Skip to main content
Log in

Global properties of causal wedges in asymptotically AdS spacetimes

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We examine general features of causal wedges in asymptotically AdS space-times and show that in a wide variety of cases they have non-trivial topology. We also prove some general results regarding minimal area surfaces on the causal wedge boundary and thereby derive constraints on the causal holographic information. We go on to demonstrate that certain properties of the causal wedge impact significantly on features of extremal surfaces which are relevant for computation of holographic entanglement entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.T. Horowitz and N. Itzhaki, Black holes, shock waves and causality in the AdS/CFT correspondence, JHEP 02 (1999) 010 [hep-th/9901012] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. E. Woolgar, The Positivity of energy for asymptotically anti-de Sitter space-times, Class. Quant. Grav. 11 (1994) 1881 [gr-qc/9404019] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. S. Gao and R.M. Wald, Theorems on gravitational time delay and related issues, Class. Quant. Grav. 17 (2000) 4999 [gr-qc/0007021] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. D.N. Kabat and G. Lifschytz, Gauge theory origins of supergravity causal structure, JHEP 05 (1999) 005 [hep-th/9902073] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. V. Balasubramanian and S.F. Ross, Holographic particle detection, Phys. Rev. D 61 (2000) 044007 [hep-th/9906226] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. J. Louko, D. Marolf and S.F. Ross, On geodesic propagators and black hole holography, Phys. Rev. D 62 (2000) 044041 [hep-th/0002111] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. J.P. Gregory and S.F. Ross, Looking for event horizons using UV/IR relations, Phys. Rev. D 63 (2001) 104023 [hep-th/0012135] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. D. Marolf, States and boundary terms: Subtleties of Lorentzian AdS/CFT, JHEP 05 (2005) 042 [hep-th/0412032] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. V.E. Hubeny, M. Rangamani and S.F. Ross, Causal structures and holography, JHEP 07 (2005) 037 [hep-th/0504034] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. V.E. Hubeny, H. Liu and M. Rangamani, Bulk-cone singularities & signatures of horizon formation in AdS/CFT, JHEP 01 (2007) 009 [hep-th/0610041] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. R. Bousso, S. Leichenauer and V. Rosenhaus, Light-sheets and AdS/CFT, Phys. Rev. D 86 (2012) 046009 [arXiv:1203.6619] [INSPIRE].

    ADS  Google Scholar 

  12. B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The Gravity Dual of a Density Matrix, Class. Quant. Grav. 29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].

    Article  ADS  Google Scholar 

  13. V.E. Hubeny and M. Rangamani, Causal Holographic Information, JHEP 06 (2012) 114 [arXiv:1204.1698] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. R. Bousso, B. Freivogel, S. Leichenauer, V. Rosenhaus and C. Zukowski, Null Geodesics, Local CFT Operators and AdS/CFT for Subregions, arXiv:1209.4641 [INSPIRE].

  15. S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. V.E. Hubeny, M. Rangamani and T. Takayanagi, A Covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. V.E. Hubeny, Extremal surfaces as bulk probes in AdS/CFT, JHEP 07 (2012) 093 [arXiv:1203.1044] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. P.L. Ribeiro, Algebraic holography in asymptotically simple, asymptotically AdS spacetimes, Prog. Math. 251 (2007) 253 [hep-th/0502096] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  19. P.L. Ribeiro, Structural and dynamical aspects of the AdS/CFT correspondence: A Rigorous approach, arXiv:0712.0401 [INSPIRE].

  20. V.E. Hubeny, M. Rangamani and E. Tonni, Thermalization of Causal Holographic Information, JHEP 05 (2013) 136 [arXiv:1302.0853] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. B. Freivogel and B. Mosk, Properties of Causal Holographic Information, arXiv:1304.7229 [INSPIRE].

  23. G. Galloway, K. Schleich, D. Witt and E. Woolgar, Topological censorship and higher genus black holes, Phys. Rev. D 60 (1999) 104039 [gr-qc/9902061] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. J.J. Friess, S.S. Gubser, G. Michalogiorgakis and S.S. Pufu, Expanding plasmas and quasinormal modes of anti-de Sitter black holes, JHEP 04 (2007) 080 [hep-th/0611005] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. H. Araki and E. Lieb, Entropy inequalities, Commun. Math. Phys. 18 (1970) 160.

    Article  MathSciNet  ADS  Google Scholar 

  26. V.E. Hubeny, H. Maxfield, M. Rangamani and E. Tonni, Holographic entanglement plateaux, JHEP 08 (2013) 092 [arXiv:1306.4004] [INSPIRE].

    Article  ADS  Google Scholar 

  27. A.D. Helfer, Black holes reconsidered, arXiv:1105.1980 [INSPIRE].

  28. P.T. Chrusciel and G.J. Galloway, ‘Nowheredifferentiable horizons, Commun. Math. Phys. 193 (1998) 449 [gr-qc/9611032] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. J.K. Beem and A. Krolak, Cauchy horizon endpoints and differentiability, gr-qc/9709046 [INSPIRE].

  30. B. Freivogel, J. McGreevy and S.J. Suh, Exactly Stable Collective Oscillations in Conformal Field Theory, Phys. Rev. D 85 (2012) 105002 [arXiv:1109.6013] [INSPIRE].

    ADS  Google Scholar 

  31. P. Figueras, V.E. Hubeny, M. Rangamani and S.F. Ross, Dynamical black holes and expanding plasmas, JHEP 04 (2009) 137 [arXiv:0902.4696] [INSPIRE].

    Article  ADS  Google Scholar 

  32. J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic Evolution of Entanglement Entropy, JHEP 11 (2010) 149 [arXiv:1006.4090] [INSPIRE].

    Article  ADS  Google Scholar 

  33. V.E. Hubeny and H. Maxfield, Holographic probes of collapsing black holes, work in progress.

  34. A.C. Wall, Maximin Surfaces and the Strong Subadditivity of the Covariant Holographic Entanglement Entropy, arXiv:1211.3494 [INSPIRE].

  35. B. Freivogel, V.E. Hubeny, A. Maloney, R.C. Myers, M. Rangamani et al., Inflation in AdS/CFT, JHEP 03 (2006) 007 [hep-th/0510046] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. M. Headrick and T. Takayanagi, A Holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev. D 76 (2007) 106013 [arXiv:0704.3719] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukund Rangamani.

Additional information

ArXiv ePrint: 1306.4324

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hubeny, V.E., Rangamani, M. & Tonni, E. Global properties of causal wedges in asymptotically AdS spacetimes. J. High Energ. Phys. 2013, 59 (2013). https://doi.org/10.1007/JHEP10(2013)059

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)059

Keywords

Navigation