Skip to main content
Log in

Special Issue: Novel Diagnostic and Therapeutic Approach Options in Lupus Nephritis

Transcriptome Studies in Lupus Nephritis

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

This article has been updated

Abstract

The present review is aimed at describing the main works that have used gene expression to analyze tissue kidney samples of lupus nephritis patients. Most studies used the gene expression arrays, which enormously advanced our knowledge on the possible mechanisms behind lupus nephritis. However, using bulk gene expression platforms, either as arrays, or as sequencing of RNA is not enough to go into detail of the cells and their molecular patterns and single cell mechanisms of disease. More recently, the first single cell RNA Sequencing study was published and this will also be discussed in the context of lupus nephritis. Single cell RNA sequencing allows to retrieve the genes expressed in each cell in the tissue of interest or in blood. In this context, the results of such studies give us a first glimpse of how a lupus nephritis kidney looks like, but much is still to be done to understand the changes that occur with treatment or with the different pathological subtypes of lupus nephritis and their cellular content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 13 May 2022

    The supertitle is coded incorrectly as ArticleSubCategory which is now corrected to supertitle

References

  • Abdelati AA, Eshak NY, Donia HM et al (2021) Urinary cellular profile as a biomarker for lupus nephritis. J Clin Rheumatol 27:e469–e476

    Article  PubMed  Google Scholar 

  • Arazi A, Rao DA, Berthier CC et al (2019) The immune cell landscape in kidneys of patients with lupus nephritis. Nat Immunol 20:902–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banchereau R, Hong S, Cantarel B et al (2016) Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell 165:1548–1550

    Article  CAS  PubMed  Google Scholar 

  • Blazer A, Dey ID, Nwaukoni J et al (2021) Apolipoprotein L1 risk genotypes in Ghanaian patients with systemic lupus erythematosus: a prospective cohort study. Lupus Sci Med 8:e000460

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolin K, Sandling JK, Zickert A et al (2013) Association of STAT4 polymorphism with severe renal insufficiency in lupus nephritis. PLoS ONE 8:e84450

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaussabel D, Quinn C, Shen J et al (2008) A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus. Immunity 29:150–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Der E, Suryawanshi H, Morozov P et al (2019) Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways. Nat Immunol 20:915–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dey-Rao R, Smith JR, Chow S et al (2014) Differential gene expression analysis in CCLE lesions provides new insights regarding the genetics basis of skin vs. systemic disease. Genomics 104:144–155

    Article  CAS  PubMed  Google Scholar 

  • Freedman BI, Langefeld CD, Andringa KK et al (2014) End-stage renal disease in African Americans with lupus nephritis is associated with APOL1. Arthritis Rheum 66:390–396

    Article  CAS  Google Scholar 

  • Hagberg N, Ronnblom L (2019) Interferon-alpha enhances the IL-12-induced STAT4 activation selectively in carriers of the STAT4 SLE risk allele rs7574865[T]. Ann Rheum Dis 78:429–431

    Article  PubMed  Google Scholar 

  • Jourde-Chiche N, Whalen E, Gondouin B et al (2017) Modular transcriptional repertoire analyses identify a blood neutrophil signature as a candidate biomarker for lupus nephritis. Rheumatology 56:477–487

    CAS  PubMed  Google Scholar 

  • Ju W, Nair V, Smith S et al (2015) Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker. Sci Transl Med 7:316ra193

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan SQ, Khan I, Gupta V (2018) CD11b activity modulates pathogenesis of lupus nephritis. Front Med 5:52

    Article  Google Scholar 

  • Kim-Howard X, Maiti AK, Anaya JM et al (2010) ITGAM coding variant (rs1143679) influences the risk of renal disease, discoid rash and immunological manifestations in patients with systemic lupus erythematosus with European ancestry. Ann Rheum Dis 69:1329–1332

    Article  PubMed  Google Scholar 

  • Kitagawa A, Tsuboi N, Yokoe Y et al (2019) Urinary levels of the leukocyte surface molecule CD11b associate with glomerular inflammation in lupus nephritis. Kidney Int 95:680–692

    Article  CAS  PubMed  Google Scholar 

  • Lewis MJ, Barnes MR, Blighe K et al (2019) Molecular portraits of early rheumatoid arthritis identify clinical and treatment response phenotypes. Cell Rep 28:2455-2470.e2455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CP, Adrianto I, Lessard CJ et al (2012) Role of MYH9 and APOL1 in African and non-African populations with lupus nephritis. Genes Immun 13:232–238

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Li QZ, Delgado-Vega AM et al (2009) Kallikrein genes are associated with lupus and glomerular basement membrane-specific antibody-induced nephritis in mice and humans. J Clin Invest 119:911–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marciano DK (2019) Mesangial cells: the tuft guys of glomerular development. J Am Soc Nephrol 30:1551–1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mejia-Vilet JM, Parikh SV, Song H et al (2019) Immune gene expression in kidney biopsies of lupus nephritis patients at diagnosis and at renal flare. Nephrol Dial Transplant 34:1197–1206

