Skip to main content
Log in

The Grünwald–Letnikov Fractional-Order Derivative with Fixed Memory Length

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

Contrary to integer-order derivative, the fractional-order derivative of a non-constant periodic function is not a periodic function with the same period. As a consequence of this property, the time-invariant fractional-order systems do not have any non-constant periodic solution unless the lower terminal of the derivative is ±∞, which is not practical. This property limits the applicability of the fractional derivative and makes it unfavorable, for a wide range of periodic real phenomena. Therefore, enlarging the applicability of fractional systems to such periodic real phenomena is an important research topic. In this paper, we give a solution for the above problem by imposing a simple modification on the Grünwald–Letnikov definition of fractional derivative. This modification consists of fixing the memory length and varying the lower terminal of the derivative. It is shown that the new proposed definition of fractional derivative preserves the periodicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ross B.: The development of fractional calculus 1695–1900. Hist. Math. 4, 75–89 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Podlubny I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  3. ldham K.B.O., Spanier J.: The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic press, inc, USA (1974)

    Google Scholar 

  4. Samko S.G., Kilbas A.A., Marichev O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Amsterdam (1993)

    MATH  Google Scholar 

  5. Butzer P.L., Westphal U.: An introduction to fractional calculus. In: Hilfer, R. (eds) Applications of Fractional Calculus in Physics, World Scientific, Singapore (2000)

  6. Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., Feliu, V.: Fractional-Order Systems and Controls Fundamentals and Applications. Springer-Verlag London Limited, London (2010)

  7. Caputo M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astron. Soc. 13, 529–539 (1967)

    Article  MathSciNet  Google Scholar 

  8. Bagley R.L., Calico R.A.: Fractional order state equations for the control of viscoelastically damped structures. J. Guid. Control Dyn. 14, 304–311 (1991)

    Article  Google Scholar 

  9. Sun H.H., Abdelwahab A.A., Onaral B.: Linear approximation of transfer function with a pole of fractional order. IEEE Trans. Autom. Control 29, 441–444 (1984)

    Article  MATH  Google Scholar 

  10. Ichise M., Nagayanagi Y., Kojima T.: An analog simulation of noninteger order transfer functions for analysis of electrode process. J. Electroanal. Chem. 33, 253–265 (1971)

    Article  Google Scholar 

  11. Heaviside O.: Electromagnetic Theory. Chelsea, New York (1971)

    MATH  Google Scholar 

  12. Kusnezov D., Bulgac A., Dang G.D.: Quantum levy processes and fractional kinetics. Phys. Rev. Lett. 82, 1136–1139 (1999)

    Article  Google Scholar 

  13. Abdelouahab, M.-S., Lozi, R., Chua, L.O.: Memfractance: a mathematical paradigm for circuit elements with memory. Int. J. Bifurc. Chaos 24(9), 28 p. (2014)

  14. Abdelouahab, M.-S., Hamri, N., Wang, J.: Chaos Control of a Fractional-Order Financial System. Hindawi Pub Corp Math Prob in Engineering, pp. 1–18 (2010)

  15. Abdelouahab M.-S., Hamri N.: Fractional-order hybrid optical system and its chaos control synchronization. EJTP 11(30), 49–62 (2014)

    Google Scholar 

  16. Miranda, J.G.: Synchronization and control of chaos: an introduction for scientists and engineers. Imperial College Press, London (2004)

  17. Tavazoei M.S.: A note on fractional-order derivatives of periodic functions. Automatica 46, 945–948 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tavazoei M.S., Haeri M.: A proof for non existence of periodic solutions in time invariant fractional order systems. Automatica 45, 1886–1890 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tavazoei M.S., Haeri M., Attari M., Bolouki S., Siami M.: More details on analysis of fractional-order van der pol oscillator. J. Vib. Control 15(6), 803–819 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yazdani M., Salarieh H.: On the existence of periodic solutions in time-invariant fractional order systems. Automatica 47, 1834–1837 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kaslik E., Sivasundaram S.: Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions. Nonlinear Anal. Real World Appl. 13, 1489–1497 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Abdelouahab M.S., Hamri N., Wang J.W.: Hopf bifurcation and chaos in fractional-order modified hybrid optical system. Nonlinear Dyn. 69, 275–284 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cafagna D., Grassi G.: On the simplest fractional-order memristor-based chaotic system. Nonlinear Dyn. 70, 1185–1197 (2012)

    Article  MathSciNet  Google Scholar 

  24. Diethelm K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed-Salah Abdelouahab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelouahab, MS., Hamri, NE. The Grünwald–Letnikov Fractional-Order Derivative with Fixed Memory Length. Mediterr. J. Math. 13, 557–572 (2016). https://doi.org/10.1007/s00009-015-0525-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-015-0525-3

Mathematics Subject Classification

Keywords

Navigation