Skip to main content
Log in

Characterizing sequence variation in the VP1 capsid proteins of foot and mouth disease virus (serotype 0) with respect to virion structure

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The VP1 capsid protein of foot and mouth disease virus (FMDV) is highly polymorphic and contains several of the major immunogenic sites important to effective antibody neutralization and subsequent viral clearance by the immune system. Whether this high level of polymorphism is of adaptive value to the virus remains unknown. In this study we examined sequence data from a set of 55 isolates in order to establish the nature of selective pressures acting on this gene. Using the known molecular structure of VP1, the rates and ratios of different types of nonsynonymous and synonymous changes were compared between different parts of the protein. All parts of the protein are subject to purifying selection, but this is greatest amongst those amino acid residues within β-strands and is significantly reduced at residues exposed on the capsid surface, which include those residues demonstrated by previous mutational analyses to permit the virus to escape from monoclonal antibody binding. The ratios of nonsynonymous substitution resulting in various forms of physicochemically radical and conserved amino acid change were shown to be largely equal throughout these different parts of the protein. There was a consistently higher level of nonsynonymous and charge radical sites in those regions of the gene coding for residues exposed on the outer surface of the capsid and a marked difference in the use of amino acids between surface and nonsurface regions of the protein. However, the analysis is consistent with the hypothesis that the observed sequence variation arises where it is least likely to be disruptive to the higher-order structure of the protein and is not necessarily due to positive Darwinian selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Acharya R, Fry E, Stuart D, Fox G, Rowlands D, Brown F (1989) The three-dimensional structure of foot and mouth disease virus at 2.9 A resolution. Nature 337:709–716

    Article  PubMed  CAS  Google Scholar 

  • Barnett PV, Ouldridge EJ, Rowlands DJ, Brown F, Parry NR (1989) Neutralization epitopes of type O foot and mouth disease virus. I. Identification and characterization of three functionally independent conformational sites. J Gen Virol 70:1483–1491

    Article  PubMed  CAS  Google Scholar 

  • Baxt B, Vakharia V, Moore DM, Franke AJ, Morgan DO (1989) Analysis of neutralising antigenic sites on the surface of type Al2 foot-and-mouth disease virus. J Virol 63:2143–2151

    PubMed  CAS  Google Scholar 

  • Brown F (1995) Antibody recognition and neutralization of foot and mouth disease virus. Semin Virol 6:243–248

    Article  CAS  Google Scholar 

  • Crowther JR, Farias S, Carpenter WC, Samuel AR (1993) Identification of a fifth neutralizable site on type O foot and mouth disease virus following characterization of single and quintuple monoclonal antibody escape mutants. J Gen Virol 74:1547–1553

    Article  PubMed  CAS  Google Scholar 

  • Cunningham BC, Wells JA (1993) Comparison of a structural and functional epitope. J Mol Biol 234:554–563

    Article  PubMed  CAS  Google Scholar 

  • Curry S, Fry E, Blakemore W, Abu-Ghazaleh R, Jackson T, King A, Lea S, Newman J, Rowlands D, Stuart D (1996) Perturbations in the surface of A22 Iraq foot-and-mouth disease virus accompanying coupled changes in host cell specificity and antigenicity. Structure 4:135–145

    Article  PubMed  CAS  Google Scholar 

  • Domingo E, Holland JJ (1988) High error rates, population equilibrium and evolution of RNA replication systems. In: Domingo E, Holland JJ, Ahlquist P (eds) RNA genetics, vol III. Variability of RNA genomes. CRC Press, Boca Raton, FL, pp 3–36

    Google Scholar 

  • Felsentein J (1993) PHYLIP (phytogeny inference package), version 3.5c. Department of Genetics, University of Washington, Seattle

    Google Scholar 

  • Filman DJ, Syed R, Chow M, Macadam AJ, Minor PD, Hogle JM (1989) Structural factors that control conformational transitions and serotype specificity in type 3 Poliovirus. EMBO 8:1567–1579

    CAS  Google Scholar 

  • Franssen H, Leunissen J, Goldbach R, Lamonossof G, Zimmern D (1984) Homologous sequences in non-structural proteins from cow- pea mosaic virus and picornaviruses. EMBO J 3:855–861

    PubMed  CAS  Google Scholar 

  • Grant RA, Filman DJ, Fujinami RS, Icenogle JP, Hogle JM (1992) Three dimensional structure of Theilers virus. Proc Nat Acad Sci USA 89:2061–2065

    Article  PubMed  CAS  Google Scholar 

  • Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M (1995) Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373:123–126

    Article  PubMed  CAS  Google Scholar 

  • Hogle JM, Chow M, Filman DJ (1985) Three dimensional structure of Polioviras at 2.9 A resolution. Science 229:1358–1365

