Skip to main content

Advertisement

Log in

Systematic analysis of histamine and N-methylhistamine concentrations in organs from two common laboratory mouse strains: C57Bl/6 and Balb/c

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Histamine plays a role in several (patho) physiological processes that are commonly studied in mouse models. However, a systematic quantification of histamine and its metabolite N-methylhistamine in mouse organs has not been reported so far.

Methods

Balb/c and C57Bl/6 mice were grouped according to their sex and age. Brains, hearts, lungs, livers, kidneys, stomachs, intestines, thymi, spleens, and lymph nodes were excised, weighed, and homogenized. Histamine and N-methylhistamine were quantified simultaneously by a HPLC-mass spectrometry method.

Results

In all organs analyzed, histamine and N-methylhistamine were detected; however, with quantitative differences. Histamine was present most abundantly in the stomach, lymph nodes, and thymus. The lowest histamine concentrations were detected in brain, liver, lung, and intestine. In most organs, the histamine concentrations increased age-dependently. Substantial concentrations of N-methylhistamine were detected only in lung, intestine and kidney, while in all other organs it was present only in minor quantities.

Conclusion

HPLC-mass spectrometry is a useful method for the highly sensitive and simultaneous detection of histamine and N-methylhistamine. Histamine is present in virtually all organs, not only in those traditionally associated with histamine-mediated disease. Highest concentrations are found in stomach, lymph node, and thymus; medium concentrations in heart, spleen, and kidney; and lowest concentrations detected in intestine, brain, liver, and lung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bakker RA, Timmerman H, Leurs R. Histamine receptors: specific ligands, receptor biochemistry, and signal transduction. Clin Allergy Immunol. 2002;17:27–64.

    PubMed  CAS  Google Scholar 

  2. Jutel M, Akdis M, Akdis CA. Histamine, histamine receptors and their role in immune pathology. Clin Exp Allergy. 2009;39:1786–800.

    Article  PubMed  CAS  Google Scholar 

  3. Thurmond R, Gelfand E, Dunford P. The role of histamine H1 and H4 receptors in allergic inflammation: the search for new antihistamines. Nat Rev Drug Discov. 2008;7:41–53.

    Article  PubMed  CAS  Google Scholar 

  4. Schubert ML, Peura DA. Control of gastric acid secretion in health and disease. Gastroenterology. 2008;134:1842–60.

    Article  PubMed  CAS  Google Scholar 

  5. Masaki T, Yoshimatsu H. Neuronal histamine and its receptors: implication of the pharmacological treatment of obesity. Curr Med Chem. 2010;17:4587–92.

    Article  PubMed  CAS  Google Scholar 

  6. Huang J, Thurmond R. The new biology of histamine receptors. Curr Allergy Asthma Rep. 2008;8:21–7.

    Article  PubMed  CAS  Google Scholar 

  7. Seifert R, Wenzel-Seifert K. Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors. Naunyn Schmiedebergs Arch Pharmacol. 2002;366:381–416.

    Article  PubMed  CAS  Google Scholar 

  8. Gesler RM, Matsuba M. An experimental design for the biological assay of histamine using the guinea pig ileum. J Pharmacol Exp Ther. 1955;114:151–9.

    PubMed  CAS  Google Scholar 

  9. Shore PA, Burkhalter A, Cohn VH. A method for the fluorometric assay of histamine in tissues. J Pharmacol Exp Ther. 1959;127:182–6.

    PubMed  CAS  Google Scholar 

  10. Hammar E, Berglund A, Hedin A, Norrman A, Rustas K, Ytterström U, et al. An immunoassay for histamine based on monoclonal antibodies. J Immunol Methods. 1990;128:51–8.

    Article  PubMed  CAS  Google Scholar 

  11. Mita H, Yasueda H, Shida T. Quantitative analysis of histamine in biological samples by gas chromatography–mass spectrometry. J Chromatogr. 1980;181:153–9.

    Article  PubMed  CAS  Google Scholar 

  12. Maintz L, Novak N. Histamine and histamine intolerance. Am J Clin Nutr. 2007;85:1185–96.

    PubMed  CAS  Google Scholar 

  13. Huetz GN, Schwelberger HG. Simultaneous purification of the histamine degrading enzymes diamine oxidase and histamine N-methyltransferase from the same tissue. Inflamm Res. 2003;52(Suppl 1):S65–6.

    Article  PubMed  CAS  Google Scholar 

  14. Burtin C, Scheinmann P, Paupe J, Canu P, Goy J. Tissue histamine levels in male and female normal and nude mice. Agents Actions. 1982;12:199–200.

    Article  PubMed  CAS  Google Scholar 

  15. Maeyama K, Watanabe T, Taguchi Y, Yamatodani A, Wada H. Effect of alpha-fluoromethylhistidine, a suicide inhibitor of histidine decarboxylase, on histamine levels in mouse tissues. Biochem Pharmacol. 1982;31:2367–70.

    Article  PubMed  CAS  Google Scholar 

  16. Raica M, Cimpean AM, Nico B, Guidolin D, Ribatti D. A comparative study of the spatial distribution of mast cells and microvessels in the foetal, adult human thymus and thymoma. Int J Exp Pathol. 2010;91:17–23.

