Skip to main content
Log in

C 4p -frame of complete multipartite multigraphs

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

For two graphs G and H their wreath product \({G \otimes H}\) has the vertex set \({V(G) \times V(H)}\) in which two vertices (g 1, h 1) and (g 2, h 2) are adjacent whenever \({g_{1}g_{2} \in E(G)}\) or g 1g 2 and \({h_{1}h_{2} \in E(H)}\) . Clearly \({K_{m} \otimes I_{n}}\) , where I n is an independent set on n vertices, is isomorphic to the complete m-partite graph in which each partite set has exactly n vertices. A subgraph of the complete multipartite graph \({K_m \otimes I_n}\) containing vertices of all but one partite set is called partial factor. An H-frame of \({K_m \otimes I_n}\) is a decomposition of \({K_m \otimes I_n}\) into partial factors such that each component of it is isomorphic to H. In this paper, we investigate C 2k -frames of \({(K_m \otimes I_n)(\lambda)}\) , and give some necessary or sufficient conditions for such a frame to exist. In particular, we give a complete solution for the existence of a C 4p -frame of \({(K_m \otimes I_n)(\lambda)}\) , where p is a prime, as follows: For an integer m ≥  3 and a prime p, there exists a C 4p -frame of \({(K_m \otimes I_n)(\lambda)}\) if and only if \({(m-1)n \equiv 0 ({\rm {mod}} {4p})}\) and at least one of m, n must be even, when λ is odd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alspach B.R, Gavlas H.J.: Cycle decompositions of K n and K n I. J. Combin. Theory Ser. B 81, 77–99 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balakrishnan R., Ranganathan K.: A Textbook of Graph Theory. Springer, New York (2000)

    Book  MATH  Google Scholar 

  3. Bondy J.A., Murty U.S.R.: Graph Theory with Applications. The MacMillan Press Ltd., London (1976)

    MATH  Google Scholar 

  4. Billington E.J., Cavenagh N.J., Smith B.R.: Path and cycle decompositions of complete equipartite graphs: 3 and 5 parts. Discret. Math. 310, 241–254 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Billington E.J., Cavenagh N.J., Smith B.R.: Path and cycle decompositions of complete equipartite graphs: four parts. Discret. Math. 309, 3061–3073 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burling J., Heinrich K.: Near 2-factorizations of 2K n : cycles of even length. Graphs Combin. 5(3), 213–221 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cao H., Niu M., Tang C.: On the existence of cycle frames and almost resolvable cycle systems. Discret. Math. 311, 2220–2232 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cavenagh N.J.: Decompositions of complete tripartite graphs into k-cycles. Australas. J. Combin. 18, 193–200 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Cavenagh N.J., Billington E.J.: Decompositions of complete multipartite graphs into cycles of even length. Graphs Combin. 16, 49–65 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Furino S.C., Miao Y., Yin J.X.: Frames and resolvable designs: uses, constructions, and existence. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  11. Ge G., Miao Y.: PBD’s, frames and resolvability. In: Colbourn, C.J., Dinitz, J.H. (eds.) CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton (1996)

    Google Scholar 

  12. Hikoe E., Takashi M., Ushio K.: C k -factorization of complete bipartite graphs. Graphs Combin. 4(2), 111–113 (1988)

    MathSciNet  MATH  Google Scholar 

  13. Haggkvist, R.: Decompositions of complete bipartite graphs. In: London Mathematical Society Lecture Note Series, vol. 141, pp. 115–147 (1989)

  14. Heinrich K., Lindner C.C., Rodger C.A.: Almost resolvable decompositions of 2K n into cycles of odd length. J. Combin. Theory Ser. A 49(2), 218–232 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hoffman D.G., Linder C.C., Rodger C.A.: On the construction of odd cycle systems. J. Graph Theory 13, 417–426 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Horton J.D., Roy B.K., Schellenberg P.J., Stinson D.R.: On decomposing graphs into isomorphic uniform 2-factors. Ann. Discret. Math. 27, 297–319 (1985)

    MathSciNet  Google Scholar 

  17. Laywine C.F., Mullen G.L.: Discrete Mathematics Using Latin Squares. Wiley, New York (1998)

    MATH  Google Scholar 

  18. Lindner C.C., Rodger C.A.: Design Theory. Chapman & Hall, Boca Raton (2009)

    MATH  Google Scholar 

  19. Manikandan R.S., Paulraja P.: C p -decompositions of some regular graphs. Discret. Math. 306, 429–451 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Š M.: Cycle decompositions III: complete graphs and fixed length cycles. J. Combin. Des. 10, 27–78 (2002)

    Article  MathSciNet  Google Scholar 

  21. Sotteau D.: Decomposition of \({K_{m, n}(K^{*}_{m, n})}\) into cycles (circuits) of length 2k. J. Combin. Theory Ser. B. 30, 75–81 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  22. Smith B.R.: Decomposing complete equipartite graphs into cycles of length 2p. J. Combin. Des. 16, 244–252 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Smith B.R.: Complete equipartite 3p-cycle systems. Australas. J. Combin. 45, 125–138 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Smith B.R.: Decomposing complete equipartite graphs into odd square-length cycles: number of parts odd. J. Combin. Des. 6, 401–414 (2010)

    Article  Google Scholar 

  25. Stinson D.R.: Frames for Kirkman triple systems. Discret. Math. 65(3), 289–300 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tiemeyer M.A.: C 4-frames of M(b, n). J. Combin. Math. Combin. Comput. 80, 333–350 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Wang J.: Cube factorizations of complete multipartite graphs. Ars Combin. 99, 243–256 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Muthusamy.

Additional information

The first author thanks Jawaharlal Nehru Memorial Fund for the financial assistance through grant No. SU-A/ 007/ 2011-12/ 394 and the second author thanks the Department of Science and Technology, Government of India, New Delhi for its financial support through the Grant No. DST/INSPIRE Fellowship/2011-IF110084 and the third author thanks the Department of Science and Technology, Government of India, New Delhi for its financial support through the Grant No. DST/ SR/ S4/ MS:372/ 06.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chitra, V., Vadivu, A.S. & Muthusamy, A. C 4p -frame of complete multipartite multigraphs. Aequat. Math. 85, 563–579 (2013). https://doi.org/10.1007/s00010-012-0167-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-012-0167-5

Mathematics Subject Classification (2010)

Keywords

Navigation