interest.

Methods

Literature review was performed to further understand the effect of IFN-γ on the development of atherosclerotic CVD.

Results

IFN-γ, the sole member of the type II IFN family, is produced by T cells and macrophages, and has been found to induce production of other cytokines and to have multiple effects on all stages of atherogenesis. IFN-γ activates a variety of signaling pathways, most commonly the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, to induce oxidative stress, promote foam cell accumulation, stimulate smooth muscle cell proliferation and migration into the arterial intima, enhance platelet-derived growth factor expression, and destabilize plaque. These are just a few of the contributions of IFN-γ to the initiation and progression of atherosclerotic CVD.

Conclusion

Given the pivotal role of IFN-γ in the advancement of CVD, activation of its signaling pathways is being explored as a driver of atherosclerosis. Manipulation of this key cytokine may lead to novel therapeutic avenues for CVD prevention and treatment. A number of therapies are being explored with IFN-γ as the potential target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chen Y, Freedman ND, Albert PS, Huxley RR, Shiels MS, Withrow DR, et al. Association of cardiovascular disease with premature mortality in the United States. JAMA Cardiol. 2019. https://doi.org/10.1001/jamacardio.2019.3891.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2019 update: a report from the American heart association. Circulation. 2019;139:e56–e528. https://doi.org/10.1161/CIR.0000000000000659.

    Article  PubMed  Google Scholar 

  3. Williams JW, Huang LH, Randolph GJ. Cytokine circuits in cardiovascular disease. Immunity. 2019;50:941–54. https://doi.org/10.1016/j.immuni.2019.03.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Moss JW, Ramji DP. Cytokines: roles in atherosclerosis disease progression and potential therapeutic targets. Future Med Chem. 2016;8:1317–30. https://doi.org/10.4155/fmc-2016-0072.

    Article  CAS  PubMed  Google Scholar 

  5. Levine B, Kalman J, Mayer L, Fillit HM, Packer M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med. 1990;323:236–41. https://doi.org/10.1056/nejm199007263230405.

    Article  CAS  PubMed  Google Scholar 

  6. Kishikawa H, Shimokama T, Watanabe T. Localization of T lymphocytes and macrophages expressing IL-1, IL-2 receptor, IL-6 and TNF in human aortic intima. Role of cell-mediated immunity in human atherogenesis. Virchows Arch A Pathol Anat Histopathol. 1993;423:433–42. https://doi.org/10.1007/BF01606532.

    Article  CAS  PubMed  Google Scholar 

  7. Tilstam PV, Qi D, Leng L, Young L, Bucala R. MIF family cytokines in cardiovascular diseases and prospects for precision-based therapeutics. Expert Opin Ther Targets. 2017. https://doi.org/10.1080/14728222.2017.1336227.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mirzaei H, Ferns GA, Avan A, Mobarhan MG. Cytokines and microRNA in coronary artery disease. Adv Clin Chem. 2017;82:47–70. https://doi.org/10.1016/bs.acc.2017.06.004.

    Article  CAS  PubMed  Google Scholar 

  9. Kim EY, Moudgil KD. Immunomodulation of autoimmune arthritis by pro-inflammatory cytokines. Cytokine. 2017;98:87–96. https://doi.org/10.1016/j.cyto.2017.04.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Razaghi A, Owens L, Heimann K. Review of the recombinant human interferon gamma as an immunotherapeutic: impacts of production platforms and glycosylation. J Biotechnol. 2016;240:48–60. https://doi.org/10.1016/j.jbiotec.2016.10.022.

    Article  CAS  PubMed  Google Scholar 

  11. Silvennoinen O, Ihle JN, Schlessinger J, Levy DE. Interferon-induced nuclear signaling by Jak protein tyrosine kinases. Nature. 1993;366:583–5.

    Article  CAS  PubMed  Google Scholar 

  12. Rusinova I, Forster S, Yu S, Kannan A, Masse M, Cumming H, et al. Interferome v2.0: an updated database of annotated interferon-regulated genes. Nucleic Acids Res. 2013;41:D1040–D10461046. https://doi.org/10.1093/nar/gks1215.

    Article  CAS  PubMed  Google Scholar 

  13. Voloshyna I, Littlefield MJ, Reiss AB. Atherosclerosis and interferon-γ: new insights and therapeutic targets. Trends Cardiovasc Med. 2014;24:45–51. https://doi.org/10.1016/j.tcm.2013.06.003.

    Article  CAS  PubMed  Google Scholar 

  14. Libby P, Lichtman AH, Hansson GK. Immune effector mechanisms implicated in atherosclerosis: from mice to humans. Immunity. 2013;38:1092–104. https://doi.org/10.1016/j.immuni.2013.06.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Harismendy O, Notani D, Song X, Rahim NG, Tanasa B, Heintzman N, et al. 9p21 DNA variants associated with coronary artery disease impair interferon-gamma signalling response. Nature. 2011;470:264–8. https://doi.org/10.1038/nature09753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ketelhuth DF, Hansson GK. Cellular immunity, low-density lipoprotein and atherosclerosis: break of tolerance in the artery wall. Thromb Haemost. 2011;106:779–86. https://doi.org/10.1160/TH11-05-0321.

    Article  CAS  PubMed  Google Scholar 

  17. Bellosta S, Corsini A. Statin drug interactions and related adverse reactions: an update. Expert Opin Drug Saf. 2018;17:25–37. https://doi.org/10.1080/14740338.2018.1394455.

    Article  CAS  PubMed  Google Scholar 

  18. Carmena R, Betteridge DJ. Diabetogenic action of statins: mechanisms. Curr Atheroscler Rep. 2019;21:23. https://doi.org/10.1007/s11883-019-0780-z.

    Article  CAS  PubMed  Google Scholar 

  19. Karahalil B, Hare E, Koç G, Uslu İ, Şentürk K, Özkan Y. Hepatotoxicity associated with statins. Arh Hig Rada Toksikol. 2017;68:254–60. https://doi.org/10.1515/aiht-2017-68-2994.

    Article  CAS  PubMed  Google Scholar 

  20. Vrablik M, Zlatohlavek L, Stulc T, Adamkova V, Prusikova M, Schwarzova L, et al. Statin-associated myopathy: from genetic predisposition to clinical management. Physiol Res. 2014;63(Suppl 3):S327–S334334.

    PubMed  Google Scholar 

  21. McLaren JE, Michael DR, Ashlin TG, Ramji DP. Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy. Prog Lipid Res. 2011;50:331–47. https://doi.org/10.1016/j.plipres.2011.04.002.

    Article  CAS  PubMed  Google Scholar 

  22. Petri MA, Kiani AN, Post W, Christopher-Stine L, Magder LS. Lupus atherosclerosis prevention study (LAPS). Ann Rheum Dis. 2011;70:760–5. https://doi.org/10.1136/ard.2010.136762.

    Article  CAS  PubMed  Google Scholar 

  23. Reiss AB, Arain HA, Kasselman LJ, Renna HA, Zhen J, Voloshyna I, et al. Human lupus plasma pro-atherogenic effects on cultured macrophages are not mitigated by statin therapy: a mechanistic LAPS substudy. Medicina (Kaunas). 2019;55:E514. https://doi.org/10.3390/medicina55090514.

