Skip to main content

Advertisement

Log in

2-(4-{2-[(phenylthio)acetyl]carbonohydrazonoyl}phenoxy)acetamide as a new lead compound for management of allergic rhinitis

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

We selected a hit compound, 2-(4-{2-[(phenylthio)acetyl]-carbonohydrazonoyl}-phenoxy)acetamide (PA), by a molecular docking simulation between 636,565 compounds and caspase-1 protein. We examined the effect of PA on allergic rhinitis (AR) animal model.

Methods

We assessed the therapeutic effects and the regulatory mechanisms of ovalbumin (OVA)-sensitized mouse model of AR.

Results

A molecular docking simulation and a kinetic assay indicated that PA regulates the caspase-1 activation through the interaction with the caspase-1 active site. In the AR animal model, PA significantly reduced the rub scoring increased by OVA. The up-regulated IgE, histamine, interleukin (IL)-1β, and thymic stromal lymphopoietin (TSLP) levels in the serum of OVA-sensitized mice were significantly decreased by the treatment with PA. Protein levels of IL-1β, IL-5, IL-6, IL-13, tumor necrosis factor-α, TSLP, cyclooxygenase-2, macrophage inflammatory protein-2, and intercellular adhesion molecule-1 were also significantly inhibited by the treatment with PA in the nasal mucosa tissues of the OVA-sensitized mice. In the PA-treated mice, the number of eosinophils and mast cells infiltrated by OVA-sensitization were also reduced. In addition, PA reduced the mast cell-derived caspase-1 activity and expression in the nasal mucosa tissues of the OVA-sensitized mice.

Conclusions

PA showed the possibility to regulate AR in OVA-induced AR models, suggesting that it has therapeutic potential for the management of AR as a lead compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Howarth PH, Salagean M, Dokic D. Allergic rhinitis: not purely a histamine-related disease. Allergy. 2000;64:7–16.

    Article  Google Scholar 

  2. Kramer MF, Jordan TR, Klemens C, Hilgert E, Hempel JM, Pfrogner E, Rasp G. Factors contributing to nasal allergic late phase eosinophilia. Am J Otolaryngol. 2006;27:190–9.

    Article  PubMed  Google Scholar 

  3. Zhu Z, Homer RJ, Wang Z, Chen Q, Geba GP, Wang J, Zhang Y, Elias JA. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest. 1999;103:779–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol. 2009;10:241–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kuida K, Lippke JA, Ku G, Harding MW, Livingston DJ, Su MS, Flavell RA. Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science. 1995;267:2000–3.

    Article  CAS  PubMed  Google Scholar 

  6. Shamaa OR, Mitra S, Gavrilin MA, Wewers WD. Monocyte caspase-1 is released in a stable, active high molecular weight complex distinct from the unstable cell lysate-activated caspase-1. PLoS One. 2015;10:e0142203.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47:1739–49.

    Article  CAS  PubMed  Google Scholar 

  8. Oh HA, Ryu JG, Cha WS, Kim HM, Jeong HJ. Therapeutic effects of traditional Korean medicine, Jeechool-Whan in allergic rhinitis model. TANG. 2012;2:e9.

    Google Scholar 

  9. Grzelewska-Rzymowska I, Pietrzkowicz M. Role of tumor necrosis factor alpha in allergic inflammation and airway hyperresponsiveness. Pol Merkur Lekarski. 2004;16:173–8.

    CAS  PubMed  Google Scholar 

  10. Profita M, Sala A, Bonnano A, Riccobono L, Siena L, Melis MR, Di Giorgi R, Mirabella F, Gjomarkaj M, Bonsignore G, Vignola AM. Increased prostaglandin E2 concentrations and cyclooxygenase-2 expression in asthmatic subjects with sputum eosinophilia. J Allergy Clin Immunol. 2003;112:709–16.

    Article  CAS  PubMed  Google Scholar 

  11. Oh HA, Kim HM, Jeong HJ. Distinct effects of imperatorin on allergic rhinitis: imperatorin inhibits caspase-1 activity in vivo and in vitro. J Pharmacol Exp Ther. 2011;339:72–81.

    Article  CAS  PubMed  Google Scholar 

  12. Spencer LA, Szela CT, Perez SA, Kirchhoffer CL, Neves JS, Radke AL, Weller PF. Human eosinophils constitutively express multiple Th1, Th2, and immunoregulatory cytokines that are secreted rapidly and differentially. J Leukoc Biol. 2009;85:117–23.

    Article  CAS  PubMed  Google Scholar 

  13. Lee SH, Stehlik C, Reed JC. Cop, a caspase recruitment domain-containing protein and inhibitor of caspase-1 activation processing. J Biol Chem. 2001;276:34495–500.

    Article  CAS  PubMed  Google Scholar 

  14. Mandhane SN, Shah JH, Thennati R. Allergic rhinitis: an update on disease, present treatments and future prospects. Int Immunopharmacol. 2011;11:1646–62.

