Skip to main content
Log in

Hidden SUSY at the LHC: the light higgsino-world scenario and the role of a lepton collider

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

While the SUSY flavor, CP and gravitino problems seem to favor a very heavy spectrum of matter scalars, fine-tuning in the electroweak sector prefers low values of superpotential mass μ. In the limit of low μ, the two lightest neutralinos and light chargino are higgsino-like. The light charginos and neutralinos may have large production cross sections at LHC, but since they are nearly mass degenerate, there is only small energy release in three-body sparticle decays. Possible dilepton and trilepton signatures are difficult to observe after mild cuts due to the very soft pT spectrum of the final state isolated leptons. Thus, the higgsino-world scenario can easily elude standard SUSY searches at the LHC. It should motivate experimental searches to focus on dimuon and trimuon production at the very lowest pT (μ) values possible. If the neutralino relic abundance is enhanced via non-standard cosmological dark matter production, then there exist excellent prospects for direct or indirect detection of higgsino-like WIMPs. While the higgsino-world scenario may easily hide from LHC SUSY searches, a linear e+e collider or a muon collider operating in the \( \sqrt {s} \sim 0.{5} - {1}\;{\text{TeV}} \) range would be able to easily access the chargino and neutralino pair production reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Dimopoulos and H. Georgi, Softly broken supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [INSPIRE].

    Article  ADS  Google Scholar 

  2. N. Sakai, Naturalness in supersymmetric guts, Z. Phys. C 11 (1981) 153 [INSPIRE].

    ADS  Google Scholar 

  3. X. Tata, Weak scale supersymmetry: from superfields to scattering events, Cambridge University Press, Cambridge U.K. (2006).

    Google Scholar 

  4. M. Drees, R. Godbole and P. Roy, Theory and phenomenology of sparticles, World Scientific, Singapore (2004).

    Google Scholar 

  5. P. Binétruy, Supersymmetry, Oxford University Press, Oxford U.K. (2006).

    MATH  Google Scholar 

  6. S.P. Martin, A Supersymmetry primer, hep-ph/9709356 [INSPIRE].

  7. F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [INSPIRE].

    Article  ADS  Google Scholar 

  8. H. Murayama and A. Pierce, Not even decoupling can save minimal supersymmetric SU(5), Phys. Rev. D 65 (2002) 055009 [hep-ph/0108104] [INSPIRE].

    ADS  Google Scholar 

  9. S. Weinberg, Cosmological constraints on the scale of supersymmetry breaking, Phys. Rev. Lett. 48 (1982) 1303 [INSPIRE].

    Article  ADS  Google Scholar 

  10. M. Khlopov and A.D. Linde, Is it easy to save the gravitino?, Phys. Lett. B 138 (1984) 265 [INSPIRE].

    ADS  Google Scholar 

  11. M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

    ADS  Google Scholar 

  12. M. Luty, Baryogenesis via leptogenesis, Phys. Rev. D 45 (1992) 455 [INSPIRE].

    ADS  Google Scholar 

  13. W. Buchmüller and M. Plümacher, Baryon asymmetry and neutrino mixing, Phys. Lett. B 389 (1996) 73 [hep-ph/9608308] [INSPIRE].

    ADS  Google Scholar 

  14. W. Buchmüller and M. Plümacher, Neutrino masses and the baryon asymmetry, Int. J. Mod. Phys. A 15 (2000) 5047 [hep-ph/0007176] [INSPIRE].

    ADS  Google Scholar 

  15. R. Barbieri, P. Creminelli, A. Strumia and N. Tetradis, Baryogenesis through leptogenesis, Nucl. Phys. B 575 (2000) 61 [hep-ph/9911315] [INSPIRE].

    Article  ADS  Google Scholar 

  16. G. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM, Nucl. Phys. B 685 (2004) 89 [hep-ph/0310123] [INSPIRE].

    Article  ADS  Google Scholar 

  17. W. Buchmüller, R. Peccei and T. Yanagida, Leptogenesis as the origin of matter, Ann. Rev. Nucl. Part. Sci. 55 (2005) 311 [hep-ph/0502169] [INSPIRE].