    Article  PubMed  CAS  Google Scholar 

  • Holland JJ, Spindler K, Horodyski F, Grabeu E, Nichol S, Vande Pol S (1982) Rapid evolution of RNA genomes. Science 215:1577–1585

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL (1992) Positive selection and interallelic recombination at the merozoite surface antigen-1 (MSA-1) locus of Plasmodium facilparum. Mol Biol Evol 9:381–393

    PubMed  CAS  Google Scholar 

  • Hughes MK, Hughes AL (1995) Natural selection on Plasmodium surface proteins. Mol Biochem Parasitai 71:99–113

    Article  CAS  Google Scholar 

  • Hughes AL, Ota T, Nei M (1990) Positive Darwinian selection pro- motes charge profile diversity in the antigen-binding cleft of Class 1 Major-Histocompatibility-Complex molecules. Mol Biol Evol 7: 515–524

    PubMed  CAS  Google Scholar 

  • Jackson T, Ellard F, Abu-Ghazaleh R, Brookes SM, Blakemore W, Corteyn A, Stuart D, Newman J, King A (1996) Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulphate. J Virol 70:5282–5287

    PubMed  CAS  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Smith T, Chapman M, Rossmann M, Pevear D, Dutko F, Felock P, Diana G, McKinlay M (1989) Crystal structure of human rhinovirus serotype 1A (HRV1A). J Mol Biol 210:91–111

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1980) A simple model for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. 16:111–120

    CAS  Google Scholar 

  • Kitching P (1992) The excretion of Foot-and-Mouth-Disease virus by vaccinated animals. State Vet J 2:7

    Google Scholar 

  • Kitson JDA, McCahon D, Belsham GJ (1990) Sequence analysis of monoclonal antibody resistant mutants of type O foot and mouth disease virus: evidence for the involvement of the three surface exposed capsid proteins in four antigenic sites. Virology 179:26–34

    Article  PubMed  CAS  Google Scholar 

  • Kotz S, Johnson NL (1989) The encyclopaedia of statistical sciences, vol 8. Wiley, New York, p 646

    Google Scholar 

  • Lea S, Hernandez J, Blamemore W, Brocchi E, Curry S, Domingo E, Fry E, Abu-Ghazaleh R, King A, Newman J, Stuart D, Mateu MG (1994) The structure and antigenicity of a type C foot and mouth disease virus. Structure 2:123–139

    Article  PubMed  CAS  Google Scholar 

  • Lea S, Abu-Ghazaleh R, Blakemore W, Curry S, Fry E, Jackson T, King A, Logan D, Newman J, Stuart D (1995) Structural comparison of two strains of foot-and-mouth disease virus subtype 01 and a laboratory antigenic variant, G67. Structure 3:571–580

    Article  PubMed  CAS  Google Scholar 

  • Lee BK, Richards FM (1971) The interpretation of protein structures: estimation of static accessibility. J Mol Biol 55:379–400

    Article  PubMed  CAS  Google Scholar 

  • Logan D, Abu-Ghazaleh R, Blakemore W, Curry S, Jackson T, King A, Lea S, Lewis R, Newman J, Parry N, Rowlands D, Stuart D, Fry E (1993) Structure of a major immunogenic site on foot-and-mouth disease virus. Nature 362:566–568

    Article  PubMed  CAS  Google Scholar 

  • Luo M, Vriend G, Kamer G, Minor I, Arnold E, Rossman MG, Boege U, Scraba DG, Duke GM, Palmenberg AC (1987) The atomic structure of Mengo virus at 3.0 A resolution. Science 235:182–191

    Article  PubMed  CAS  Google Scholar 

  • Luo M, He C, Toth KS, Zhang CX, Lipton HL (1992) Three dimensional structure of Theiler murine encephalomyelitus virus (BeAn strain). Proc Nat Acad Sci USA 89:2409–2413

    Article  PubMed  CAS  Google Scholar 

  • Mason P, Rieder E, Baxt B (1994) RGD sequence of foot-and-mouth disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody-dependent enhancement pathway. Proc Acad Sci USA 5:1932–1936

    Article  Google Scholar 

  • Mateu M (1995) Antibody recognition of picornaviruses and escape from neutralization: a structural view. Virus Res 38:1–24

    Article  PubMed  CAS  Google Scholar 

  • McCahon D, Crowther JR, Belsham JR, Kitson JDA, Duchesne M, Have P, Meleon RH, Morgan DO, De Simone F (1989) Evidence of at least four antigenic sites on type O foot and mouth disease virus involved in neutralization; identification by single and multiple site monoclonal antibody resistant mutants. J Gen Virol 70:639–645

    Article  PubMed  CAS  Google Scholar 

  • McCullough KC, Simone FD, Brocchi E, Capucci L, Crowther JR, Kihm U (1992) Protective immune response against Foot and Mouth Disease. J Virol 66:1835–1840