    Article  PubMed  Google Scholar 

  24. Golia E, Limongelli G, Natale F, Fimiani F, Maddaloni V, Pariggiano I, et al. Inflammation and cardiovascular disease: from pathogenesis to therapeutic target. Curr Atheroscler Rep. 2014;16:435. https://doi.org/10.1007/s11883-014-0435-z.

    Article  CAS  PubMed  Google Scholar 

  25. Moss JW, Ramji DP. Interferon-γ: promising therapeutic target in atherosclerosis. World J Exp Med. 2015;5:154–9. https://doi.org/10.5493/wjem.v5.i3.154.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Thiel D, le Du MH, Walter R, D’Arcy A, Chène C, Fountoulakis M, et al. Observation of an unexpected third receptor molecule in the crystal structure of human interferon-γ receptor complex. Structure. 2000;8:927–36. https://doi.org/10.1016/s0969-2126(00)00184-2.

    Article  CAS  PubMed  Google Scholar 

  27. Ealick S, Cook WJ, Vijay-Kumar S, Carson M, Nagabhushan TL, Trotta PP, Bugg CE. Three-dimensional structure of recombinant human interferon-γ. Science. 1991;252:698–702. https://doi.org/10.1126/science.1902591.

    Article  CAS  PubMed  Google Scholar 

  28. Platanias LC. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol. 2005;5:375–86. https://doi.org/10.1038/nri1604.

    Article  CAS  PubMed  Google Scholar 

  29. Pestka S, Krause CD, Walter MR. Interferons, interferon-like cytokines, and their receptors. Immunol Rev. 2004;202:8–32. https://doi.org/10.1111/j.0105-2896.2004.00204.x.

    Article  CAS  PubMed  Google Scholar 

  30. Hardy MP, Owczarek CM, Jermiin LS, Ejdebäck M, Hertzog PJ. Characterization of the type I interferon locus and identification of novel genes. Genomics. 2004;84:331–45.

    Article  CAS  PubMed  Google Scholar 

  31. Savan R, Ravichandran S, Collins JR, Sakai M, Young HA. Structural conservation of interferon gamma among vertebrates. Cytokine Growth Factor Rev. 2009;20:115–24. https://doi.org/10.1016/j.cytogfr.2009.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nacheva G, Todorova K, Boyanova M, Berzal-Herranz A, Karshikoff A, Ivanov I. Human interferon gamma: significance of the C-terminal flexible domain for its biological activity. Arch Biochem Biophys. 2003;413:91–8. https://doi.org/10.1016/s0003-9861(03)00113-9.

    Article  CAS  PubMed  Google Scholar 

  33. Lilkova E, Petkov P, Ilieva N, Krachmarova E, Nacheva G, Litov L. Molecular modeling of the effects of glycosylation on the structure and dynamics of human interferon-gamma. J Mol Model. 2019;25:127. https://doi.org/10.1007/s00894-019-4013-8.

    Article  CAS  PubMed  Google Scholar 

  34. Sareneva T, Pirhonen J, Cantell K, Kalkkinent N, Julkunen L. Role of N-glycosylation in the synthesis, dimerization and secretion of human interferon-γ. Biochem J. 1994;303:831–40. https://doi.org/10.1042/bj3030831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sareneva T, Pirhonen J, Cantell K, Julkunen L. N-glycosylation of human interferon-γ: glycans at Asn-25 are critical for protease resistance. Biochem J. 1995;308:9–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mendoza JL, Escalante NK, Jude KM, Sotolongo Bellon J, Su L, Horton TM, et al. Structure of the IFNγ receptor complex guides design of biased agonists. Nature. 2019;567:56–60. https://doi.org/10.1038/s41586-019-0988-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pirault J, Polyzos KA, Petri MH, Ketelhuth DFJ, Bäck M, Hansson GK. The inflammatory cytokine interferon-gamma inhibits sortilin-1 expression in hepatocytes via the JAK/STAT pathway. Eur J Immunol. 2017;47:1918–24. https://doi.org/10.1002/eji.201646768.

    Article  CAS  PubMed  Google Scholar 

  38. Young HA, Bream JH. IFN-gamma: recent advances in understanding regulation of expression, biological functions, and clinical applications. Curr Top Microbiol Immunol. 2007;316:97–117. https://doi.org/10.1007/978-3-540-71329-6_6.

    Article  CAS  PubMed  Google Scholar 

  39. Chung J, Uchida E, Grammer TC, Blenis J. STAT3 Serine Phosphorylation by ERK-dependent and -independent pathways negatively modulates its tyrosine phosphorylation. Mol Cell Biol. 1997;17:6508–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Simanski M, Rademacher F, Schröder L, Schumacher HM, Gläser R, Harder J. IL-17A and IFN-γ synergistically induce RNase 7 expression via STAT3 in primary keratinocytes. PLoS ONE. 2013;8:e59531. https://doi.org/10.1371/journal.pone.0059531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. van Boxel-Dezaire AH, Stark GR. Cell type-specific signaling in response to interferon-gamma. Curr Top Microbiol Immunol. 2007;316:119–54. https://doi.org/10.1007/978-3-540-71329-6_7.

    Article  PubMed  Google Scholar 

  42. Yu XH, Zhang DW, Zheng XL, Tang CK. Cholesterol transport system: an integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res. 2019;73:65–91. https://doi.org/10.1016/j.plipres.2018.12.002.

    Article  CAS  PubMed  Google Scholar 

  43. Chistiakov DA, Bobryshev YV, Orekhov AN. Macrophage-mediated cholesterol handling in atherosclerosis. J Cell Mol Med. 2016;20(1):17–28. https://doi.org/10.1111/jcmm.12689.

    Article  CAS  PubMed  Google Scholar 

  44. Park YM. CD36, a scavenger receptor implicated in atherosclerosis. Exp Mol Med. 2014;46:e99. https://doi.org/10.1038/emm.2014.38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Reiss AB, Glass AD. CD36 and ScR-A: scavenger receptors that mediate uptake of oxidized low-density lipoprotein and foam cell formation. In: Reiss AB, Carsons S, Cronstein BN, editors. Proteins involved in the pathogenesis of atherosclerosis. Research Signpost; 2006. pp. 1–12.

  46. Aslanian AM, Charo IF. Targeted disruption of the scavenger receptor and chemokine CXCL16 accelerates atherosclerosis. Circulation. 2006;114:583–90. https://doi.org/10.1161/CIRCULATIONAHA.105.540583.

    Article  CAS  PubMed  Google Scholar 

  47. Zurkinden L, Solcà C, Vögeli IA, Vogt B, Ackermann D, Erickson SK, et al. Effect of Cyp27A1 gene dosage on atherosclerosis development in ApoE-knockout mice. FASEB J. 2014;28:1198–209. https://doi.org/10.1096/fj.13-233791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pannu PS, Allahverdian S, Francis GA. Oxysterol generation and liver X receptor-dependent reverse cholesterol transport: not all roads lead to Rome. Mol Cell Endocrinol. 2013;368:99–107. https://doi.org/10.1016/j.mce.2012.07.013.