    Article  ADS  Google Scholar 

  18. W. Buchmüller, P. Di Bari and M. Plümacher, Cosmic microwave background, matter–antimatter asymmetry and neutrino masses, Nucl. Phys. B 643 (2002) 367 [Erratum ibid. B 793 (2008) 362] [hep-ph/0205349] [INSPIRE].

    Article  ADS  Google Scholar 

  19. W. Buchmüller, P. Di Bari and M. Plümacher, Leptogenesis for pedestrians, Annals Phys. 315 (2005) 305 [hep-ph/0205349] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  20. W. Buchmüller, P. Di Bari and M. Plümacher, Some aspects of thermal leptogenesis, New J. Phys. 6 (2004) 105.

    Article  Google Scholar 

  21. G. Lazarides and Q. Shafi, Origin of matter in the inflationary cosmology, Phys. Lett. B 258 (1991) 305 [INSPIRE].

    ADS  Google Scholar 

  22. K. Kumekawa, T. Moroi and T. Yanagida, Flat potential for inflaton with a discrete R invariance in supergravity, Prog. Theor. Phys. 92 (1994) 437 [hep-ph/9405337] [INSPIRE].

    Article  ADS  Google Scholar 

  23. T. Asaka, K. Hamaguchi, M. Kawasaki and T. Yanagida, Leptogenesis in inflaton decay, Phys. Lett. B 464 (1999) 12 [hep-ph/9906366] [INSPIRE].

    ADS  Google Scholar 

  24. G. Giudice, M. Peloso, A. Riotto and I. Tkachev, Production of massive fermions at preheating and leptogenesis, JHEP 08 (1999) 014 [hep-ph/9905242] [INSPIRE].

    Article  ADS  Google Scholar 

  25. M. Dine, A. Kagan and S. Samuel, Naturalness in supersymmetry, or raising the supersymmetry breaking scale, Phys. Lett. B 243 (1990) 250 [INSPIRE].

    ADS  Google Scholar 

  26. A.G. Cohen, D. Kaplan and A. Nelson, The more minimal supersymmetric standard model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [INSPIRE].

    ADS  Google Scholar 

  27. H. Baer, S. Kraml, A. Lessa, S. Sekmen and X. Tata, Effective supersymmetry at the LHC, JHEP 10 (2010) 018 [arXiv:1007.3897] [INSPIRE].

    Article  ADS  Google Scholar 

  28. M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, Big-bang nucleosynthesis and gravitino, Phys. Rev. D 78 (2008) 065011 [arXiv:0804.3745] [INSPIRE].

    ADS  Google Scholar 

  29. H. Baer and X. Tata, Weak scale supersymmetry: from superfields to scattering events, Cambridge University Press, Cambridge U.K. (2006).

    Book  Google Scholar 

  30. R. Barbieri and G. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].

    Article  ADS  Google Scholar 

  31. G.W. Anderson and D.J. Castano, Measures of fine tuning, Phys. Lett. B 347 (1995) 300 [hep-ph/9409419] [INSPIRE].

    ADS  Google Scholar 

  32. K.L. Chan, U. Chattopadhyay and P. Nath, Naturalness, weak scale supersymmetry and the prospect for the observation of supersymmetry at the Tevatron and at the CERN LHC, Phys. Rev. D 58 (1998) 096004 [hep-ph/9710473] [INSPIRE].

    ADS  Google Scholar 

  33. J.L. Feng, K.T. Matchev and T. Moroi, Multi-TeV scalars are natural in minimal supergravity, Phys. Rev. Lett. 84 (2000) 2322 [hep-ph/9908309] [INSPIRE].

    Article  ADS  Google Scholar 

  34. J.L. Feng, K.T. Matchev and T. Moroi, Focus points and naturalness in supersymmetry, Phys. Rev. D 61 (2000) 075005 [hep-ph/9909334] [INSPIRE].

    ADS  Google Scholar 

  35. G.L. Kane, A higgsino-LSP world, in Perspectives on supersymmetry, G.L. Kane ed., World Scientific, Singapore (1998).

    Chapter  Google Scholar 

  36. G.L. Kane and J.D. Wells, Higgsino cold dark matter motivated by collider data, Phys. Rev. Lett. 76 (1996) 4458 [hep-ph/9603336] [INSPIRE].

