Skip to main content

Advertisement

Log in

Genistein modulates the expression of Toll-like receptors in experimental autoimmune encephalomyelitis

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

The present work investigates the modulation of experimental autoimmune encephalomyelitis (EAE) using genistein before the EAE induction.

Material

Female C57BL/6 mice (n = 96 mice/experiment), 4–6 weeks old, were used to induce the EAE. The mice were divided into three experimental groups: non-immunized group, immunized group (EAE), and immunized and treated with genistein group (Genistein).

Treatment

Genistein was used at a dose of 200 mg/kg s.c. and were initiated 2 days before the immunization and continued daily until day 6 postimmunization.

Methods

Animals were monitored daily for clinical signs of EAE up to day 21. Inflammatory infiltration, demyelination, Toll-like receptor (TLR) expression, cytokines and transcription factors were analyzed in spinal cords.

Results

The present study demonstrates, for the first time, the genistein ability to modulate the factors involved in the innate immune response in the early stages of EAE. The genistein therapy delayed the onset of the disease, with reduced inflammatory infiltration and demyelination. In addition, the expression of TLR3, TLR9 and IFN-β were increased in genistein group, with reduction in the factors of TH1 and Th17 cells.

Conclusion

These findings shed light on the potential of genistein as a prophylactic strategy for multiple sclerosis (MS) prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann Neurol. 2007;61:288–99.

    Article  PubMed  Google Scholar 

  2. O’Gorman C, Lin R, Stankovich J, Broadley SA. Modelling genetic susceptibility to multiple sclerosis with family data. Neuroepidemiology. 2013;40:1–12.

    Article  PubMed  Google Scholar 

  3. Rao P, Segal BM. Experimental autoimmune encephalomyelitis. Methods Mol Biol. 2012;900:363–80.

    Article  PubMed  CAS  Google Scholar 

  4. Touil T, Fitzgerald D, Zhang GX, Rostami A, Gran B. Cutting Edge: TLR3 stimulation suppresses experimental autoimmune encephalomyelitis by inducing endogenous IFN-beta. J Immunol. 2006;11:7505–9.

    Article  Google Scholar 

  5. Gooshe M, Abdolghaffari AH, Gambuzza ME, Rezaei N. The role of Toll-like receptors in multiple sclerosis and possible targeting for therapeutic purposes. Rev Neurosci. 2014;25:713–39.

    PubMed  CAS  Google Scholar 

  6. Evangelista MG, Castro SBR, Alves CC, Dias AT, Souza VW, Reis LB, Silva LC, Castañon MC, Farias RE, Juliano MA, Ferreira AP. Early IFN-γ production together with decreased expression of TLR3 and TLR9 characterizes EAE development conditional on the presence of myelin. Autoimmunity. 2016;49:258–67.

    Article  PubMed  CAS  Google Scholar 

  7. Fox EJ. Mechanism of action of mitoxantrone. Neurology. 2004;63:15–8.

    Article  Google Scholar 

  8. Burks J. Interferon-beta1β for multiple sclerosis. Expert Ver Neurother. 2005;5:153–64.

    Article  CAS  Google Scholar 

  9. Goverman J. Autoimmune T cell response in the central nervous system. Nat Rev Immunol. 2009;9:393–407.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Garay L, Gonzalez Deniselle MC, Gierman L, Meyer M, Lima A, Roig P, de Nicola AF. Steroid protection in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Neuroimmunomodulation. 2008;15:76–83.

    Article  PubMed  CAS  Google Scholar 

  11. Lélu K, Laffont S, Delpy L, Paulet PE, Périnat T, Tschanz SA, Pelletier L, Engelhardt B, Guéry JC. Estrogen receptor α signaling in T lymphocytes is required for estradiol-mediated inhibition of Th1 and Th17 cell differentiation and protection against experimental autoimmune encephalomyelitis. J Immunol. 2011;187:2386–93.