    Article  CAS  PubMed  Google Scholar 

  49. Voloshyna I, Reiss AB. The ABC transporters in lipid flux and atherosclerosis. Prog Lipid Res. 2011;50:213–24. https://doi.org/10.1016/j.plipres.2011.02.001.

    Article  CAS  PubMed  Google Scholar 

  50. Adorni MP, Zimetti F, Billheimer JT, Wang N, Rader DJ, Phillips MC, Rothblat GH. The roles of different pathways in the release of cholesterol from macrophages. J Lipid Res. 2007;48:2453–62. https://doi.org/10.1194/jlr.M700274-JLR200.

    Article  CAS  PubMed  Google Scholar 

  51. Grewal T, Priceputu E, Davignon J, Bernier L. Identification of a γ-interferon–responsive element in the promoter of the human macrophage scavenger receptor A gene. Arterioscler Thromb Vasc Biol. 2001;21:825–31. https://doi.org/10.1161/01.atv.21.5.825.

    Article  CAS  PubMed  Google Scholar 

  52. Geng Y, Hansson GK. Interferon-gamma inhibits scavenger receptor expression and foam cell formation in human monocyte derived macrophages. J Clin Invest. 1992;89:1322–30. https://doi.org/10.1172/JCI115718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nakagawa T, Nozaki S, Nishida M, Yakub JM, Tomiyama Y, Nakata A, et al. Oxidized LDL increases and interferon-gamma decreases expression of CD36 in human monocyte-derived macrophages. Arterioscler Thromb Vasc Biol. 1998;18:1350–7. https://doi.org/10.1161/01.atv.18.8.1350.

    Article  CAS  PubMed  Google Scholar 

  54. Panousis CG, Zuckerman SH. Regulation of cholesterol distribution in macrophage-derived foam cells by interferon-γ. J Lipid Res. 2000;41:75–83.

    CAS  PubMed  Google Scholar 

  55. Wuttge DM, Zhou X, Sheikine Y, Wågsäter D, Stemme V, Hedin U, et al. CXCL16/SR-PSOX is an interferon-gamma-regulated chemokine and scavenger receptor expressed in atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2004;24(4):750–5. https://doi.org/10.1161/01.ATV.0000124102.11472.36.

    Article  CAS  PubMed  Google Scholar 

  56. Wågsäter D, Olofsson PS, Norgren L, Stenberg B, Sirsjö A. The chemokine and scavenger receptor CXCL16/SR-PSOX is expressed in human vascular smooth muscle cells and is induced by interferon gamma. Biochem Biophys Res Commun. 2004;325:1187–93. https://doi.org/10.1016/j.bbrc.2004.10.160.

    Article  CAS  PubMed  Google Scholar 

  57. Jansson AM, Aukrust P, Ueland T, Smith C, Omland T, Hartford M, et al. Soluble CXCL16 predicts long-term mortality in acute coronary syndromes. Circulation. 2009;119:3181–8. https://doi.org/10.1161/CIRCULATIONAHA.108.806877.

    Article  CAS  PubMed  Google Scholar 

  58. Laugsand LE, Åsvold BO, Vatten LJ, Janszky I, Platou C, Michelsen AE, et al. Soluble CXCL16 and risk of myocardial infarction: the HUNT study in Norway. Atherosclerosis. 2016;244:188–94. https://doi.org/10.1016/j.atherosclerosis.2015.11.022.

    Article  CAS  PubMed  Google Scholar 

  59. Reiss AB, Awadallah NW, Malhotra S, Montesinos MC, Chan ES, Javitt NB, et al. Immune complexes and IFN-gamma decrease cholesterol 27-hydroxylase in human arterial endothelium and macrophages. J Lipid Res. 2001;42:1913–22.

    CAS  PubMed  Google Scholar 

  60. Ohashi R, Mu H, Wang X, Yao Q, Chen C. Reverse cholesterol transport and cholesterol efflux in atherosclerosis. QJM. 2005;98:845–56. https://doi.org/10.1093/qjmed/hci136.

    Article  CAS  PubMed  Google Scholar 

  61. Hao XR, Cao DL, Hu YW, Li XX, Liu XH, Xiao J, et al. IFN-gamma down-regulates ABCA1 expression by inhibiting LXRalpha in a JAK/STAT signaling pathway-dependent manner. Atherosclerosis. 2009;203:417–28. https://doi.org/10.1016/j.atherosclerosis.2008.07.029.

    Article  CAS  PubMed  Google Scholar 

  62. Wang XQ, Panousis CG, Alfaro ML, Evans GF, Zuckerman SH. Interferon-γ–mediated downregulation of cholesterol efflux and ABC1 expression is by the stat1 pathway. Arterioscler Thromb Vasc Biol. 2002;22:e5–9. https://doi.org/10.1161/01.atv.0000018287.03856.dd.

    Article  PubMed  Google Scholar 

  63. Pascual-García M, Rué L, León T, Julve J, Carbó JM, Matalonga J, et al. Reciprocal negative cross-talk between liver x receptors (LXRs) and STAT1: effects on IFN-γ–induced inflammatory responses and LXR-dependent gene expression. J Immunol. 2013;190:6520–32. https://doi.org/10.4049/jimmunol.1201393.

    Article  CAS  PubMed  Google Scholar 

  64. Kulling PM, Olson KC, Hamele CE, Toro MF, Tan S, Feith DJ, et al. Dysregulation of the IFN-γ-STAT1 signaling pathway in a cell line model of large granular lymphocyte leukemia. PLoS ONE. 2018;13:e0193429. https://doi.org/10.1371/journal.pone.0193429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature. 1996;383:787–93. https://doi.org/10.1038/383787a0.

    Article  CAS  PubMed  Google Scholar 

  66. Reiss AB, Patel CA, Rahman MM, Chan ES, Hasneen K, Montesinos MC, et al. Interferon-gamma impedes reverse cholesterol transport and promotes foam cell transformation in THP-1 human monocytes/macrophages. Med Sci Monit. 2004;10(11):420–5.

    Google Scholar 

  67. Boshuizen MC, Winther MP. Interferons as essential modulators of atherosclerosis. Arterioscler Thromb Vasc Biol. 2015;35:1579–88. https://doi.org/10.1161/atvbaha.115.305464.

    Article  CAS  PubMed  Google Scholar 

  68. Frostegård J, Ulfgren AK, Nyberg P, Hedin U, Swedenborg J, Andersson U, et al. Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis. 1999;145:33–43. https://doi.org/10.1016/s0021-9150(99)00011-8.

    Article  PubMed  Google Scholar 

  69. Ammirati E, Moroni F, Magnoni M, Camici PG. The role of T and B cells in human atherosclerosis and atherothrombosis. Clin Exp Immunol. 2015;179(2):173–87. https://doi.org/10.1111/cei.12477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zohlnhofer D, Richter T, Neumann F, Nuhrenberg T, Wessely R, Brandl R, et al. Transcriptome analysis reveals a role of interferon-gamma in human neointima formation. Mol Cell. 2001;7:1059–69. https://doi.org/10.1016/s1097-2765(01)00239-8.