    Article  CAS  PubMed  Google Scholar 

  15. Rosenberg HF, Dyer KD, Foster PS. Eosinophils: changing perspectives in health and disease. Nat Rev Immunol. 2013;13:9–22.

    Article  CAS  PubMed  Google Scholar 

  16. Finkelman FD, Urban JF Jr. The other side of the coin: the protective role of the TH2 cytokines. J Allergy Clin Immunol. 2001;107:772–80.

    Article  CAS  PubMed  Google Scholar 

  17. Artis D, Humphreys NE, Bancroft AJ, Rothwell NJ, Potten CS, Grencis RK. Tumor necrosis factor alpha is a critical component of interleukin 13-mediated protective T helper cell type 2 responses during helminth infection. J Exp Med. 1999;190:953–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ziegler SF. The role of thymic stromal lymphopoietin (TSLP) in allergic disorders. Curr Opin Immunol. 2010;22:795–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu X, Li M, Wu Y, Zhou Y, Zeng L, Huang T. Anti-IL-33 antibody treatment inhibits airway inflammation in a murine model of allergic asthma. Biochem Biophys Res Commun. 2009;386:181–5.

    Article  CAS  PubMed  Google Scholar 

  20. Seder RA, Paul WE, Davis MM. Groth de St, Fazekas B. The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4 + T cells from T cell receptor transgenic mice. J Exp Med. 1992;176:1091–8.

    Article  CAS  PubMed  Google Scholar 

  21. Pawankar R, Okuda M, Yssel H, Okumura K, Ra C. Nasal mast cells in perennial allergic rhinitics exhibit increased expression of the Fc epsilonRI, CD40L, IL-4, and IL-13, and can induce IgE synthesis in B cells. J Clin Invest. 1997;99:1492–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pang L, Pitt D, Petkova D, Knox AJ. The COX-1/COX-2 balance in asthma. Clin Exp Allergy. 1998;28:1050–8.

    Article  CAS  PubMed  Google Scholar 

  23. Smith WL, Dewitt DL, Garavito RM. Cyclooxygenase: structure, cellular and molecular biology. Annu Rev Biochem. 2000;69:145–81.

    Article  CAS  PubMed  Google Scholar 

  24. Melvin TA, Ramanathan M Jr. Role of innate immunity in the pathogenesis of allergic rhinitis. Curr Opin Otolaryngol. 2012;20:194–8.

    Article  Google Scholar 

  25. Isobe Y, Kato T, Arita M. Emerging roles of eosinophils and eosinophil-derived lipid mediators in the resolution of inflammation. Front Immunol. 2012;3:270.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sollberger G, Strittmatter GE, Garstkiewicz M, Sand J, Beer HD. Caspase-1: the inflammasome and beyond. Innate Immun. 2014;20:115–25.

    Article  PubMed  Google Scholar 

  27. Pawankar R, Lee KH, Nonaka M, Takizawa R. Role of mast cells and basophils in chronic rhinosinusitis. Clin Allergy Immunol. 2007;20:93–101.

    CAS  PubMed  Google Scholar 

  28. Gilfillan AM, Beaven MA. Regulation of mast cell responses in health and disease. Crit Rev Immunol. 2012;31:475–529.

    Article  Google Scholar 

  29. Rothenberg ME, Hogan SP. The eosinophil. Annu Rev Immunol. 2006;24:147–74.

    Article  CAS  PubMed  Google Scholar 

  30. Oh HA, Kim HM, Jeong HJ. Alleviation of allergic rhinitis symptoms with Pyeongwee-San extract (KMP6). Immunopharmacol Immunotoxicol. 2012;34:35–142.

    Article  Google Scholar 

  31. Grzegorczyk J, Kowalski ML, Pilat A, Iwaszkiewicz J. Increased apoptosis of peripheral blood mononuclear cells in patients with perennial allergic asthma/rhinitis: relation to serum markers of apoptosis. Mediat Inflamm. 2002;11:225–33.

    Article  Google Scholar 

  32. Cunha TM, Talbot J, Pinto LG, Vieira SM, Souza GR, Guerrero AT, Sonego F, Verri WA Jr, Zamboni DS, Ferreira SH, Cunha FQ. Caspase-1 is involved in the genesis of inflammatory hypernociception by contributing to peripheral IL-1β maturation. Mol Pain. 2010;6:63.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Moon PD, Kim HM. Thymic stromal lymphopoietin is expressed and produced by caspase-1/NF-kB pathway in mast cells. Cytokine. 2011;54:239–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Academic Research fund of Hoseo University in 2015 (2015-0228).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyung-Min Kim or Hyun-Ja Jeong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: John Di Battista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HY., Nam, SY., Jang, JB. et al. 2-(4-{2-[(phenylthio)acetyl]carbonohydrazonoyl}phenoxy)acetamide as a new lead compound for management of allergic rhinitis. Inflamm. Res. 65, 963–973 (2016). https://doi.org/10.1007/s00011-016-0979-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-016-0979-1

Keyword

Navigation