    Article  PubMed  Google Scholar 

  12. Spanier JA, Nashold FE, Mayne CG, Nelson CD, Hayes CE. Vitamin D and estrogen synergy in Vdr-expressing CD4(+) T cells is essential to induce Helios(+)FoxP3(+) T cells and prevent autoimmune demyelinating disease. J Neuroimmunol. 2015;286:48–58.

    Article  PubMed  CAS  Google Scholar 

  13. De Paula ML, Rodrigues DH, Teixeira HC, Barsante MM, Souza MA, Ferreira AP. Genistein down-modulates pro-inflammatory cytokines and reverses clinical signs of experimental autoimmune encephalomyelitis. Int Immunopharmacol. 2008;8:1291–7.

    Article  PubMed  CAS  Google Scholar 

  14. Castro SBR, Junior COR, Alves CCS, Dias AT, Alves LL, Mazzoccoli L, Mesquita FP, Figueiredo NS, Juliano MA, Castañon MC, Gameiro J, Almeida MV, Teixeira HC, Ferreira AP. Immunomodulatory effects and improved prognosis of experimental autoimmune encephalomyelitis after O-tetradecanoyl-genistein treatment. Int Immunopharmacol. 2012;12:465–70.

    Article  PubMed  CAS  Google Scholar 

  15. Jahromi SR, Arrefhosseini SR, Ghaemi A, Alizadeh A, Sabetghadam F, Togha M. Effect of oral genistein administration in early and late phases of allergic encephalomyelitis. Iran J Basic Med Sci. 2014;17:509–15.

    PubMed  PubMed Central  Google Scholar 

  16. Dijsselbloem N, Goriely S, Albarani V, Gerlo S, Francoz S, Marine JC, Goldman M, Haegeman G, Vanden Berghe W. A critical role for p53 in the control of NF-kappa B-dependent gene expression in TLR-4-stimulated dendritic cells exposed to genistein. J Immunol. 2007;178:5048–57.

    Article  PubMed  CAS  Google Scholar 

  17. Byun EB, Sung NY, Yang MS, Lee BS, Song DS, Park JN, Kim JH, Jang BS, Choi DS, Park SH, Yu YB, Byun EH. Anti-inflammatory effect of gamma-irradiated genistein through inhibition of NF-κB and MAPK signaling pathway in lipopolysaccharide-induced macrophages. Food Chem Toxicol. 2014;74:255–64.

    Article  PubMed  CAS  Google Scholar 

  18. Kim DH, Jung WS, Kim ME, Lee HW, Youn HY, Seon JK, Lee HN, Lee JS. Genistein inhibits pro-inflammatory cytokines in human mast cell activation through the inhibition of the ERK pathway. Int J Mol Med. 2014;34:1669–74.

    Article  PubMed  CAS  Google Scholar 

  19. Buathong N, Poonyachoti S, Deachapunya C. Isoflavone genistein modulates the protein expression of toll-like receptors in cancerous human endometrial cells. J Med Assoc Thai. 2015;98:S31–8.

    Google Scholar 

  20. Jeong JW, Lee HH, Han MH, Kim GY, Kim WJ, Choi YH. Anti-inflammatory effects of genistein via suppression of the toll-like receptor 4-mediated signaling pathway in lipopolysaccharide-stimulated BV2 microglia. Chem Biol Interact. 2014;212:30–9.

    Article  PubMed  CAS  Google Scholar 

  21. Zhou X, Yuan L, Zhao X, Hou C, Ma W, Yu H, Xiao R. Genistein antagonizes inflammatory damage induced by β-amyloid peptide in microglia through TLR4 and NF-Κb. Nutrition. 2014;30:90–5.

    Article  PubMed  CAS  Google Scholar 

  22. Xiao J, Liu W, Chen Y, Deng W. Recombinant human PDCD5 (rhPDCD5) protein is protective in a mouse model of multiple sclerosis. J Neuroinflammation. 2015;12:117.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Abdul-Majid KB, Wefer J, Stadelmann C, Stefferl A, Lassmann H, Olsson T, Harris RA. Comparing the pathogenesis of experimental autoimmune encephalomyelitis in CD4-/- and CD8-/- DBA/1 mice defines qualitative roles of different T cell subsets. J Neuroimmunol. 2003;141:10–9.