    Article  CAS  PubMed  Google Scholar 

  71. Ranjbaran H, Sokol SI, Gallo A, Eid RE, Iakimov AO, D'Alessio A, Kapoor JR, Akhtar S, Howes CJ, Aslan M, Pfau S, Pober JS, Tellides G. An inflammatory pathway of IFN-gamma production in coronary atherosclerosis. J Immunol. 2007;178:592–604. https://doi.org/10.4049/jimmunol.178.1.592.

    Article  CAS  PubMed  Google Scholar 

  72. George J, Schwartzenberg S, Medvedovsky D, Jonas M, Charach G, Afek A, et al. Regulatory T cells and IL-10 levels are reduced in patients with vulnerable coronary plaques. Atherosclerosis. 2012;222(2):519–23. https://doi.org/10.1016/j.atherosclerosis.2012.03.016.

    Article  CAS  PubMed  Google Scholar 

  73. Manry J, Laval G, Patin E, Fornarino S, Tichit M, Bouchier C, et al. Evolutionary genetics evidence of an essential, nonredundant role of the IFN-γ pathway in protective immunity. Hum Mutat. 2011;32:633–42. https://doi.org/10.1002/humu.21484.

    Article  CAS  PubMed  Google Scholar 

  74. Sikorski K, Chmielewski S, Przybyl L, Heemann U, Wesoly J, Baumann M, et al. STAT1-mediated signal integration between IFNγ and LPS leads to increased EC and SMC activation and monocyte adhesion. Am J Physiol Cell Physiol. 2011;300(6):C1337–C13441344. https://doi.org/10.1152/ajpcell.00276.2010.

    Article  CAS  PubMed  Google Scholar 

  75. Sikorski K, Chmielewski S, Olejnik A, Wesoly JZ, Heemann U, Baumann M, et al. STAT1 as a central mediator of IFNγ and TLR4 signal integration in vascular dysfunction. JAKSTAT. 2012;1(4):241–9. https://doi.org/10.4161/jkst.22469.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Yu XH, Zhang J, Zheng XL, Yang YH, Tang CK. Interferon-γ in foam formation and progression of atherosclerosis. Clin Chim Acta. 2015;441:33–43. https://doi.org/10.1016/j.cca.2014.12.007.

    Article  CAS  PubMed  Google Scholar 

  77. Reiss AB, Carsons SE, Anwar K, Rao S, Edelman SD, Zhang H, et al. Atheroprotective effects of methotrexate on reverse cholesterol transport proteins and foam cell transformation in human THP-1 monocyte/macrophages. Arthritis Rheum. 2008;58(12):3675–83. https://doi.org/10.1002/art.24040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Littlefield MJ, Teboul I, Voloshyna I, Reiss AB. Polarization of human THP-1 macrophages: link between adenosine receptors, inflammation and lipid accumulation. Int J Immunol Immunother. 2014;1:001. https://doi.org/10.23937/2378-3672/1410001.

    Article  Google Scholar 

  79. Tabas I, Lichtman AH. Monocyte-macrophages and T cells in atherosclerosis. Immunity. 2017;47:621–34. https://doi.org/10.1016/j.immuni.2017.09.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Teixeira LK, Fonseca BP, Barboza BA, Viola JP. The role of interferon-g on immune and allergic responses. Mem Inst Oswaldo Cruz. 2005;1001:137–44. https://doi.org/10.1590/s0074-02762005000900024.

    Article  Google Scholar 

  81. So EY, Park HH, Lee CE. IFN-γ and IFN-α posttranscriptionally down-regulate the IL-4-induced IL-4 receptor gene expression. J Immunol. 2000;165:5472–9. https://doi.org/10.4049/jimmunol.165.10.5472.

    Article  CAS  PubMed  Google Scholar 

  82. Engelbertsen D, Andersson L, Ljungcrantz I, Wigren M, Hedblad B, Nilsson J, et al. T-helper 2 immunity is associated with reduced risk of myocardial infarction and stroke. Arterioscler Thromb Vasc Biol. 2013;33(3):637–44. https://doi.org/10.1161/ATVBAHA.112.300871.

    Article  CAS  PubMed  Google Scholar 

  83. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5:953–64. https://doi.org/10.1038/nri1733.

    Article  CAS  PubMed  Google Scholar 

  84. Wang F, Zhang S, Jeon R, Vuckovic I, Jiang X, Lerman A, et al. Interferon gamma induces reversible metabolic reprogramming of M1 macrophages to sustain cell viability and pro-inflammatory activity. EBioMedicine. 2018;30:303–16. https://doi.org/10.1016/j.ebiom.2018.02.009.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Medbury HJ, Williams H, Fletcher JP. Clinical significance of macrophage phenotypes in cardiovascular disease. Clin Transl Med. 2014;3:63. https://doi.org/10.1186/s40169-014-0042-1.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zhang MJ, Zhou Y, Chen L, Wang YQ, Wang X, Pi Y, et al. An overview of potential molecular mechanisms involved in VSMC phenotypic modulation. Histochem Cell Biol. 2016;145:119–30. https://doi.org/10.1007/s00418-015-1386-3.

    Article  CAS  PubMed  Google Scholar 

  87. Morelli PI, Martinsson S, Ostergren-Lundén G, Fridén V, Moses J, Bondjers G, et al. IFN gamma regulates PDGF-receptor alpha expression in macrophages, THP-1 cells, and arterial smooth muscle cells. Atherosclerosis. 2006;184:39–47. https://doi.org/10.1016/j.atherosclerosis.2005.03.026.

    Article  CAS  PubMed  Google Scholar 

  88. Wang Y, Bai Y, Qin L, Zhang P, Yi T, Teesdale SA, et al. Interferon-gamma induces human vascular smooth muscle cell proliferation and intimal expansion by phosphatidylinositol 3-kinase dependent mammalian target of rapamycin raptor complex 1 activation. Circ Res. 2007;101:560–9. https://doi.org/10.1161/CIRCRESAHA.107.151068.

    Article  CAS  PubMed  Google Scholar 

  89. Tellides G, Tereb DA, Kirkiles-Smith NC, Kim RW, Wilson JH, Schechner JS, et al. Interferon-gamma elicits arteriosclerosis in the absence of leukocytes. Nature. 2000;403:207–11. https://doi.org/10.1038/35003221.

    Article  CAS  PubMed  Google Scholar 

  90. Piaszyk-Borychowska A, Széles L, Csermely A, Chiang HC, Wesoły J, Lee CK, et al. Signal integration of IFN-I and IFN-II with TLR4 involves sequential recruitment of STAT1-complexes and NFκB to enhance pro-inflammatory transcription. Front Immunol. 2019;10:1253. https://doi.org/10.3389/fimmu.2019.01253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chmielewski S, Olejnik A, Sikorski K, Pelisek J, Błaszczyk K, Aoqui C, et al. STAT1-dependent signal integration between IFNγ and TLR4 in vascular cells reflect pro-atherogenic responses in human atherosclerosis. PLoS ONE. 2014;9(12):e113318. https://doi.org/10.1371/journal.pone.0113318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bennett MR, Sinha S, Owens GK. Vascular smooth muscle cells in atherosclerosis. Circ Res. 2016;118:692–702. https://doi.org/10.1161/CIRCRESAHA.115.306361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Libby P, Aikawa M. Stabilization of atherosclerotic plaques: new mechanisms and clinical targets. Nat Med. 2002;8:1257–62. https://doi.org/10.1038/nm1102-1257.

