Skip to main content

Advertisement

Log in

Endoplasmic reticulum stress is the crossroads of autophagy, inflammation, and apoptosis signaling pathways and participates in liver fibrosis

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

The objective of the review is to examine the crossroads of autophagy, inflammation, and apoptosis signaling pathways and their participation in liver fibrosis.

Introduction

Endoplasmic reticulum (ER) stress was emerged as a common feature relevant to the pathogenesis of diseases associated with organ fibrosis. However, the functional consequences of these alterations on ER stress and the possible involvement in liver fibrosis were currently largely unexplored. Here, we will survey the recent literature in the field and discuss recent insights focusing on some cellular models expressing mutant proteins involved in liver fibrosis.

Methods

A computer-based online search with PubMed, Scopus and Web of Science databases was performed for articles published, concerning ER stress, adaptation, inflammation and apoptosis with relevance to liver fibrosis.

Results and conclusions

Progression of liver fibrosis requires sustained inflammation leading to hepatocytes apoptosis through ER stress, whereas associated with activation of hepatic stellate cells (HSCs) into a fibrogenic and proliferative cell type. Faced with persistent and massive ER stress, HSCs adaptation starts to fail and apoptosis occurs in reversal of liver fibrosis, possibly mediated through calcium perturbations, unfolded protein response, and the pro-apoptotic transcription factor CHOP. Although limited in scope, current studies underscored that ER stress is tightly linked to adaptation, inflammation and apoptosis, and recent evidences suggested that these processes are related to the pathogenesis of liver fibrosis and its recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jiang JX, Torok NJ. Liver injury and the activation of the hepatic myofibroblasts. Curr Pathobiol Rep. 2013;1:215–23.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Svegliati-Baroni G, De Minicis S, Marzioni M. Hepatic fibrogenesis in response to chronic liver injury: novel insights on the role of cell-to-cell interaction and transition. Liver Int. 2008;28:1052–64.

    Article  CAS  PubMed  Google Scholar 

  3. Friedman SL. Hepatic fibrosis—overview. Toxicology. 2008;254:120–9.

    Article  CAS  PubMed  Google Scholar 

  4. Wallace K, Burt AD, Wright MC. Liver fibrosis. Biochem J. 2008;411:1–18.

    Article  CAS  PubMed  Google Scholar 

  5. Atzori L, Poli G, Perra A. Hepatic stellate cell: a star cell in the liver. Int J Biochem Cell Biol. 2009;41:1639–42.

    Article  CAS  PubMed  Google Scholar 

  6. Wells RG. The role of matrix stiffness in hepatic stellate cell activation and liver fibrosis. J Clin Gastroenterol. 2005;39:S158–61.

    Article  CAS  PubMed  Google Scholar 

  7. Safadi R, Friedman SL. Hepatic fibrosis–role of hepatic stellate cell activation. Med General Med. 2002;4:27.

    Google Scholar 

  8. Kisseleva T, Brenner DA. Role of hepatic stellate cells in fibrogenesis and the reversal of fibrosis. J Gastroenterol Hepatol. 2007;22(Suppl 1):S73–8.

    Article  CAS  PubMed  Google Scholar 

  9. Schinoni MI, Parana R. Apoptosis and progression of hepatic fibrosis in liver diseases. Acta Gastroenterol Latinoam. 2006;36:211–7.

    PubMed  Google Scholar 

  10. Kisseleva T, Brenner DA. Hepatic stellate cells and the reversal of fibrosis. J Gastroenterol Hepatol. 2006;21(Suppl 3):S84–7.

    Article  CAS  PubMed  Google Scholar 

  11. Leclercq IA, Da SMA, Schroyen B, Van Hul N, Geerts A. Insulin resistance in hepatocytes and sinusoidal liver cells: mechanisms and consequences. J Hepatol. 2007;47:142–56.

    Article  CAS  PubMed  Google Scholar 

  12. Mollica MP, Lionetti L, Putti R, Cavaliere G, Gaita M, Barletta A. From chronic overfeeding to hepatic injury: role of endoplasmic reticulum stress and inflammation. Nutr Metab Cardiovasc Dis. 2011;21:222–30.