    Article  ADS  Google Scholar 

  37. WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].

    Article  ADS  Google Scholar 

  38. J.R. Ellis and K.A. Olive, How finely tuned is supersymmetric dark matter?, Phys. Lett. B 514 (2001) 114 [hep-ph/0105004] [INSPIRE].

    ADS  Google Scholar 

  39. H. Baer and A.D. Box, Fine-tuning favors mixed axion/axino cold dark matter over neutralinos in the minimal supergravity model, Eur. Phys. J. C 68 (2010) 523 [arXiv:0910.0333] [INSPIRE].

    Article  ADS  Google Scholar 

  40. H. Baer, A.D. Box and H. Summy, Neutralino versus axion/axino cold dark matter in the 19 parameter SUGRA model, JHEP 10 (2010) 023 [arXiv:1005.2215] [INSPIRE].

    Article  ADS  Google Scholar 

  41. B.S. Acharya, G. Kane, S. Watson and P. Kumar, A non-thermal WIMP miracle, Phys. Rev. D 80 (2009) 083529 [arXiv:0908.2430] [INSPIRE].

    ADS  Google Scholar 

  42. T. Moroi and L. Randall, Wino cold dark matter from anomaly mediated SUSY breaking, Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527] [INSPIRE].

    Article  ADS  Google Scholar 

  43. G.B. Gelmini and P. Gondolo, Neutralino with the right cold dark matter abundance in (almost) any supersymmetric model, Phys. Rev. D 74 (2006) 023510 [hep-ph/0602230] [INSPIRE].

    ADS  Google Scholar 

  44. G. Gelmini, P. Gondolo, A. Soldatenko and C.E. Yaguna, The effect of a late decaying scalar on the neutralino relic density, Phys. Rev. D 74 (2006) 083514 [hep-ph/0605016] [INSPIRE].

    ADS  Google Scholar 

  45. R. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].

    Article  ADS  Google Scholar 

  46. R. Peccei and H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].

    ADS  Google Scholar 

  47. S. Weinberg, A new light boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].

    Article  ADS  Google Scholar 

  48. F. Wilczek, Problem of strong p and t invariance in the presence of instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].

    Article  ADS  Google Scholar 

  49. J.E. Kim, Weak interaction singlet and strong CP invariance, Phys. Rev. Lett. 43 (1979) 103 [INSPIRE].

    Article  ADS  Google Scholar 

  50. M.A. Shifman, A. Vainshtein and V.I. Zakharov, Can confinement ensure natural CP invariance of strong interactions?, Nucl. Phys. B 166 (1980) 493 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. M. Dine, W. Fischler and M. Srednicki, A simple solution to the strong CP problem with a harmless axion, Phys. Lett. B 104 (1981) 199 [INSPIRE].

    ADS  Google Scholar 

  52. A.P. Zhitnitskii, On possible suppression of the axion hadron interactions (In Russian), Sov. J. Nucl. Phys. 31 (1980) 260 [Yad. Fiz. 31 (1980) 497] [INSPIRE].

    Google Scholar 

  53. K.-Y. Choi, J.E. Kim, H.M. Lee and O. Seto, Neutralino dark matter from heavy axino decay, Phys. Rev. D 77 (2008) 123501 [arXiv:0801.0491] [INSPIRE].

    ADS  Google Scholar 

  54. H. Baer, A. Lessa, S. Rajagopalan and W. Sreethawong, Mixed axion/neutralino cold dark matter in supersymmetric models, JCAP 06 (2011) 031 [arXiv:1103.5413] [INSPIRE].

    ADS  Google Scholar 

  55. M. Bolz, A. Brandenburg and W. Buchmüller, Thermal production of gravitinos, Nucl. Phys. B 606 (2001) 518 [Erratum ibid. B 790 (2008) 336–337] [hep-ph/0012052] [INSPIRE].

    Article  ADS  Google Scholar 

  56. J. Pradler and F.D. Steffen, Thermal gravitino production and collider tests of leptogenesis, Phys. Rev. D 75 (2007) 023509 [hep-ph/0608344] [INSPIRE].

    ADS  Google Scholar 

  57. V.S. Rychkov and A. Strumia, Thermal production of gravitinos, Phys. Rev. D 75 (2007) 075011 [hep-ph/0701104] [INSPIRE].