    Article  CAS  PubMed  Google Scholar 

  94. George J, Schwartzenberg S, Medvedovsky D, Jonas M, Charach G, Afek A, et al. Regulatory T cells and IL-10 levels are reduced in patients with vulnerable coronary plaques. Atherosclerosis. 2012;222:519–23. https://doi.org/10.1016/j.atherosclerosis.2012.03.016.

    Article  CAS  PubMed  Google Scholar 

  95. Ovchinnikova O, Robertson AK, Wågsäter D, Folco EJ, Hyry M, Myllyharju J, et al. T-cell activation leads to reduced collagen maturation in atherosclerotic plaques of Apoe(-/) mice. Am J Pathol. 2009;174(2):693–700. https://doi.org/10.2353/ajpath.2009.080561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yang Z, Gagarin D, St Laurent G, Hammell N, Toma I, Hu C, et al. Cardiovascular inflammation and lesion cell apoptosis: a novel connection via the interferon-inducible immunoproteasome. Arterioscler Thromb Vasc Biol. 2009;29(8):1213–9. https://doi.org/10.1161/ATVBAHA.109.189407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Buono C, Come CE, Stavrakis G, Maguire GF, Connelly PW, Lichtman AH. Influence of interferon-γ on the extent and phenotype of diet-induced atherosclerosis in the LDLR-deficient mouse. Arterioscler Thromb Vasc Biol. 2003;23:454–60. https://doi.org/10.1161/01.ATV.0000059419.11002.6E.

    Article  CAS  PubMed  Google Scholar 

  98. Gupta S, Pablo AM, Jiang X, Wang N, Tall AR, Schindler C. IFN-γ potentiates atherosclerosis in ApoE knock-out mice. J Clin Invest. 1997;99:2752–61. https://doi.org/10.1172/JCI119465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nagano H, Mitchell RN, Taylor MK, Hasegawa S, Tilney NL, Libby P. Interferon-gamma deficiency prevents coronary arteriosclerosis but not myocardial rejection in transplanted mouse hearts. J Clin Invest. 1997;100:550–7. https://doi.org/10.1172/JCI119564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Whitman SC, Ravisankar P, Elam H, Daugherty A. Exogenous interferon-gamma enhances atherosclerosis in apolipoprotein E−/− mice. Am J Pathol. 2000;157:1819–24. https://doi.org/10.1016/s0002-9440(10)64820-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Radner H, Lesperance T, Accortt NA, Solomon DH. Incidence and prevalence of cardiovascular risk factors among patients with rheumatoid arthritis, psoriasis, or psoriatic arthritis. Arthritis Care Res (Hoboken). 2017;69:1510–8. https://doi.org/10.1002/acr.23171.

    Article  Google Scholar 

  102. Wolfe RM, Ang DC. Biologic therapies for autoimmune and connective tissue diseases. Immunol Allergy Clin North Am. 2017;37:283–99. https://doi.org/10.1016/j.iac.2017.01.005.

    Article  PubMed  Google Scholar 

  103. Schiotis RE, Buzoianu AD, Mureșanu DF, Suciu S. New pharmacological strategies in rheumatic diseases. J Med Life. 2016;9:227–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Prodanovich S, Kirsner RS, Kravetz JD, Ma F, Martinez L, Federman DG. Association of psoriasis with coronary artery, cerebrovascular, and peripheral vascular diseases and mortality. Arch Dermatol. 2009;145:700–3. https://doi.org/10.1001/archdermatol.2009.94.

    Article  PubMed  Google Scholar 

  105. Ludwig RJ, Herzog C, Rostock A, Ochsendorf FR, Zollner TM, Thaci D, et al. Psoriasis: a possible risk factor for development of coronary artery calcification. Br J Dermatol. 2007;156:271–6. https://doi.org/10.1111/j.1365-2133.2006.07562.x.

    Article  CAS  PubMed  Google Scholar 

  106. Gelfand JM, Neimann AL, Shin DB, Wang X, Margolis DJ, Troxel AB. Risk of myocardial infarction in patients with psoriasis. JAMA. 2006;296:1735–41. https://doi.org/10.1001/jama.296.14.1735.

    Article  CAS  PubMed  Google Scholar 

  107. Boehncke WH. Systemic inflammation and cardiovascular comorbidity in psoriasis patients: causes and consequences. Front Immunol. 2018;9:579. https://doi.org/10.3389/fimmu.2018.00579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mehta NN, Teague HL, Swindell WR, Baumer Y, Ward NL, Xing X, et al. IFN-γ and TNF-α synergism may provide a link between psoriasis and inflammatory atherogenesis. Sci Rep. 2017;7:13831. https://doi.org/10.1038/s41598-017-14365-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ramonda R, Lo Nigro A, Modesti V, Nalotto L, Musacchio E, Iaccarino L, et al. Atherosclerosis in psoriatic arthritis. Autoimmun Rev. 2011;10:773–8. https://doi.org/10.1016/j.autrev.2011.05.022.

    Article  CAS  PubMed  Google Scholar 

  110. Bonaccorsi I, Spinelli D, Cantoni C, Barillà C, Pipitò N, De Pasquale C, et al. Symptomatic carotid atherosclerotic plaques are associated with increased infiltration of natural killer (NK) cells and higher serum levels of NK activating receptor ligands. Front Immunol. 2019;10:1503. https://doi.org/10.3389/fimmu.2019.01503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Patel KD, Duggan SP, Currid CA, Gallagher WM, McManus R, Kelleher D, Murphy RT, Ryan AW. High sensitivity cytokine detection in acute coronary syndrome reveals up-regulation of interferon gamma and interleukin-10 post myocardial infarction. Clin Immunol. 2009;133:251–66. https://doi.org/10.1016/j.clim.2009.07.007.

    Article  CAS  PubMed  Google Scholar 

  112. Halvorsen B, Otterdal K, Dahl TB, Skjelland M, Gullestad L, Øie E, et al. Atherosclerotic plaque stability–what determines the fate of a plaque? Prog Cardiovasc Dis. 2008;5:183–94. https://doi.org/10.1016/j.pcad.2008.09.001.

    Article  CAS  Google Scholar 

  113. Newby AC, George SJ, Ismail Y, Johnson JL, Sala-Newby GB, Thomas AC. Vulnerable atherosclerotic plaque metalloproteinases and foam cell phenotypes. Thromb Haemost. 2009;101:1006–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhou M, Zhang Y, Ardans JA, Wahl LM. Interferon-γ differentially regulates monocyte matrix metalloproteinase-1 and 9 through tumor necrosis factor-α and caspase 8. J Biol Chem. 2003;278:45406–13. https://doi.org/10.1074/jbc.M309075200.

    Article  CAS  PubMed  Google Scholar 

  115. Seery JP. IFN-gamma transgenic mice: clues to the pathogenesis of systemic lupus erythematosus? Arthritis Res. 2000;2:437–40. https://doi.org/10.1186/ar124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lee SK, Silva DG, Martin JL, Pratama A, Hu X, Chang PP, et al. Interferon-gamma excess leads to pathogenic accumulation of follicular helper T cells and germinal centers. Immunity. 2012;37:880–92. https://doi.org/10.1016/j.immuni.2012.10.010.