    Article  CAS  PubMed  Google Scholar 

  13. Bravo R, Parra V, Gatica D, Rodriguez AE, Torrealba N, Paredes F, et al. Endoplasmic reticulum and the unfolded protein response: dynamics and metabolic integration. Int Rev Cell Mol Biol. 2013;301:215–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Engin F, Hotamisligil GS. Restoring endoplasmic reticulum function by chemical chaperones: an emerging therapeutic approach for metabolic diseases. Diabetes Obes Metab. 2010;12(Suppl 2):108–15.

    Article  CAS  PubMed  Google Scholar 

  15. Sovolyova N, Healy S, Samali A, Logue SE. Stressed to death—mechanisms of ER stress-induced cell death. Biol Chem. 2014;395:1–13.

    Article  CAS  PubMed  Google Scholar 

  16. Lenna S, Trojanowska M. The role of endoplasmic reticulum stress and the unfolded protein response in fibrosis. Curr Opin Rheumatol. 2012;24:663–8.

    Article  CAS  PubMed  Google Scholar 

  17. Gardner BM, Pincus D, Gotthardt K, Gallagher CM, Walter P. Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb Perspect Biol. 2013;5:a013169.

    Article  PubMed  Google Scholar 

  18. Malhotra JD, Kaufman RJ. ER stress and its functional link to mitochondria: role in cell survival and death. Cold Spring Harb Perspect Biol. 2011;3:a004424.

    PubMed Central  PubMed  Google Scholar 

  19. Rasheva VI, Domingos PM. Cellular responses to endoplasmic reticulum stress and apoptosis. Apoptosis. 2009;14:996–1007.

    Article  PubMed  Google Scholar 

  20. Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochim Biophys Acta. 2013;1833(12):3460–70.

    Article  CAS  PubMed  Google Scholar 

  21. Hernandez-Gea V, Hilscher M, Rozenfeld R, Lim MP, Nieto N, Werner S, et al. Endoplasmic reticulum stress induces fibrogenic activity in hepatic stellate cells through autophagy. J Hepatol. 2013;59:98–104.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. De Minicis S, Candelaresi C, Agostinelli L, Taffetani S, Saccomanno S, Rychlicki C, et al. Endoplasmic Reticulum stress induces hepatic stellate cell apoptosis and contributes to fibrosis resolution. Liver Int. 2012;32:1574–84.

    Article  PubMed  Google Scholar 

  23. Wang JQ, Chen X, Zhang C, Tao L, Zhang ZH, Liu XQ, et al. Phenylbutyric acid protects against carbon tetrachloride-induced hepatic fibrogenesis in mice. Toxicol Appl Pharmacol. 2013;266:307–16.

    Article  CAS  PubMed  Google Scholar 

  24. Foufelle F, Ferre P. Unfolded protein response: its role in physiology and physiopathology. Med Sci (Paris). 2007;23:291–6.

    Article  Google Scholar 

  25. Hollien J. Evolution of the unfolded protein response. Biochim Biophys Acta. 2013;1833:2458–63.

    Article  CAS  PubMed  Google Scholar 

  26. Misra UK, Pizzo SV. Modulation of the unfolded protein response in prostate cancer cells by antibody-directed against the carboxyl-terminal domain of GRP78. Apoptosis. 2010;15:173–82.

    Article  CAS  PubMed  Google Scholar 

  27. Woehlbier U, Hetz C. Modulating stress responses by the UPRosome: a matter of life and death. Trends Biochem Sci. 2011;36:329–37.

    Article  CAS  PubMed  Google Scholar 

  28. Kim R, Emi M, Tanabe K, Murakami S. Role of the unfolded protein response in cell death. Apoptosis. 2006;11:5–13.

    Article  CAS  PubMed  Google Scholar 

  29. Feng LJ, Jiang TC, Zhou CY, Yu CL, Shen YJ, Li J, et al. Activated macrophage-like synoviocytes are resistant to endoplasmic reticulum stress-induced apoptosis in antigen-induced arthritis. Inflamm Res. 2014;63(5):335–46.

    Article  CAS  PubMed  Google Scholar 

  30. Shore GC, Papa FR, Oakes SA. Signaling cell death from the endoplasmic reticulum stress response. Curr Opin Cell Biol. 2011;23:143–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Prell T, Lautenschlager J, Grosskreutz J. Calcium-dependent protein folding in amyotrophic lateral sclerosis. Cell Calcium. 2013;54:132–43.