    ADS  Google Scholar 

  58. K. Kohri, M. Yamaguchi and J. Yokoyama, Neutralino dark matter from heavy gravitino decay, Phys. Rev. D 72 (2005) 083510 [hep-ph/0502211] [INSPIRE].

    ADS  Google Scholar 

  59. T. Asaka, S. Nakamura and M. Yamaguchi, Gravitinos from heavy scalar decay, Phys. Rev. D 74 (2006) 023520 [hep-ph/0604132] [INSPIRE].

    ADS  Google Scholar 

  60. M. Endo, F. Takahashi and T. Yanagida, Inflaton decay in supergravity, Phys. Rev. D 76 (2007) 083509 [arXiv:0706.0986] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  61. H. Baer, R. Dermisek, S. Rajagopalan and H. Summy, Neutralino, axion and axino cold dark matter in minimal, hypercharged and gaugino AMSB, JCAP 07 (2010) 014 [arXiv:1004.3297] [INSPIRE].

    ADS  Google Scholar 

  62. J.R. Ellis, K.A. Olive and Y. Santoso, The MSSM parameter space with nonuniversal Higgs masses, Phys. Lett. B 539 (2002) 107 [hep-ph/0204192] [INSPIRE].

    ADS  Google Scholar 

  63. J.R. Ellis, T. Falk, K.A. Olive and Y. Santoso, Exploration of the MSSM with nonuniversal Higgs masses, Nucl. Phys. B 652 (2003) 259 [hep-ph/0210205] [INSPIRE].

    Article  ADS  Google Scholar 

  64. H. Baer, A. Mustafayev, S. Profumo, A. Belyaev and X. Tata, Neutralino cold dark matter in a one parameter extension of the minimal supergravity model, Phys. Rev. D 71 (2005) 095008 [hep-ph/0412059] [INSPIRE].

    ADS  Google Scholar 

  65. H. Baer, A. Mustafayev, S. Profumo, A. Belyaev and X. Tata, Direct, indirect and collider detection of neutralino dark matter in SUSY models with non-universal Higgs masses, JHEP 07 (2005) 065 [hep-ph/0504001] [INSPIRE].

    Article  ADS  Google Scholar 

  66. H. Baer and X. Tata, Probing charginos and neutralinos beyond the reach of LEP at the Tevatron collider, Phys. Rev. D 47 (1993) 2739 [INSPIRE].

    ADS  Google Scholar 

  67. H. Baer, M. Drees, F. Paige, P. Quintana and X. Tata, Trilepton signal for supersymmetry at the Fermilab Tevatron revisited, Phys. Rev. D 61 (2000) 095007 [hep-ph/9906233] [INSPIRE].

    ADS  Google Scholar 

  68. V.D. Barger and C. Kao, Trilepton signature of minimal supergravity at the upgraded Tevatron, Phys. Rev. D 60 (1999) 115015 [hep-ph/9811489] [INSPIRE].

    ADS  Google Scholar 

  69. K.T. Matchev and D.M. Pierce, New backgrounds in trilepton, dilepton and dilepton plus τ jet SUSY signals at the Tevatron, Phys. Lett. B 467 (1999) 225 [hep-ph/9907505] [INSPIRE].

    ADS  Google Scholar 

  70. SUGRA Working Group collaboration, V. Barger et al., Report of the SUGRA working group for Run II of the Tevatron, hep-ph/0003154 [INSPIRE].

  71. F.E. Paige, S.D. Protopopescu, H. Baer and X. Tata, ISAJET 7.69: a Monte Carlo event generator for pp, pp and e + e reactions, hep-ph/0312045 [INSPIRE].

  72. H. Baer, J. Ferrandis, S. Kraml and W. Porod, On the treatment of threshold effects in SUSY spectrum computations, Phys. Rev. D 73 (2006) 015010 [hep-ph/0511123] [INSPIRE].

    ADS  Google Scholar 

  73. H. Baer, V. Barger, A. Lessa and X. Tata, Capability of LHC to discover supersymmetry with \( \sqrt {s} = { }7TeV{ }and{ }1{ }f{b^{{ - 1}}} \) , JHEP 06 (2010) 102 [arXiv:1004.3594] [INSPIRE].

    Article  ADS  Google Scholar 

  74. H. Baer, X. Tata and J. Woodside, Multi-lepton signals from supersymmetry at hadron super colliders, Phys. Rev. D 45 (1992) 142 [INSPIRE].