    Article  PubMed  Google Scholar 

  17. Raica M, Cîmpean AM, Encică S, Scridon T, Bârsan M. Increased mast cell density and microvessel density in the thymus of patients with myasthenia gravis. Rom J Morphol Embryol. 2007;48:11–6.

    PubMed  CAS  Google Scholar 

  18. Csaba G, Kovács P. Perinuclear localization of biogenic amines (serotonin and histamine) in rat immune cells. Cell Biol Int. 2006;30:861–5.

    Article  PubMed  CAS  Google Scholar 

  19. Ginsburg H, Nir I, Hammel I, Eren R, Weissman BA, Naot Y. Differentiation and activity of mast cells following immunization in cultures of lymph-node cells. Immunology. 1978;35:485–502.

    PubMed  CAS  Google Scholar 

  20. Musio S, Gallo B, Scabeni S, Lapilla M, Poliani PL, Matarese G, et al. A key regulatory role for histamine in experimental autoimmune encephalomyelitis: disease exacerbation in histidine decarboxylase-deficient mice. J Immunol. 2006;176:17–26.

    PubMed  CAS  Google Scholar 

  21. Jawdat DM, Albert EJ, Rowden G, Haidl ID, Marshall JS. IgE-mediated mast cell activation induces Langerhans cell migration in vivo. J Immunol. 2004;173:5275–82.

    PubMed  CAS  Google Scholar 

  22. Tomita M, Matsuzaki Y, Onitsuka T. Correlation between mast cells and survival rates in patients with pulmonary adenocarcinoma. Lung Cancer. 1999;26:103–8.

    Article  PubMed  CAS  Google Scholar 

  23. Tomita M, Matsuzaki Y, Edagawa M, Shimizu T, Hara M, Onitsuka T. Distribution of mast cells in mediastinal lymph nodes from lung cancer patients. World J Surg Oncol. 2003;1:25.

    Article  PubMed  Google Scholar 

  24. Man WK, Li SK, Spencer J, Baron JH, Michalowski AS. Gastrointestinal histamine and histamine formation capacity after gastric irradiation in mice. Br J Radiol. 1990;63:209–13.

    Article  PubMed  CAS  Google Scholar 

  25. Aschenbach JR, Honscha KU, von Vietinghoff V, Gäbel G. Bioelimination of histamine in epithelia of the porcine proximal colon of pigs. Inflamm Res. 2009;58:269–76.

    Article  PubMed  CAS  Google Scholar 

  26. Kuefner MA, Schwelberger HG, Hahn EG, Raithel M. Decreased histamine catabolism in the colonic mucosa of patients with colonic adenoma. Dig Dis Sci. 2008;53:436–42.

    Article  PubMed  CAS  Google Scholar 

  27. Fogel WA, Dastych J, Maśliński C. The response of histamine degrading enzymes to nematode infection. Agents Actions. 1988;23:304–6.

    Article  PubMed  CAS  Google Scholar 

  28. Shinagawa K, Kojima M. Mouse model of airway remodeling: strain differences. Am J Respir Crit Care Med. 2003;168:959–67.

    Article  PubMed  Google Scholar 

  29. Prescott VE, Hogan SP. Genetically modified plants and food hypersensitivity diseases: usage and implications of experimental models for risk assessment. Pharmacol Ther. 2006;111:374–83.

    Article  PubMed  CAS  Google Scholar 

  30. Aviado DM, Sadavongvivad C. Pharmacological significance of biogenic amines in the lungs: histamine. Br J Pharmacol. 1970;38:366–73.

    PubMed  CAS  Google Scholar 

  31. Douglas JS, Duncan PG. Characterisation of textile dust extracts: I. Histamine release in vitro. Br J Ind Med. 1984;41:64–9.

    PubMed  CAS  Google Scholar 

  32. Hartwig C, Constabel H, Neumann D, Gerd Hoymann H, Tschernig T, Behrens G. Impact of boostering for the strength of asthma parameters and dendritic cell numbers in a C57BL/6 model of allergic airway inflammation. Exp Toxicol Pathol. 2008;60:425–34.

    Article  PubMed  Google Scholar 

  33. Sedor JR, Abboud HE. Actions and metabolism of histamine in glomeruli and tubules of the human kidney. Kidney Int. 1984;26:144–52.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the German Research Council (DFG SFB 587), and by the COST BMBS action BM0806. The authors appreciate helpful discussions with Dr. Christina Hartwig and Silke Beermann, and the excellent technical assistance of Mrs. Renate Schottmann.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlef Neumann.

Additional information

Responsible Editor: Kumar Visvanathan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 130 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmermann, A.S., Burhenne, H., Kaever, V. et al. Systematic analysis of histamine and N-methylhistamine concentrations in organs from two common laboratory mouse strains: C57Bl/6 and Balb/c. Inflamm. Res. 60, 1153–1159 (2011). https://doi.org/10.1007/s00011-011-0379-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-011-0379-5

Keywords

Navigation