    Article  PubMed  CAS  Google Scholar 

  24. Blanco YC, Farias AS, Goelnitz U, Lopes SC, Arrais-silva WW, Carvalho BO, Amino R, Wunderlich G, Santos LM, Giorgio S, Costa FT. Hyperbaric oxygen prevents early death caused by experimental cerebral malaria. Plos One. 2008;3:e3126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Chrzan BG, Bradford PG. Phytoestrogens activate estrogen receptor beta1 and estrogenic responses in human breast and bone cancer cell lines. Mol Nutr Food Res. 2007;51:171–7.

    Article  PubMed  CAS  Google Scholar 

  26. Moran J, Garrido P, Alonso A, Cabello E, Gonzalez C. 17beta- Estradiol and genistein acute treatments improve some cerebral cortex homeostasis aspects deteriorated by aging in female rats. Exp Gerontol. 2013;48:414–21.

    Article  PubMed  CAS  Google Scholar 

  27. Rietjens IMCM., Louisse J, Beekmann K. The potential health effects of dietary Phytoestrogens. Br J Pharmacol. 2016;174:1263–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. de la Parra C, Castillo-Pichardo L, Cruz-Collazo A, Cubano L, Redis R, Calin GA, Dharmawardhane S. Soy isoflavone genistein-mediated downregulation of miR-155 contributes to the anticancer effects of genistein. Nutr Cancer. 2016;68:154–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Dias AT, Castro SBR, Alves CS, Mesquita FP, Figueiredo NS, Evangelista MG, Castanon MCMN., Juliano MA, Ferreira AP. Different MOG35-55 concentrations induce distinguishable inflammation through early regulatory response by IL-10 and TGF-β in mice CNS despite unchanged clinical course. Cell Immunol. 2015;293:87–94.

    Article  PubMed  CAS  Google Scholar 

  30. Marta M, Andersson A, Isaksson M, Kämpe O, Lobell A. Unexpected regulatory roles of TLR4 and TLR9 in experimental autoimmune encephalomyelitis. Eur J Immunol. 2008;38:565–75.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang ZY, Zhang Z, Schluesener HJ. Toll-like receptor-2, CD14 and heat-shock protein 70 in inflammatory lesions of rat experimental autoimmune neuritis. Neuroscience. 2009;159:136–42.

    Article  PubMed  CAS  Google Scholar 

  32. Reynolds JM, Martinez GJ, Chung Y, Dong C. Toll-like receptor 4 signaling in T cells promotes autoimmune inflammation. Proc Natl Acad Sci USA. 2012;109:13064–9.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Miranda-Hernandez S, Baxter AG. Role of toll-like receptors in multiple sclerosis. Am J Clin Exp Immunol. 2013;2:75–93.

    PubMed  PubMed Central  Google Scholar 

  34. Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E, Shapiro A, Antel JP. TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol. 2005;175:4320–30.

    Article  PubMed  CAS  Google Scholar 

  35. Hegen H, Auer M, Deisenhammer F. Pharmacokinetic consideration in the treatment of multiple sclerosis with interferon-β. Expert Opin Drug Metab Toxicol. 2015;11:1803–19.

    Article  PubMed  CAS  Google Scholar 

  36. Guo B, Chang EY, Cheng G. The type I IFN induction pathway constrains Th17-mediated autoimmune inflammation in mice. J Clin Invest. 2008;118:1680–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Khorooshi R, Mørch MT, Holm TH, Berg CT, Dieu RT, Dræby D, Issazadeh-Navikas S, Weiss S, Lienenklaus Owens T. Induction of endogenous Type I interferon within the central nervous system plays a protective role in experimental autoimmune encephalomyelitis. Acta Neuropathol. 2015;130:107–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Rossi B, Angiari S, Zenaro E, Budui SL, Constantin G. Vascular inflammation in central nervous system diseases: adhesion receptors controlling leukocyte-endothelial interactions. J Leukoc Biol. 2011;89:539–56.