    ADS  Google Scholar 

  75. H. Baer, C.-h. Chen, F. Paige and X. Tata, Signals for minimal supergravity at the CERN Large Hadron Collider: multi-jet plus missing energy channel, Phys. Rev. D 52 (1995) 2746 [hep-ph/9503271] [INSPIRE].

    ADS  Google Scholar 

  76. H. Baer, C.-h. Chen, F. Paige and X. Tata, Signals for minimal supergravity at the CERN Large Hadron Collider. 2: multi-lepton channels, Phys. Rev. D 53 (1996) 6241 [hep-ph/9512383] [INSPIRE].

    ADS  Google Scholar 

  77. H. Baer, C.-H. Chen, M. Drees, F. Paige and X. Tata, Probing minimal supergravity at the CERN LHC for large tan β, Phys. Rev. D 59 (1999) 055014 [hep-ph/9809223] [INSPIRE].

    ADS  Google Scholar 

  78. H. Baer, C. Balázs, A. Belyaev, T. Krupovnickas and X. Tata, Updated reach of the CERN LHC and constraints from relic density, b → sγ and a(μ) in the mSUGRA model, JHEP 06 (2003) 054 [hep-ph/0304303] [INSPIRE].

    Article  ADS  Google Scholar 

  79. S. Abdullin and F. Charles, Search for SUSY in (leptons +) jets + E miss (T ) final states, Nucl. Phys. B 547 (1999) 60 [hep-ph/9811402] [INSPIRE].

    Article  ADS  Google Scholar 

  80. CMS collaboration, S. Abdullin et al., Discovery potential for supersymmetry in CMS, J. Phys. G 28 (2002) 469 [hep-ph/9806366] [INSPIRE].

    ADS  Google Scholar 

  81. B. Allanach, J. Hetherington, M.A. Parker and B. Webber, Naturalness reach of the Large Hadron Collider in minimal supergravity, JHEP 08 (2000) 017 [hep-ph/0005186] [INSPIRE].

    ADS  Google Scholar 

  82. W. Beenakker, R. Hopker and M. Spira, PROSPINO: a program for the production of supersymmetric particles in next-to-leading order QCD, hep-ph/9611232 [INSPIRE].

  83. H. Baer, J.R. Ellis, G. Gelmini, D.V. Nanopoulos and X. Tata, Squark decays into gauginos at the pp collider, Phys. Lett. B 161 (1985) 175 [INSPIRE].

    ADS  Google Scholar 

  84. G. Gamberini, Heavy gluino and squark decays at pp collider, Z. Phys. C 30 (1986) 605 [INSPIRE].

    ADS  Google Scholar 

  85. H. Baer, V.D. Barger, D. Karatas and X. Tata, Detecting gluinos at hadron supercolliders, Phys. Rev. D 36 (1987) 96 [INSPIRE].

    ADS  Google Scholar 

  86. H. Baer and T. Krupovnickas, Radiative neutralino decay in supersymmetric models, JHEP 09 (2002) 038 [hep-ph/0208277] [INSPIRE].

    Article  ADS  Google Scholar 

  87. XENON100 collaboration, E. Aprile et al., Dark matter results from 100 live days of XENON100 data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE].

    Article  ADS  Google Scholar 

  88. H. Baer, A. Belyaev, T. Krupovnickas and J. O’Farrill, Indirect, direct and collider detection of neutralino dark matter, JCAP 08 (2004) 005 [hep-ph/0405210] [INSPIRE].

    ADS  Google Scholar 

  89. H. Baer, E.-K. Park and X. Tata, Collider, direct and indirect detection of supersymmetric dark matter, New J. Phys. 11 (2009) 105024 [arXiv:0903.0555] [INSPIRE].

    Article  ADS  Google Scholar 

  90. H. Baer and S. Profumo, Low energy antideuterons: shedding light on dark matter, JCAP 12 (2005) 008 [astro-ph/0510722] [INSPIRE].

    ADS  Google Scholar 

  91. Fermi LAT collaboration, I. Kuznetsova and J. Rafelski, Electron-positron plasma drop formed by ultra-intense laser pulses, arXiv:1109.3546 [INSPIRE].

