Skip to main content
Log in

A Note on Drazin Invertibility for Upper Triangular Block Operators

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

A bounded linear operator A acting on a Banach space X is said to be an upper triangular block operators of order n, and we write \({A \in \mathcal{UT}_{n}(X)}\) , if there exists a decomposition of \({X = X_{1} \oplus . . . \oplus X_{n}}\) and an n × n matrix operator \({(A_{i,j})_{\rm 1 \leq i, j \leq n}}\) such that \({A = (A_{i, j})_{1 \leq i, j \leq n}, A_{i, j} = 0}\) for i > j. In this note we characterize a large set of entries A i, j with j > i such that \({\sigma_{\rm D} (A) = {\bigcup\limits_{i = 1}^{n}} \sigma_{\rm D} (A_{i, i})}\) ; where σD(.) is the Drazin spectrum. Some applications concerning the Fredholm theory and meromorphic operators are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amouch M., Zguitti H.: B–Fredholm and Drazin invertible operators through localized SVEP. Math. Bohem 136, 39–49 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Barnes B.A.: The spectral theory of upper triangular matrices with entries in a Banach algebra. Math. Nachr. 241, 5–20 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barnes B.A.: Riesz points of upper triangular operator matrices. Proc. Amer. Math. Soc. 133, 1343–1347 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benhida C., Zerouali E.H., Zguitti H.: Spectra of Upper Triangular Operator Matrices. Proc. Amer. Math. Soc. 133, 3013–3020 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Benhida, E. H. Zerouali and H. Zguitti, Spectral properties of upper triangular block operators. Acta. Sci. Math. (Szeged) 71 (2005), 681–690.

    Google Scholar 

  6. Berkani M.: Index of Fredholm operators and generalization of a Weyl theorem. Proc. Amer. Math. Soc. 130, 1717–1723 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Berkani and M. Amouch, Preservation of property (gw) under perturbations. Acta Sci. Math. (Szeged) 74 (2008), 769–781.

    Google Scholar 

  8. S. V. Djordjević and Y. M. Han, A note on Weyl’s theorem for operator matrices. Proc. Amer. Math. Soc. 130 (2003), 2543–2547.

    Google Scholar 

  9. S. V. Djordjević and H. Zguitti, Essential point spectra of operator matrices through local spectral theory. J. Math. Anal. Appl. 338 (2008), 285–291.

    Google Scholar 

  10. B. P. Duggal, Upper triangular operator matrices, SVEP and Browder, Weyl theorems. Integral Equations Operator Theory 63 (2009), 17–28.

    Google Scholar 

  11. Duggal B.P.: Upper triangular operators with SVEP. J. Korean Math. Soc. 47, 235–246 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. J. K. Finch, The single valued extension property on a Banach space. Pacific J. Math. 58 (1975), 61–69.

    Google Scholar 

  13. I. Gohberg, S. Goldberg and M. A. Kaashoek, Class of Linear Operators Vol.I. Birkhäuser, Basel, 1990.

  14. M. Houimdi and H. Zguitti, Propriétés spectrales locales d’une matrice carrée des opérateurs. Acta Math. Vietnam. 25 (2000), 137–144.

    Google Scholar 

  15. I. B. Jung, E. Ko and C. Pearcy, Spectral properties of some matrices. Arch. Math. (Basel) 80 (2003) 37–46.

    Google Scholar 

  16. K. B. Laursen, Operators with finite ascent. Pacific J. Math. 152 (1992), 323–336.

    Google Scholar 

  17. D. C. Lay, Spectral analysis using ascent, descent, nullity and defect. Math. Ann. 184 (1970), 197–214.

    Google Scholar 

  18. A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, John Wiley & Sons, New York, Chichester, Brisbane, Toronto, 1980.

  19. E. H. Zerouali and H. Zguitti, Perturbation of the spectra of operator matrices and local spectral theory. J. Math. Anal. Appl. 324 (2006), 992–1005.

    Google Scholar 

  20. H. Zguitti, On the Drazin inverse for upper triangular operator matrices. Bull. Math. Anal. Appl. 2 (2) (2010), 27–33.

    Google Scholar 

  21. S. Zhang, H. Zhong and Q. Jiang, Drazin spectrum of operator matrices on the Banach space. Linear Alg. Appl. 429 (2008), 2067–2075.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassane Zguitti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zguitti, H. A Note on Drazin Invertibility for Upper Triangular Block Operators. Mediterr. J. Math. 10, 1497–1507 (2013). https://doi.org/10.1007/s00009-013-0275-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-013-0275-z

Mathematics Subject Classification (2010)

Keywords

Navigation