    Article  CAS  PubMed  Google Scholar 

  117. Balomenos D, Rumold R, Theofilopoulos AN. Interferon-gamma is required for lupus-like disease and lymphoaccumulation in MRL-lpr mice. J Clin Invest. 1998;101:364–71. https://doi.org/10.1172/JCI750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Libby P. Inflammation and cardiovascular disease mechanisms. Am J Clin Nutr. 2006;83:456S–60S. https://doi.org/10.1093/ajcn/83.2.456S.

    Article  CAS  PubMed  Google Scholar 

  119. Ruparelia N, Chai JT, Fisher EA, Choudhury RP. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat Rev Cardiol. 2017;14:133–44. https://doi.org/10.1038/nrcardio.2016.185.

    Article  CAS  PubMed  Google Scholar 

  120. Schroecksnadel K, Frick B, Winkler C, Fuchs D. Crucial role of interferon-gamma and stimulated macrophages in cardiovascular disease. Curr Vasc Pharmacol. 2006;4:205–13. https://doi.org/10.2174/157016106777698379.

    Article  CAS  PubMed  Google Scholar 

  121. Zhou X, Nicoletti A, Elhage R, Hansson GK. Transfer of CD4(+) T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation. 2000;102:2919–22. https://doi.org/10.1161/01.cir.102.24.2919.

    Article  CAS  PubMed  Google Scholar 

  122. Geng YJ, Holm J, Nygren S, Bruzelius M, Stemme S, Hansson GK. Expression of macrophage scavenger receptor in atherosclerosis: relationship between scavenger receptor isoforms and the T cell cytokine, interferon-γ. Arterioscler Thromb Vasc Biol. 1995;15:1995–2002. https://doi.org/10.1161/01.atv.15.11.1995.

    Article  CAS  PubMed  Google Scholar 

  123. Seifert HA, Collier LA, Chapman CB, Benkovic SA, Willing AE, Pennypacker KR. Pro-inflammatory interferon gamma signaling is directly associated with stroke induced neurodegeneration. J Neuroimmune Pharmacol. 2014;9:679–89. https://doi.org/10.1007/s11481-014-9560-2.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Joffre J, Ait-Oufella H. Targeting the immune response in atherosclerosis: It's time for clinical trials! Arch Cardiovasc Dis. 2017;110:643–5. https://doi.org/10.1016/j.acvd.2017.08.001.

    Article  PubMed  Google Scholar 

  125. Moss JW, Davies TS, Garaiova I, Plummer SF, Michael DR, Ramji DP. A Unique combination of nutritionally active ingredients can prevent several key processes associated with atherosclerosis in vitro. PLoS ONE. 2016;11:1057. https://doi.org/10.1371/journal.pone.0151057.

    Article  CAS  Google Scholar 

  126. Boshuizen MC, Neele AE, Gijbels MJ, van der Velden S, Hoeksema MA, Forman RA, et al. Myeloid interferon-γ receptor deficiency does not affect atherosclerosis in LDLR−/− mice. Atherosclerosis. 2016;246:325–33. https://doi.org/10.1016/j.atherosclerosis.2016.01.026.

    Article  CAS  PubMed  Google Scholar 

  127. Chen LW, Lin CS, Tsai MC, Shih SF, Lim ZW, Chen SJ, et al. Pitavastatin exerts potent anti-inflammatory and immunomodulatory effects via the suppression of AP-1 signal transduction in human T cells. Int J Mol Sci. 2019;20:E3534. https://doi.org/10.3390/ijms20143534.

    Article  CAS  PubMed  Google Scholar 

  128. Severino A, Zara C, Campioni M, Flego D, Angelini G, Pedicino D, et al. Atorvastatin inhibits the immediate-early response gene EGR1 and improves the functional profile of CD4+T-lymphocytes in acute coronary syndromes. Oncotarget. 2017;8:17529–50. https://doi.org/10.18632/oncotarget.15420.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Karmaus PW, Shi M, Perl S, Biancotto A, Candia J, Cheung F, et al. Effects of rosuvastatin on the immune system in healthy volunteers with normal serum cholesterol. JCI Insight. 2019;4:131530. https://doi.org/10.1172/jci.insight.131530.

    Article  PubMed  Google Scholar 

  130. Krysiak R, Zmuda W, Okopien B. The effect of ezetimibe, administered alone or in combination with simvastatin, on lymphocyte cytokine release in patients with elevated cholesterol levels. J Intern Med. 2012;271:32–42. https://doi.org/10.1111/j.1365-2796.2011.02394.x.

    Article  CAS  PubMed  Google Scholar 

  131. Cariou B, Le May C, Costet P. Clinical aspects of PCSK9. Atherosclerosis. 2011;216:258–65. https://doi.org/10.1016/j.atherosclerosis.2011.04.018.

    Article  CAS  PubMed  Google Scholar 

  132. Reiss AB, Shah N, Muhieddine D, Zhen J, Yudkevich J, Kasselman LJ, et al. PCSK9 in cholesterol metabolism: from bench to bedside. Clin Sci (Lond). 2018;132:1135–53. https://doi.org/10.1042/CS20180190.

    Article  CAS  Google Scholar 

  133. Momtazi-Borojeni AA, Jaafari MR, Badiee A, Banach M, Sahebkar A. Therapeutic effect of nanoliposomal PCSK9 vaccine in a mouse model of atherosclerosis. BMC Med. 2019;17:223. https://doi.org/10.1186/s12916-019-1457-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kawakami R, Nozato Y, Nakagami H, Ikeda Y, Shimamura M, Yoshida S, et al. Development of vaccine for dyslipidemia targeted to a proprotein convertase subtilisin/kexin type 9 (PCSK9) epitope in mice. PLoS ONE. 2018;13:e0191895. https://doi.org/10.1371/journal.pone.0191895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Koga M, Kai H, Yasukawa H, Kato S, Yamamoto T, Kawai Y, et al. Postnatal blocking of interferon-gamma function prevented atherosclerotic plaque formation in apolipoprotein E-knockout mice. Hypertens Res. 2007;30:259–67. https://doi.org/10.1291/hypres.30.259.

    Article  CAS  PubMed  Google Scholar 

  136. Koga M, Kai H, Yasukawa H, Yamamoto T, Kawai Y, et al. Inhibition of progression and stabilization of plaques by postnatal interferon-gamma function blocking in ApoE-knockout mice. Circ Res. 2007;101(4):348–56. https://doi.org/10.1161/CIRCRESAHA.106.147256.

    Article  CAS  PubMed  Google Scholar 

  137. Zhou J, Qin L, Yi T, Ali R, Li Q, Jiao Y, et al. Interferon-γ-mediated allograft rejection exacerbates cardiovascular disease of hyperlipidemic murine transplant recipients. Circ Res. 2015;117:943–55. https://doi.org/10.1161/CIRCRESAHA.115.306932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Singh S, Pardi DS. Update on anti-tumor necrosis factor agents in Crohn disease. Gastroenterol Clin North Am. 2014;43:457–78. https://doi.org/10.1016/j.gtc.2014.05.008.