    Article  PubMed  CAS  Google Scholar 

  39. Kanhere A, Hertweck A, Bhatia U, Gökmen MR, Perucha E, Jackson I, Lord GM, Jenner RG. T-bet and GATA3 orchestrate Th1 and Th2 differentiation through lineage-specific targeting of distal regulatory elements. Nat Commun. 2012;3:1268.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Schulz EG, Mariani L, Radbruch A, Höfer A. Sequential polarization and imprinting of type 1 T helper lymphocytes by interferon-gamma and interleukin-12. Immunity. 2009;30:673–83.

    Article  PubMed  CAS  Google Scholar 

  41. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell. 2000;100:655–69.

    Article  PubMed  CAS  Google Scholar 

  42. Bettelli B, Sullivan B, Szabo SJ, Sobel RA, Glimcher LH, Kuchroo VK. Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. J Exp Med. 2004;200:79–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Lovett-Racke AE, Rocchini AE, Choy J, Northrop SC, Hussain RZ, Ratts RB, Sikder D, Racke MK. Silencing T-bet defines a critical role in the differentiation of autoreactive T lymphocytes. Immun. 2004;21:719–31.

    Article  CAS  Google Scholar 

  44. Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H, Kakuta S. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol. 2006;177:566–73.

    Article  PubMed  CAS  Google Scholar 

  45. Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, Giuliani F, Arbour N, Becher B, Prat A. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med. 2007;13:1173–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Yang C, He D, Yin C, Tan J. Inhibition of interferon regulatory factor 4 suppresses Th1 and Th17 cell differentiation and ameliorates experimental autoimmune encephalomyelitis. Scand J Immunol. 2015;82:345–51.

    Article  PubMed  CAS  Google Scholar 

  47. Martinez NE, Sato F, Omura S, Kawai E, Takahashi S, Yoh K, Tsunoda I. RORγt, but not T-bet, overexpression exacerbates an autoimmune model for multiple sclerosis. J Neuroimmunol. 2014;276:142–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Ichiyama K, Yoshida H, Wakabayashi Y, Chinen T, Saeki K, Nakaya M, Takaesu G, Hori S, Yoshimura A, Kobayashi T. Foxp3 inhibits RORgammat-mediated IL-17A mRNA transcription through direct interaction with RORgammat. J Biol Chem. 2008;283:17003–8.

    Article  PubMed  CAS  Google Scholar 

  49. Wraith DC, Nicolson KS, Whitley NT. Regulatory CD4 + T cells and the control of autoimmune disease. Curr Opin Immunol. 2004;16:695–701.

    Article  PubMed  CAS  Google Scholar 

  50. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133:775–87.

    Article  PubMed  CAS  Google Scholar 

  51. Andres S, Abraham K, Appel KE, Lampen A. Risks and benefits of dietary isoflavones for cancer. Crit Rev Toxicol. 2011;41:463–506.

    Article  PubMed  CAS  Google Scholar 

  52. Chatterjee G, Roy D, Khemka VK, Chattopadhyay M, Chakrabarti S. Genistein, the isoflavone in soybean, causes amyloid beta peptide accumulation in human neuroblastoma cell line: implications in Alzheimer’s disease. Aging Dis. 2015;6:456–65.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Singh P, Sharma S, Rath SK. Genistein induces deleterious effects during its acute exposure in Swiss mice. Biomed Res Int. 2014;2014:619617.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico [Grant Numbers 481459/2009-0, 303369/2009-4, 306575/2012-4, 470768/2013-4, and 306768/2015-1]; Fundação de Amparo à Pesquisa do Estado de Minas Gerais [grant numbers 02236/10, PPM 0216/10 and PPM 00269-14]; and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior [Grant Number PNPD-2882/2011].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Paula Ferreira.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Responsible Editor: Artur Bauhofer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, A.T., de Castro, S.B.R., de Souza Alves, C.C. et al. Genistein modulates the expression of Toll-like receptors in experimental autoimmune encephalomyelitis. Inflamm. Res. 67, 597–608 (2018). https://doi.org/10.1007/s00011-018-1146-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-018-1146-7

Keywords

Navigation