Skip to main content
Log in

On Fermat Diophantine functional equations, little Picard theorem and beyond

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

We discuss equivalence conditions for the non-existence of non-trivial meromorphic solutions to the Fermat Diophantine equation \(f^m(z)+g^n(z)=1\) with integers \(m,n\ge 2\), from which other approaches to proving the little Picard theorem are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, I.N.: On a class of meromorphic functions. Proc. Am. Math. Soc. 17, 819–822 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bergweiler, W.: A quantitative version of Picard’s theorem. Ark. Mat. 34, 225–229 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Clunie, J.: The composition of entire and meromorphic functions. Mathematical essays dedicated to A. J. Macintyre, pp. 75–92. Ohio University Press, Athens, Ohio (1970)

  4. Coman, D., Poletsky, E.A.: Stable algebras of entire functions. Proc. Am. Math. Soc. 136, 3993–4002 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dixon, A.C.: On the doubly periodic functions arising out of the curve \(x^3+y^3-3\alpha xy=1\). Q. J. Pure Appl. Math. XXIV, 167–245 (1890)

    MATH  Google Scholar 

  6. Gross, F.: On the equation \(f^n+g^n=1\). I. Bull. Am. Math. Soc. 72, 86–88 (1966). & 576

    Article  Google Scholar 

  7. Gross, F.: On the equation \(f^n+g^n=1\). II. Bull. Am. Math. Soc. 74, 647–648 (1968). & 767

    Article  Google Scholar 

  8. Gundersen, G.G., Hayman, W.K.: The strength of Cartan’s version of Nevanlinna theory. Bull. Lond. Math. Soc. 36, 433–454 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Han, Q.: On complex analytic solutions of the partial differential equation \(\left(u_{z_1}\right)^m+\left(u_{z_2}\right)^m=u^m\). Houston J. Math. 35, 277–289 (2009)

    MathSciNet  Google Scholar 

  10. Han, Q., Liu, J.: Unicity of entire functions and a related problem. Commun. Math. Anal. 9, 42–50 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Han, Q., Wang, C.: Unicity of meromorphic functions and their linear differential polynomials. J. Inequal. Appl. 388, 6 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Han, Q., Yi, H.X.: On the uniqueness problems of entire functions and their linear differential polynomials. Kodai Math. J. 30, 61–73 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hille, E.: Ordinary Differential Equations in the Complex Domain. Dover, Mineola (1997)

    MATH  Google Scholar 

  14. Huber, A.: A novel class of solutions for a non-linear third order wave equation generated by the Weierstraß transformation. Chaos Solitons Fractals 28, 972–978 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jategaonkar, A.V.: Elementary proof of a theorem of P. Montel on entire functions. J. Lond. Math. Soc. 40, 166–170 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  16. Koecher, M., Krieg, A.: Elliptic Functions and Modular Forms. Springer, Berlin (2017)

    MATH  Google Scholar 

  17. Lehner, J.: The Picard theorems. Am. Math. Mon. 76, 1005–1012 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, B.Q.: On meromorphic solutions of \(f^2+g^2=1\). Math. Z. 258, 763–771 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, B.Q.: On Fermat-type functional and partial differential equations. The mathematical legacy of Leon Ehrenpreis, pp. 209–222. Springer, Milan (2012)

    Google Scholar 

  20. Li, B.Q.: On meromorphic solutions of generalized Fermat equations. Int. J. Math. 25, 1450002 (2014). 8 pp

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, B.Q.: An equivalent form of Picard’s theorem and beyond. Canad. Math. Bull. 61, 142–148 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, B.Q.: On Picard’s theorem. J. Math. Anal. Appl. 460, 561–564 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, B.Q., Ye, Z.: On meromorphic solutions of \(f^3+g^3=1\). Arch. Math. (Basel) 90, 39–43 (2008)

    Article  MathSciNet  Google Scholar 

  24. Nevanlinna, R.: Analytic Functions. Springer, New York (1970)

    Book  MATH  Google Scholar 

  25. Saleeby, E.G.: On complex analytic solutions of certain trinomial functional and partial differential equations. Aequ. Math. 85, 553–562 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schwick, W.: A new joint proof of the theorems of Picard and Montel. Results Math. 21, 403–407 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Simonič, A.: The Ahlfors lemma and Picard’s theorems. Rose-Hulman Undergrad. Math J. 16, 113–136 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Skaskiv, O.B.: Generalization of the little Picard theorem. J. Sov. Math. 48, 570–578 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Toda, N.: On the functional equation \(\sum _{i=0}^pa_if^{n_i}=1\). Tôhoku Math. J. 23, 289–299 (1971)

    Article  MathSciNet  Google Scholar 

  30. Zhang, G.Y.: Curves, domains and Picard’s theorem. Bull. Lond. Math. Soc. 34, 205–211 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Han, Q. & Liu, J. On Fermat Diophantine functional equations, little Picard theorem and beyond. Aequat. Math. 93, 425–432 (2019). https://doi.org/10.1007/s00010-018-0614-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-018-0614-z

Mathematics Subject Classification

Keywords

Navigation