    Article  CAS  PubMed  Google Scholar 

  32. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature. 2000;403:98–103.

    Article  CAS  PubMed  Google Scholar 

  33. Morishima N, Nakanishi K, Takenouchi H, Shibata T, Yasuhiko Y. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem. 2002;277:34287–94.

    Article  CAS  PubMed  Google Scholar 

  34. Xie Q, Khaoustov VI, Chung CC, Sohn J, Krishnan B, Lewis DE, et al. Effect of tauroursodeoxycholic acid on endoplasmic reticulum stress-induced caspase-12 activation. Hepatology. 2002;36:592–601.

    Article  CAS  PubMed  Google Scholar 

  35. Brostrom MA, Brostrom CO. Calcium dynamics and endoplasmic reticular function in the regulation of protein synthesis: implications for cell growth and adaptability. Cell Calcium. 2003;34:345–63.

    Article  CAS  PubMed  Google Scholar 

  36. Kooptiwut S, Mahawong P, Hanchang W, Semprasert N, Kaewin S, Limjindaporn T, et al. Estrogen reduces endoplasmic reticulum stress to protect against glucotoxicity induced-pancreatic beta-cell death. J Steroid Biochem Mol Biol. 2014;139:25–32.

    Article  CAS  PubMed  Google Scholar 

  37. Paredes RM, Bollo M, Holstein D, Lechleiter JD. Luminal Ca2+ depletion during the unfolded protein response in Xenopus oocytes: cause and consequence. Cell Calcium. 2013;53:286–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Anholt RR, Carbone MA. A molecular mechanism for glaucoma: endoplasmic reticulum stress and the unfolded protein response. Trends Mol Med. 2013;19:586–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Kapoor A, Sanyal AJ. Endoplasmic reticulum stress and the unfolded protein response. Clin Liver Dis. 2009;13:581–90.

    Article  PubMed  Google Scholar 

  40. Carpenter JE, Jackson W, Benetti L, Grose C. Autophagosome formation during varicella-zoster virus infection following endoplasmic reticulum stress and the unfolded protein response. J Virol. 2011;85:9414–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Nair S, Xu C, Shen G, Hebbar V, Gopalakrishnan A, Hu R, et al. Toxicogenomics of endoplasmic reticulum stress inducer tunicamycin in the small intestine and liver of Nrf2 knockout and C57BL/6J mice. Toxicol Lett. 2007;168:21–39.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Wu T, Zhao F, Gao B, Tan C, Yagishita N, Nakajima T, et al. Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis. Genes Dev. 2014;28:708–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Liu J, Wu KC, Lu YF, Ekuase E, Klaassen CD. Nrf2 protection against liver injury produced by various hepatotoxicants. Oxid Med Cell Longev. 2013;2013:305861.

    PubMed Central  PubMed  Google Scholar 

  44. Yang JJ, Tao H, Huang C, Li J. Nuclear erythroid 2-related factor 2: a novel potential therapeutic target for liver fibrosis. Food Chem Toxicol. 2013;59:421–7.

    Article  CAS  PubMed  Google Scholar 

  45. Lee BH, Hsu WH, Hsu YW, Pan TM. Suppression of dimerumic acid on hepatic fibrosis caused from carboxymethyl-lysine (CML) by attenuating oxidative stress depends on Nrf2 activation in hepatic stellate cells (HSCs). Food Chem Toxicol. 2013;62:413–9.

    Article  CAS  PubMed  Google Scholar 

  46. Reichard JF, Petersen DR. Hepatic stellate cells lack AP-1 responsiveness to electrophiles and phorbol 12-myristate-13-acetate. Biochem Biophys Res Commun. 2004;322:842–53.

    Article  CAS  PubMed  Google Scholar 

  47. Kohler UA, Kurinna S, Schwitter D, Marti A, Schafer M, Hellerbrand C, et al. Activated Nrf2 impairs liver regeneration in mice by activation of genes involved in cell-cycle control and apoptosis. Hepatology. 2014;60:670–8.

    Article  PubMed  Google Scholar 

  48. Tanjore H, Lawson WE, Blackwell TS. Endoplasmic reticulum stress as a pro-fibrotic stimulus. Biochim Biophys Acta. 2013;1832:940–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Brenner C, Galluzzi L, Kepp O, Kroemer G. Decoding cell death signals in liver inflammation. J Hepatol. 2013;59:583–94.

