Skip to main content
Log in

Inflammatory stress increases unmodified LDL uptake via LDL receptor: an alternative pathway for macrophage foam-cell formation

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

To investigate if inflammatory stress increases intracellular accumulation of unmodified low-density lipoprotein (LDL) in human monocyte cell line (THP-1) macrophages by disrupting the sterol regulatory element binding proteins (SREBPs) cleavage-activating protein (SCAP)-SREBP2-mediated feedback regulation of LDL receptor.

Materials and methods

THP-1 macrophages were incubated in serum-free medium in the absence or presence of LDL alone, LDL plus lipopolysaccharide (LPS) and LPS alone, then intracellular cholesterol content, tumor necrosis factor alpha level in the supernatants, mRNA and protein expression of LDL receptor, and SREBP2 and SCAP in the treated cells were assessed by Oil Red O staining, cholesterol enzymatic assay, enzyme-linked immunosorbent assay, real-time quantitative polymerase chain reaction, and Western blotting analysis, respectively.

Results

We demonstrated that LPS enhanced transformation of THP-1 macrophages into foam cells by increased uptake of unmodified LDL as evidenced by Oil Red O staining and direct assay of intracellular cholesterol. In the absence of LPS, 25 μg/ml LDL decreased LDL receptor mRNA and protein expression (p < 0.05). However, LPS enhanced LDL receptor expression, overcoming the suppression of LDL receptor induced by 25 μg/ml LDL and inappropriately increasing LDL uptake (p < 0.05). Exposure to LPS also caused overexpression of mRNA and protein of SCAP and SREBP2 (p < 0.05). These observations indicate that LPS disrupts cholesterol-mediated LDL receptor feedback regulation, permitting intracellular accumulation of unmodified LDL and causing foam-cell formation.

Conclusion

The implication of these findings is that inflammatory stress may contribute to intracellular LDL accumulation in THP-1 macrophages without previous modification of LDL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. De Winther MP, Gijbels MJ, Van Dijk KW, Havekes LM, Hofker MH. Transgenic mouse models to study the role of the macrophage scavenger receptor class A in atherosclerosis. Int J Tissue React. 2000;22:85–91.

    PubMed  Google Scholar 

  2. Nicholson AC, Febbraio M, Han J, Silverstein RL, Hajjar DP. CD36 in atherosclerosis. The role of a class B macrophage scavenger receptor. Ann N Y Acad Sci. 2000;902:128–31.

    Article  PubMed  CAS  Google Scholar 

  3. Krieger M. Molecular flypaper and atherosclerosis: structure of the macrophage scavenger receptor. Trends Biochem Sci. 1992;17:141–6.

    Article  PubMed  CAS  Google Scholar 

  4. Krieger M, Abrams JM, Lux A, Steller H. Molecular flypaper, atherosclerosis, and host defense: structure and function of the macrophage scavenger receptor. Cold Spring Harb Symp Quant Biol. 1992;57:605–9.

    PubMed  CAS  Google Scholar 

  5. Liu B, Xie C, Richardson JA, Turley SD, Dietschy JM. Receptor-mediated and bulk-phase endocytosis cause macrophage and cholesterol accumulation in Niemann-Pick C disease. J Lipid Res. 2007;48:1710–23.

    Article  PubMed  CAS  Google Scholar 

  6. Smith JR, Osborne TF, Goldstein JL, Brown MS. Identification of nucleotides responsible for enhancer activity of sterol regulatory element in low density lipoprotein receptor gene. J Biol Chem. 1990;265:2306–10.

    PubMed  CAS  Google Scholar 

  7. Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986;232:34–47.

    Article  PubMed  CAS  Google Scholar 

  8. Briggs MR, Yokoyama C, Wang X, Brown MS, Goldstein JL. Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter. I. Identification of the protein and delineation of its target nucleotide sequence. J Biol Chem. 1993;268:14490–6.

    PubMed  CAS  Google Scholar 

  9. Goldstein JL, Brown MS. The LDL receptor and the regulation of cellular cholesterol metabolism. J Cell Sci Suppl. 1985;3:131–7.

    PubMed  CAS  Google Scholar 

  10. Wang X, Sato R, Brown MS, Hua X, Goldstein JL. SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell. 1994;77:53–62.

    Article  PubMed  CAS  Google Scholar 

  11. Yokoyama C, Wang X, Briggs MR, Admon A, Wu J, Hua X, et al. SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell. 1993;75:187–97.