    PubMed  CAS  Google Scholar 

  • Minor PD (1990) Antigenic structure of Picornaviruses. Curr Top Microbiol Immunol 161:121–154

    PubMed  CAS  Google Scholar 

  • Moore JP, Ho DD (1995) HIV-1 neutralization: the consequences of viral adaption to growth on transformed T cells. AIDS 9 (Suppl):S117-S136

    PubMed  Google Scholar 

  • Moore JP, Cao Y, Ho DD, Koup RA (1994) Development of the anti-gp 120 response during seroconversion to HIV-1. J Virol 68: 5142–5155

    PubMed  CAS  Google Scholar 

  • Muckelbauer JK, Kremer M, Minor I, Diana G, Dutko FJ, Groarke J, Pevear DC, Rossman MG (1995) The structure of coxsackie B3 at 3.5 A resolution. Structure 3:653–667

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and non-synonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    PubMed  CAS  Google Scholar 

  • Nei M, Jin L (1989) Variances of the average numbers of nucleotide substitutions within and between populations. Mol Biol Evol 6: 290–300

    PubMed  CAS  Google Scholar 

  • Oliveria MA, Zhao R, Lee W-M, Kremer MJ, Minor I, Rueckert RR, Diana GD, Pevear DC, Dutko FJ, McKinlay MA, Rossman MG (1993) The structure of human rhinovirus 16. Structure 1:51–68

    Article  Google Scholar 

  • Palmenberg AC (1989) Sequence alignment of Picornaviral capsid proteins. In: Semler BL, Ehrenfield E (eds) Molecular aspects of picornavirus infection and detection. American Society for Microbiology, Washington, DC 20006

    Google Scholar 

  • Pfaff E, Thiel H-J, Beck E, Strohmaier K, Schaller H (1988) Analysis of neutralizing epitopes on foot and mouth disease virus. Virol 62:2033–2040

    CAS  Google Scholar 

  • Rossmann MG, Arnold E, Erickson JW, Frankenberger EA, Griffith JP, Hecht HJ, Johnson JE, Kamer G, Luo M, Mosser AG, Ruerkert RR, Sherry B, Vriend G (1985) Structure of human cold virus and functional relationship to other picornaviruses. Nature 317:145–153

    Article  PubMed  CAS  Google Scholar 

  • Seibert SA, Howell CY, Hughes KA, Hughes AL (1995) Natural selection on the gag, pol, and env genes of Human Immunodeficiency virus 1 (HIV-1). Mol Biol Evol 12:803–813

    PubMed  CAS  Google Scholar 

  • Smyth M, Täte J, Hoey E, Lyons C, Martin S, Stuart D (1995) Implications for viral uncoating from the structure of bovine enterovirus. Nat Struct Biol 2:224–331

    Article  PubMed  CAS  Google Scholar 

  • Stanley G (1990) Structure, function and evolution of picornaviruses. J Gen Virol 71:2483–2501

    Article  Google Scholar 

  • Stave JW, Card JL, Morgan DO, Vakaria VN (1988) Neutralization sites of type O1 foot and mouth disease virus defined by monoclonal antibodies and neutralization-escape virus variants. Virology 162:21–29

    Article  PubMed  CAS  Google Scholar 

  • Taylor WR (1986) The classification of amino acid conservation. J Theor Biol 119:205–218

    Article  PubMed  CAS  Google Scholar 

  • Thomas A, Woortmeijer R, Pujik W, Barteling S (1988) Antigenic sites on foot-and-mouth disease virus type A10. J Virol 62:2782–2789

    PubMed  CAS  Google Scholar 

  • Wagner SD, Milstein C, Neuberger MS (1995) Codon bias targets mutation. Nature 376:732

    Article  PubMed  CAS  Google Scholar 

  • Wei X, Ghosh SK, Taylor ME, Johnson VA, Emini EA, Deutsch P, Lifosn JD, Bonhoeffer S, Nowak MA, Hahn BH, Saag MS, Shaw GM (1995) Viral dynamics in HIV-1 infection. Nature 373:117–122

    Article  PubMed  CAS  Google Scholar 

  • Xie Q-C, McCahon D, Crowther JR, Belsham GL, McCullough KC (1987) Neutralization of foot and mouth disease virus can be mediated through any of at least three separate antigenic sites. J Gen Virol 68:1637–1647

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Haydon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haydon, D., Lea, S., Fry, L. et al. Characterizing sequence variation in the VP1 capsid proteins of foot and mouth disease virus (serotype 0) with respect to virion structure. J Mol Evol 46, 465–475 (1998). https://doi.org/10.1007/PL00006327

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00006327

Key words

Navigation