    Article  CAS  PubMed  Google Scholar 

  • Morell M, Perez-Cozar F, Maranon C (2021) Immune-related urine biomarkers for the diagnosis of lupus nephritis. Int J Mol Sci 22:7143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakou M, Knowlton N, Frank MB et al (2008) Gene expression in systemic lupus erythematosus: bone marrow analysis differentiates active from inactive disease and reveals apoptosis and granulopoiesis signatures. Arthritis Rheum 58:3541–3549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nath SK, Han S, Kim-Howard X et al (2008) A nonsynonymous functional variant in integrin-alpha(M) (encoded by ITGAM) is associated with systemic lupus erythematosus. Nat Genet 40:152–154

    Article  CAS  PubMed  Google Scholar 

  • Nowling TK (2022) Mesangial cells in lupus nephritis. Curr Rheumatol Rep 23:83

    Article  PubMed  Google Scholar 

  • Nzeusseu Toukap A, Galant C, Theate I et al (2007) Identification of distinct gene expression profiles in the synovium of patients with systemic lupus erythematosus. Arthritis Rheum 56:1579–1588

    Article  CAS  PubMed  Google Scholar 

  • Pamfil C, Makowska Z, Groof De et al (2018) Intrarenal activation of adaptive immune effectors is associated with tubular damage and impaired renal function in lupus nephritis. Ann Rheum Dis 77:1782–1789

    Article  CAS  PubMed  Google Scholar 

  • Peterson KS, Huang JF, Zhu J et al (2004) Characterization of heterogeneity in the molecular pathogenesis of lupus nephritis from transcriptional profiles of laser-captured glomeruli. J Clin Invest 113:1722–1733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid S, Hagberg N, Sandling JK et al (2021) Interaction between the STAT4 rs11889341 (T) risk allele and smoking confers increased risk of myocardial infarction and nephritis in patients with systemic lupus erythematosus. Ann Rheum Dis 80:1183–1189

    Article  CAS  PubMed  Google Scholar 

  • Richman IB, Taylor KE, Chung SA et al (2012) European genetic ancestry is associated with a decreased risk of lupus nephritis. Arthritis Rheum 64:3374–3382

    Article  PubMed  Google Scholar 

  • Rubtsova K, Rubtsov AV, Cancro MP et al (2015) Age-associated B cells: a T-bet-dependent effector with roles in protective and pathogenic immunity. J Immunol 195:1933–1937

    Article  CAS  PubMed  Google Scholar 

  • Sanchez E, Nadig A, Richardson BC et al (2011) Phenotypic associations of genetic susceptibility loci in systemic lupus erythematosus. Ann Rheum Dis 70:1752–1757

    Article  CAS  PubMed  Google Scholar 

  • Sanchez E, Rasmussen A, Riba L et al (2012) Impact of genetic ancestry and sociodemographic status on the clinical expression of systemic lupus erythematosus in American Indian-European populations. Arthritis Rheum 64:3687–3694

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor KE, Remmers EF, Lee AT et al (2008) Specificity of the STAT4 genetic association for severe disease manifestations of systemic lupus erythematosus. PLoS Genet 4:e1000084

    Article  PubMed  PubMed Central  Google Scholar 

  • Toro-Dominguez D, Martorell-Marugan J, Goldman D et al (2018) Stratification of systemic lupus erythematosus patients into three groups of disease activity progression according to longitudinal gene expression. Arthritis Rheumatol 70:2025–2035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weening JJ, D’Agati VD, Schwartz MM et al (2004) The classification of glomerulonephritis in systemic lupus erythematosus revisited. Kidney Int 65:521–530

    Article  PubMed  Google Scholar 

  • Wei K, Korsunsky I, Marshall JL et al (2020) Notch signalling drives synovial fibroblast identity and arthritis pathology. Nature 582:259–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wither JE, Prokopec SD, Noamani B et al (2018) Identification of a neutrophil-related gene expression signature that is enriched in adult systemic lupus erythematosus patients with active nephritis: Clinical/pathologic associations and etiologic mechanisms. PLoS ONE 13:e0196117

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang W, Zhao M, Hirankarn N et al (2009) ITGAM is associated with disease susceptibility and renal nephritis of systemic lupus erythematosus in Hong Kong Chinese and Thai. Hum Mol Genet 18:2063–2070

    Article  PubMed  PubMed Central  Google Scholar 

  • Zumaquero E, Stone SL, Scharer CD et al (2019) IFNgamma induces epigenetic programming of human T-bet(hi) B cells and promotes TLR7/8 and IL-21 induced differentiation. Elife 8:e41641

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Innovative Medicines Initiative, 831434, Marta E Alarcon-Riquelme

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta E. Alarcón-Riquelme.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alarcón-Riquelme, M.E. Transcriptome Studies in Lupus Nephritis. Arch. Immunol. Ther. Exp. 70, 15 (2022). https://doi.org/10.1007/s00005-022-00651-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00005-022-00651-y

Keywords

Navigation