    PubMed  CAS  Google Scholar 

  12. Wang X, Briggs MR, Hua X, Yokoyama C, Goldstein JL, Brown MS. Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter. II. Purification and characterization. J Biol Chem. 1993;268:14497–504.

    PubMed  CAS  Google Scholar 

  13. Sanchez HB, Yieh L, Osborne TF. Cooperation by sterol regulatory element-binding protein and Sp1 in sterol regulation of low density lipoprotein receptor gene. J Biol Chem. 1995;270:1161–9.

    Article  PubMed  CAS  Google Scholar 

  14. Hua X, Yokoyama C, Wu J, Briggs MR, Brown MS, Goldstein JL, et al. SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element. Proc Natl Acad Sci USA. 1993;90:11603–7.

    Article  PubMed  CAS  Google Scholar 

  15. Nohturfft A, Bose-Boyd RA, Scheek S, Goldstein JL, Brown MS. Sterols regulate cycling of SREBP cleavage-activating protein (SCAP) between endoplasmic reticulum and Golgi. Proc Natl Acad Sci USA. 1999;96:11235–40.

    Article  PubMed  CAS  Google Scholar 

  16. Brown MS, Goldstein JL. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci USA. 1999;96:11041–8.

    Article  PubMed  CAS  Google Scholar 

  17. Nohturfft A, Brown MS, Goldstein JL. Topology of SREBP cleavage-activating protein, a polytopic membrane protein with a sterol-sensing domain. J Biol Chem. 1998;273:17243–50.

    Article  PubMed  CAS  Google Scholar 

  18. Hua X, Nohturfft A, Goldstein JL, Brown MS. Sterol resistance in CHO cells traced to point mutation in SREBP cleavage-activating protein. Cell. 1996;87:415–26.

    Article  PubMed  CAS  Google Scholar 

  19. Goldstein JL, Rawson RB, Brown MS. Mutant mammalian cells as tools to delineate the sterol regulatory element-binding protein pathway for feedback regulation of lipid synthesis. Arch Biochem Biophys. 2002;397:139–48.

    Article  PubMed  CAS  Google Scholar 

  20. Yang T, Goldstein JL, Brown MS. Overexpression of membrane domain of SCAP prevents sterols from inhibiting SCAP.SREBP exit from endoplasmic reticulum. J Biol Chem. 2000;275:29881–6.

    Article  PubMed  CAS  Google Scholar 

  21. Sakai J, Rawson RB. The sterol regulatory element-binding protein pathway: control of lipid homeostasis through regulated intracellular transport. Curr Opin Lipidol. 2001;12:261–6.

    Article  PubMed  CAS  Google Scholar 

  22. Fernando RL, Varghese Z, Moorhead JF. Oxidation of low-density lipoproteins by rat mesangial cells and the interaction of oxidized low-density lipoproteins with rat mesangial cells in vitro. Nephrol Dial Transplant. 1993;8:512–8.

    PubMed  CAS  Google Scholar 

  23. Wheeler DC, Fernando RL, Gillett MP, Zaruba J, Persaud J, Kingstone D, et al. Characterisation of the binding of low-density lipoproteins to cultured rat mesangial cells. Nephrol Dial Transplant. 1991;6:701–8.

    PubMed  CAS  Google Scholar 

  24. Moorhead JF, Chan MK, El-Nahas M, Varghese Z. Lipid nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease. Lancet. 1982;2:1309–11.

    Article  PubMed  CAS  Google Scholar 

  25. Diamond JR. Analogous pathobiologic mechanisms in glomerulosclerosis and atherosclerosis. Kidney Int Suppl. 1991;31:S29–34.

    PubMed  CAS  Google Scholar 

  26. Diamond JR, Karnovsky MJ. Focal and segmental glomerulosclerosis: analogies to atherosclerosis. Kidney Int. 1988;33:917–24.

    Article  PubMed  CAS  Google Scholar 

  27. Salmon JE, Roman MJ. Subclinical atherosclerosis in rheumatoid arthritis and systemic lupus erythematosus. Am J Med. 2008;121:S3–8.

    Article  PubMed  Google Scholar 

  28. Bongu A, Chang E, Ramsey-Goldman R. Can morbidity and mortality of SLE be improved? Best Pract Res Clin Rheumatol. 2002;16:313–32.

    Article  PubMed  Google Scholar 

  29. Lowrie EG, Lew NL. Death risk in hemodialysis patients: the predictive value of commonly measured variables and an evaluation of death rate differences between facilities. Am J Kidney Dis. 1990;15:458–82.