  92. K. Rajagopal, M.S. Turner and F. Wilczek, Cosmological implications of axinos, Nucl. Phys. B 358 (1991) 447 [INSPIRE].

    Article  ADS  Google Scholar 

  93. L. Covi, J.E. Kim and L. Roszkowski, Axinos as cold dark matter, Phys. Rev. Lett. 82 (1999) 4180 [hep-ph/9905212] [INSPIRE].

    Article  ADS  Google Scholar 

  94. L. Covi, H.-B. Kim, J.E. Kim and L. Roszkowski, Axinos as dark matter, JHEP 05 (2001) 033 [hep-ph/0101009] [INSPIRE].

    Article  ADS  Google Scholar 

  95. H. Baer, A.D. Box and H. Summy, Mainly axion cold dark matter in the minimal supergravity model, JHEP 08 (2009) 080 [arXiv:0906.2595] [INSPIRE].

    Article  ADS  Google Scholar 

  96. F.D. Steffen, Dark matter candidates-axions, neutralinos, gravitinos and axinos, Eur. Phys. J. C 59 (2009) 557 [arXiv:0811.3347] [INSPIRE].

    Article  ADS  Google Scholar 

  97. H. Baer, C.-h. Chen, F. Paige and X. Tata, Trileptons from chargino-neutralino production at the CERN Large Hadron Collider, Phys. Rev. D 50 (1994) 4508 [hep-ph/9404212] [INSPIRE].

    ADS  Google Scholar 

  98. H. Baer, T. Krupovnickas, S. Profumo and P. Ullio, Model independent approach to focus point supersymmetry: from dark matter to collider searches, JHEP 10 (2005) 020 [hep-ph/0507282] [INSPIRE].

    Article  ADS  Google Scholar 

  99. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

  100. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  Google Scholar 

  101. J. Conway, PGS — Pretty Good Simulation, online at http://physics.ucdavis.edu/˜conway/research/software/pgs/pgs4-general.htm.

  102. H. Baer, K. Hagiwara and X. Tata, Gauginos as a signal for supersymmetry at pp colliders, Phys. Rev. D 35 (1987) 1598 [INSPIRE].

    ADS  Google Scholar 

  103. H. Baer, D.D. Karatas and X. Tata, Gluino and squark production in association with gauginos at hadron supercolliders, Phys. Rev. D 42 (1990) 2259 [INSPIRE].

    ADS  Google Scholar 

  104. H. Baer, C. Kao and X. Tata, Aspects of chargino-neutralino production at the Tevatron collider, Phys. Rev. D 48 (1993) 5175 [hep-ph/9307347] [INSPIRE].

    ADS  Google Scholar 

  105. I. Hinchliffe, F. Paige, M. Shapiro, J. Soderqvist and W. Yao, Precision SUSY measurements at CERN LHC, Phys. Rev. D 55 (1997) 5520 [hep-ph/9610544] [INSPIRE].

    ADS  Google Scholar 

  106. H. Bachacou, I. Hinchliffe and F.E. Paige, Measurements of masses in SUGRA models at CERN LHC, Phys. Rev. D 62 (2000) 015009 [hep-ph/9907518] [INSPIRE].

    ADS  Google Scholar 

  107. ATLAS collaboration, Expected performance of the ATLAS experiment: detector, trigger and physics, CERN-OPEN-2008-020 (2009).

  108. CMS Collaboration, Physics technical design report. Volume II: physics performance, CERN-LHCC-2006-021 (2006).

  109. H. Baer, R.B. Munroe and X. Tata, Supersymmetry studies at future linear e + e colliders, Phys. Rev. D 54 (1996) 6735 [Erratum ibid. D 56 (1997) 4424] [hep-ph/9606325] [INSPIRE].

    ADS  Google Scholar 

  110. H. Baer, A. Belyaev, T. Krupovnickas and X. Tata, Linear collider capabilities for supersymmetry in dark matter allowed regions of the mSUGRA model, JHEP 02 (2004) 007 hep-ph/0311351] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Baer.

Additional information

ArXiv ePrint: 1107.5581

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baer, H., Barger, V. & Huang, P. Hidden SUSY at the LHC: the light higgsino-world scenario and the role of a lepton collider. J. High Energ. Phys. 2011, 31 (2011). https://doi.org/10.1007/JHEP11(2011)031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2011)031

Keywords

Navigation