    Article  PubMed  Google Scholar 

  139. D'Adamio S, Silvaggio D, Lombardo P, Bianchi L, Talamonti M, Galluzzo M. The safety of anti-interleukins monoclonal antibodies for the treatment of psoriasis. Expert Opin Drug Saf. 2019;18:1031–41. https://doi.org/10.1080/14740338.2019.1663168.

    Article  CAS  PubMed  Google Scholar 

  140. Reinisch W, de Villiers W, Bene L, Simon L, Rácz I, Katz S, Altorjay I, Feagan B, Riff D, Bernstein CN, Hommes D, Rutgeerts P, Cortot A, Gaspari M, Cheng M, Pearce T, Sands BE. Fontolizumab in moderate to severe Crohn's disease: a phase 2, randomized, double-blind, placebo-controlled, multiple-dose study. Inflamm Bowel Dis. 2010;16:233–42. https://doi.org/10.1002/ibd.21038.

    Article  PubMed  Google Scholar 

  141. Abraham C, Dulai PS, Vermeire S, Sandborn WJ. Lessons learned from trials targeting cytokine pathways in patients with inflammatory bowel diseases. Gastroenterology. 2017;152(374–388):e4. https://doi.org/10.1053/j.gastro.2016.10.018.

    Article  CAS  Google Scholar 

  142. Boedigheimer MJ, Martin DA, Amoura Z, Sánchez-Guerrero J, Romero-Diaz J, Kivitz A, et al. Safety, pharmacokinetics and pharmacodynamics of AMG 811, an anti-interferon-γ monoclonal antibody, in SLE subjects without or with lupus nephritis. Lupus Sci Med. 2017;4:e000226. https://doi.org/10.1136/lupus-2017-000226.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Gotsman I, Lichtman AH. Targeting interferon-gamma to treat atherosclerosis. Circ Res. 2007;101:333–4. https://doi.org/10.1161/CIRCRESAHA.107.155838.

    Article  CAS  PubMed  Google Scholar 

  144. Browne SK. Anticytokine autoantibody–associated immunodeficiency. Annu Rev Immunol. 2014;32:635–57. https://doi.org/10.1146/annurev-immunol-032713-120222.

    Article  CAS  PubMed  Google Scholar 

  145. Rovetta AI, Peña D, Hernández Del Pino RE, Recalde GM, Pellegrini J, Bigi F, et al. IFNG-mediated immune responses enhance autophagy against mycobacterium tuberculosis antigens in patients with active tuberculosis. Autophagy. 2014;10:2109–21. https://doi.org/10.4161/15548627.2014.981791.

    Article  CAS  PubMed  Google Scholar 

  146. Kak G, Raza M, Tiwari BK. Interferon-gamma (IFN-γ): Exploring its implications in infectious diseases. Biomol Concepts. 2018;9:64–79. https://doi.org/10.1515/bmc-2018-0007.

    Article  CAS  PubMed  Google Scholar 

  147. Miller NM, Wang J, Tan Y, Dittel BN. Anti-inflammatory mechanisms of IFN-γ studied in experimental autoimmune encephalomyelitis reveal neutrophils as a potential target in multiple sclerosis. Front Neurosci. 2015;9:287. https://doi.org/10.3389/fnins.2015.00287.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Mühl H, Pfeilschifter J. Anti-inflammatory properties of pro-inflammatory interferon-γ. Int Immunopharmacol. 2003;3:1247–55. https://doi.org/10.1016/S1567-5769(03)00131-0.

    Article  CAS  PubMed  Google Scholar 

  149. Venkatesha SH, Dudics S, Weingartner E, So EC, Pedra J, Moudgil KD. Altered Th17/Treg balance and dysregulated IL-1β response influence susceptibility/resistance to experimental autoimmune arthritis. Int J Immunopathol Pharmacol. 2015;28:318–28. https://doi.org/10.1177/0394632015595757.

    Article  CAS  PubMed  Google Scholar 

  150. Fridman JS, Scherle PA, Collins R, Burn TC, Li Y, Li J, et al. Selective inhibition of jak1 and jak2 is efficacious in rodent models of arthritis: Preclinical characterization of incb028050. J Immunol. 2010;184:5298–307. https://doi.org/10.4049/jimmunol.0902819.

    Article  CAS  PubMed  Google Scholar 

  151. Van Vollenhoven R, Helt C, Arora V, Zhong J, Correia AP, de la Torre I, et al. Safety and efficacy of baricitinib in patients receiving conventional synthetic disease-modifying antirheumatic drugs or corticosteroids. Rheumatol Ther. 2018;5:525–36. https://doi.org/10.1007/s40744-018-0128-0.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Xie W, Huang Y, Xiao S, Sun X, Fan Y, Zhang Z. Impact of Janus kinase inhibitors on risk of cardiovascular events in patients with rheumatoid arthritis: systematic review and meta-analysis of randomised controlled trials. Ann Rheum Dis. 2019;78:1048–54. https://doi.org/10.1136/annrheumdis-2018-214846.

    Article  CAS  PubMed  Google Scholar 

  153. Taylor PC, Weinblatt ME, Burmester GR, Rooney TP, Witt S, Walls CD, et al. Cardiovascular safety during treatment with baricitinib in rheumatoid arthritis. Arthritis Rheumatol. 2019;71:1042–55. https://doi.org/10.1002/art.40841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Qiu C, Zhao X, She L, Shi Z, Deng Z, Tan L, et al. Baricitinib induces LDL-C and HDL-C increases in rheumatoid arthritis: a meta-analysis of randomized controlled trials. Lipids Health Dis. 2019;18:54. https://doi.org/10.1186/s12944-019-0994-7.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Xie W, Xiao S, Huang Y, Sun X, Zhang Z. Effect of tofacitinib on cardiovascular events and all-cause mortality in patients with immune-mediated inflammatory diseases: a systematic review and meta-analysis of randomized controlled trials. Ther Adv Musculoskelet Dis. 2019. https://doi.org/10.1177/1759720X19895492.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Burmester GR, Curtis JR, Yun H, FitzGerald O, Winthrop KL, Azevedo VF, et al. An integrated analysis of the safety of tofacitinib in psoriatic arthritis across phase III and long-term extension studies with comparison to real-world observational data. Drug Saf. 2020;40:379–92. https://doi.org/10.1007/s40264-020-00904-9.

    Article  CAS  Google Scholar 

  157. Reiss AB, Grossfeld D, Kasselman LJ, Renna HA, Vernice NA, Drewes W, Konig J, Carsons SE, DeLeon J. Adenosine and the cardiovascular system. Am J Cardiovasc Drugs. 2019;19(5):449–64. https://doi.org/10.1007/s40256-019-00345-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Barnholt KE, Kota RS, Aung HH, Rutledge JC. Adenosine blocks IFN-gamma-induced phosphorylation of STAT1 on serine 727 to reduce macrophage activation. J Immunol. 2009;183:6767–77. https://doi.org/10.4049/jimmunol.0900331.