    PubMed  CAS  Google Scholar 

  30. Liu Y, Coresh J, Eustace JA, Longenecker JC, Jaar B, Fink NE, et al. Association between cholesterol level and mortality in dialysis patients: role of inflammation and malnutrition. JAMA. 2004;291:451–9.

    Article  PubMed  CAS  Google Scholar 

  31. Ruan XZ, Moorhead JF, Tao JL, Ma KL, Wheeler DC, Powis SH, et al. Mechanisms of dysregulation of low-density lipoprotein receptor expression in vascular smooth muscle cells by inflammatory cytokines. Arterioscler Thromb Vasc Biol. 2006;26:1150–5.

    Article  PubMed  CAS  Google Scholar 

  32. Ruan XZ, Varghese Z, Powis SH, Moorhead JF. Dysregulation of LDL receptor under the influence of inflammatory cytokines: a new pathway for foam cell formation. Kidney Int. 2001;60:1716–25.

    Article  PubMed  CAS  Google Scholar 

  33. Ruan XZ, Varghese Z, Fernando R, Moorhead JF. Cytokine regulation of low-density lipoprotein receptor gene transcription in human mesangial cells. Nephrol Dial Transplant. 1998;13:1391–7.

    Article  PubMed  CAS  Google Scholar 

  34. Chen Y, Ruan XZ, Li Q, Huang A, Moorhead JF, Powis SH, et al. Inflammatory cytokines disrupt LDL-receptor feedback regulation and cause statin resistance: a comparative study in human hepatic cells and mesangial cells. Am J Physiol Renal Physiol. 2007;293:F680–7.

    Article  PubMed  CAS  Google Scholar 

  35. Gallo LL, Atasoy R, Vahouny GV, Treadwell CR. Enzymatic assay for cholesterol ester hydrolase activity. J Lipid Res. 1978;19:913–6.

    PubMed  CAS  Google Scholar 

  36. Gamble W, Vaughan M, Kruth HS, Avigan J. Procedure for determination of free and total cholesterol in micro- or nanogram amounts suitable for studies with cultured cells. J Lipid Res. 1978;19:1068–70.

    PubMed  CAS  Google Scholar 

  37. Mikita T, Porter G, Lawn RM, Shiffman D. Oxidized low density lipoprotein exposure alters the transcriptional response of macrophages to inflammatory stimulus. J Biol Chem. 2001;276:45729–39.

    Article  PubMed  CAS  Google Scholar 

  38. Umetani N, Kanayama Y, Okamura M, Negoro N, Takeda T. Lovastatin inhibits gene expression of type-I scavenger receptor in THP-1 human macrophages. Biochim Biophys Acta. 1996;1303:199–206.

    PubMed  Google Scholar 

  39. Yang L, Yang JB, Chen J, Yu GY, Zhou P, Lei L, et al. Enhancement of human ACAT1 gene expression to promote the macrophage-derived foam cell formation by dexamethasone. Cell Res. 2004;14:315–23.

    Article  PubMed  CAS  Google Scholar 

  40. Kruth HS, Huang W, Ishii I, Zhang WY. Macrophage foam cell formation with native low density lipoprotein. J Biol Chem. 2002;277:34573–80.

    Article  PubMed  CAS  Google Scholar 

  41. Evensen SA, Galdal KS, Nilsen E. LDL-induced cytotoxicity and its inhibition by anti-oxidant treatment in cultured human endothelial cells and fibroblasts. Atherosclerosis. 1983;49:23–30.

    Article  PubMed  CAS  Google Scholar 

  42. Sobal G, Menzel J, Sinzinger H. Why is glycated LDL more sensitive to oxidation than native LDL? A comparative study. Prostaglandins Leukot Essent Fatty Acids. 2000;63:177–86.

    Article  PubMed  CAS  Google Scholar 

  43. Yang T, Espenshade PJ, Wright ME, Yabe D, Gong Y, Aebersold R, et al. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell. 2002;110:489–500.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the National Nature Science Foundation of China (nos. 30670869 and 30772295; Key Program, no. 30530360), National Basic Research Program of China (973 Program, nos. 2006CB503907, 2008CB517309), and Natural Science Foundation Project of CQ CSTC (2008BA5016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Han Lei or Xiong Z. Ruan.

Additional information

Responsible Editor: M. Katori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, Q., Chen, Y., Lei, H. et al. Inflammatory stress increases unmodified LDL uptake via LDL receptor: an alternative pathway for macrophage foam-cell formation. Inflamm. Res. 58, 809–818 (2009). https://doi.org/10.1007/s00011-009-0052-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-009-0052-4

Keywords

Navigation