    Article  CAS  PubMed  Google Scholar 

  50. Duwaerts CC, Maher JJ. Mechanisms of liver injury in non-alcoholic steatohepatitis. Curr Hepatol Rep. 2014;13:119–29.

    Article  PubMed  Google Scholar 

  51. Zheng Z, Zhang C, Zhang K. Measurement of ER stress response and inflammation in the mouse model of nonalcoholic fatty liver disease. Methods Enzymol. 2011;489:329–48.

    Article  CAS  PubMed  Google Scholar 

  52. Wang CM, Li SJ, Wu CH, Hu CM, Cheng HW, Chang JS. Transient knock down of Grp78 reveals roles in serum ferritin mediated pro-inflammatory cytokine secretion in rat primary activated hepatic stellate cells. Asian Pac J Cancer Prev. 2014;15:605–10.

    Article  CAS  PubMed  Google Scholar 

  53. Cho HK, Cheong KJ, Kim HY, Cheong J. Endoplasmic reticulum stress induced by hepatitis B virus X protein enhances cyclo-oxygenase 2 expression via activating transcription factor 4. Biochem J. 2011;435:431–9.

    Article  CAS  PubMed  Google Scholar 

  54. Malhi H, Kaufman RJ. Endoplasmic reticulum stress in liver disease. J Hepatol. 2011;54:795–809.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Ji C. Dissection of endoplasmic reticulum stress signaling in alcoholic and non-alcoholic liver injury. J Gastroenterol Hepatol. 2008;23(Suppl 1):S16–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Jeschke MG, Gauglitz GG, Song J, Kulp GA, Finnerty CC, Cox RA, et al. Calcium and ER stress mediate hepatic apoptosis after burn injury. J Cell Mol Med. 2009;13:1857–65.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Zhang J, Li Y, Jiang S, Yu H, An W. Enhanced endoplasmic reticulum SERCA activity by overexpression of hepatic stimulator substance gene prevents hepatic cells from ER stress-induced apoptosis. Am J Physiol Cell Physiol. 2014;306:C279–90.

    Article  CAS  PubMed  Google Scholar 

  58. Gorman AM, Healy SJ, Jager R, Samali A. Stress management at the ER: regulators of ER stress-induced apoptosis. Pharmacol Ther. 2012;134:306–16.

    Article  CAS  PubMed  Google Scholar 

  59. Lai E, Teodoro T, Volchuk A. Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology (Bethesda). 2007;22:193–201.

    Article  CAS  Google Scholar 

  60. Tashiro K, Satoh A, Utsumi T, Chung C, Iwakiri Y. Absence of Nogo-B (reticulon 4B) facilitates hepatic stellate cell apoptosis and diminishes hepatic fibrosis in mice. Am J Pathol. 2013;182:786–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Lim MP, Devi LA, Rozenfeld R. Cannabidiol causes activated hepatic stellate cell death through a mechanism of endoplasmic reticulum stress-induced apoptosis. Cell Death Dis. 2011;2:e170.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Dolai S, Pal S, Yadav RK, Adak S. Endoplasmic reticulum stress-induced apoptosis in Leishmania through Ca2+-dependent and caspase-independent mechanism. J Biol Chem. 2011;286:13638–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Raimbourg Q, Perez J, Vandermeersch S, Prignon A, Hanouna G, Haymann JP, et al. The calpain/calpastatin system has opposing roles in growth and metastatic dissemination of melanoma. PLoS One. 2013;8:e60469.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Lin HJ, Tseng CP, Lin CF, Liao MH, Chen CM, Kao ST, et al. A Chinese herbal decoction, modified Yi Guan Jian, induces apoptosis in hepatic stellate cells through an ROS-mediated mitochondrial/caspase pathway. Evid Based Complement Alternat Med. 2011;2011:459531.

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study is supported by the Chinese National Natural Science Foundation Project (No. 81102493, 81273526, 81072686) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20103420120001).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Huang or Jun Li.

Additional information

Responsible Editor: John Di Battista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, Y., Wang, H. et al. Endoplasmic reticulum stress is the crossroads of autophagy, inflammation, and apoptosis signaling pathways and participates in liver fibrosis. Inflamm. Res. 64, 1–7 (2015). https://doi.org/10.1007/s00011-014-0772-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-014-0772-y

Keywords

Navigation