    Article  CAS  PubMed  Google Scholar 

  159. Cohen S, Barer F, Bar-Yehuda S, Ijzerman AP, Jacobson KA, Fishman P. A3 adenosine receptor allosteric modulator induces an anti-inflammatory effect: in vivo studies and molecular mechanism of action. Mediators Inflamm. 2014. https://doi.org/10.1155/2014/708746.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Reiss AB, Silverman A, Khalfan M, Vernice NA, Kasselman LJ, Carsons SE, et al. Atheroprotective effects of methotrexate on reverse cholesterol transport proteins and foam cell transformation in human THP-1 monocyte/macrophages. Curr Pharm Des. 2019;25:969–86. https://doi.org/10.2174/1381612825666190430113212.

    Article  CAS  PubMed  Google Scholar 

  161. Coomes E, Chan ES, Reiss AB. Methotrexate in atherogenesis and cholesterol metabolism. Cholesterol. 2011;2011:503028. https://doi.org/10.1155/2011/503028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ridker PM, Everett BM, Pradhan A, MacFadyen JG, Solomon DH, Zaharris E, et al. CIRT Investigators Low-dose methotrexate for the prevention of atherosclerotic events. N Engl J Med. 2019;380:752–62. https://doi.org/10.1056/NEJMoa1809798.

    Article  CAS  PubMed  Google Scholar 

  163. Voloshyna I, Teboul I, Littlefield MJ, Siegart NM, Turi GK, Fazzari MJ, et al. Resveratrol counters systemic lupus erythematosus-associated atherogenicity by normalizing cholesterol efflux. Exp Biol Med (Maywood). 2016;241:1611–9. https://doi.org/10.1177/1535370216647181.

    Article  CAS  Google Scholar 

  164. Voloshyna I, Hai O, Littlefield MJ, Carsons S, Reiss AB. Resveratrol mediates anti-atherogenic effects on cholesterol flux in human macrophages and endothelium via PPARγ and adenosine. Eur J Pharmacol. 2013;698:299–309. https://doi.org/10.1016/j.ejphar.2012.08.024.

    Article  CAS  PubMed  Google Scholar 

  165. Chung EY, Kim BH, Hong JT, Lee CK, Ahn B, Nam SY, Han SB, et al. Resveratrol down-regulates interferon-γ-inducible inflammatory genes in macrophages: molecular mechanism via decreased STAT-1 activation. J Nutr Biochem. 2011;22:902–9. https://doi.org/10.1016/j.jnutbio.2010.07.012.

    Article  CAS  PubMed  Google Scholar 

  166. Trung LQ, Espinoza JL, An DT, Viet NH, Shimoda K, Nakao S. Resveratrol selectively induces apoptosis in malignant cells with the JAK2V617F mutation by inhibiting the JAK2 pathway. Mol Nutr Food Res. 2015;59:2143–54. https://doi.org/10.1002/mnfr.201500166.

    Article  CAS  PubMed  Google Scholar 

  167. Singh AP, Singh R, Verma SS, Rai V, Kaschula CH, Maiti P, Gupta SC. Health benefits of resveratrol: evidence from clinical studies. Med Res Rev. 2019;39:1851–91. https://doi.org/10.1002/med.21565.

    Article  CAS  PubMed  Google Scholar 

  168. Reiss AB, Vernice NA, Siegart NM, De Leon J, Kasselman LJ. Exosomes in cholesterol metabolism and atherosclerosis. Cardiovasc Hematol Disord Drug Targets. 2017;17:185–94. https://doi.org/10.2174/1871529X18666180103124443.

    Article  CAS  PubMed  Google Scholar 

  169. Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009;11:228–34. https://doi.org/10.1038/ncb0309-228.

    Article  CAS  PubMed  Google Scholar 

  170. Wang H, Zhang Y, Wu X, Wang Y, Cui H, Li X, et al. Regulation of human natural killer cell IFN-γ production by microRNA-146a via targeting the NF-κB signaling pathway. Front Immunol. 2018;9:293. https://doi.org/10.3389/fimmu.2018.00293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Li X, Kong D, Chen H, Liu S, Hu H, Wu T, Wang J, Chen W, Ning Y, Li Y, Lu Z. miR-155 acts as an anti-inflammatory factor in atherosclerosis-associated foam cell formation by repressing calcium-regulated heat stable protein 1. Sci Rep. 2016;6:21789. https://doi.org/10.1038/srep21789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Nazari-Jahantigh M, Wei Y, Noels H, Akhtar S, Zhou Z, Koenen RR, et al. MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. J Clin Invest. 2012;122:4190–202. https://doi.org/10.1172/jci61716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Li S, Sun Y, Zhong L, Xiao Z, Yang M, Chen M, et al. The suppression of ox-LDL-induced inflammatory cytokine release and apoptosis of HCAECs by long non-coding RNA-MALAT1 via regulating microRNA-155/SOCS1 pathway. Nutr Metab Cardiovasc Dis. 2018;28:1175–87. https://doi.org/10.1016/j.numecd.2018.06.017.

    Article  CAS  PubMed  Google Scholar 

  174. Skuratovskaia D, Vulf M, Komar A, Kirienkova E, Litvinova L. Promising directions in atherosclerosis treatment based on epigenetic regulation using microRNAs and long noncoding RNAs. Biomolecules. 2019;9(6):E226. https://doi.org/10.3390/biom9060226.

    Article  CAS  PubMed  Google Scholar 

  175. Quiat D, Olson EN. MicroRNAs in cardiovascular disease: from pathogenesis to prevention and treatment. J Clin Invest. 2013;123:11–8. https://doi.org/10.1172/JCI62876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res. 2012;110:483–95. https://doi.org/10.1161/CIRCRESAHA.

    Article  CAS  PubMed  Google Scholar 

  177. Wang CH, Shi HH, Chen LH, Li XL, Cao GL, Hu XF. Identification of key lncRNAs associated with atherosclerosis progression based on public datasets. Front Genet. 2019;10:123. https://doi.org/10.3389/fgene.2019.00123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Prebble H, Cross S, Marks E, Healy J, Searle E, Aamir R, et al. Induced macrophage activation in live excised atherosclerotic plaque. Immunobiology. 2018;223:526–35. https://doi.org/10.1016/j.imbio.2018.03.002.

    Article  CAS  PubMed  Google Scholar 

  179. Kong XF, Vogt G, Chapgier A, et al. A novel form of cell type-specific partial IFN-gammaR1 deficiency caused by a germ line mutation of the IFNGR1 initiation codon. Hum Mol Genet. 2010;19(3):434–44. https://doi.org/10.1093/hmg/ddp507.

    Article  CAS  PubMed  Google Scholar 

  180. López E, Marinaro F, de Pedro MLÁ, et al. The immunomodulatory signature of extracellular vesicles from cardiosphere-derived cells: a proteomic and miRNA profiling. Front Cell Dev Biol. 2020;8:321. https://doi.org/10.3389/fcell.2020.00321.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Elizabeth Daniell Research Fund. We would like to thank Mr. Robert Buescher for his support.

Funding

This work was supported by American Heart Association Grant 16GRNT26430041.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to this paper.

Corresponding author

Correspondence to Allison B. Reiss.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Ethical approval

No ethics approval was required for this review that did not involve patients or patient data.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elyasi, A., Voloshyna, I., Ahmed, S. et al. The role of interferon-γ in cardiovascular disease: an update. Inflamm. Res. 69, 975–988 (2020). https://doi.org/10.1007/s00011-020-01382-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-020-01382-6

Keywords

Navigation