Skip to main content
Log in

Kinematic edges with flavor oscillation and non-zero widths

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Kinematic edges in cascade decays provide a probe of the masses of new particles. In some new physics scenarios the decay chain involves intermediate particles of different flavors that can mix and oscillate. We discuss the implication of such oscillation, and in particular its interplay with the non-zero widths of the particles. We derive explicit formulae for differential decay rates involving both non-zero widths and oscillation, and show that in the case where the mass difference between the intermediate particle is of the order of their widths, both oscillation and width effects are important. An examination of the physical observables contained in these differential decay rates is provided. We calculate differential decay rates for cases in which the intermediate particles are either scalars or fermions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Allanach, C. Lester, M.A. Parker and B. Webber, Measuring sparticle masses in nonuniversal string inspired models at the LHC, JHEP 09 (2000) 004 [hep-ph/0007009] [ inSPIRE].

    Article  ADS  Google Scholar 

  2. I. Hinchliffe, F. Paige, M. Shapiro, J. Soderqvist and W. Yao, Precision SUSY measurements at CERN LHC, Phys. Rev. D 55 (1997) 5520 [hep-ph/9610544] [ inSPIRE].

    ADS  Google Scholar 

  3. P. Meade and M. Reece, Top partners at the LHC: spin and mass measurement, Phys. Rev. D 74 (2006) 015010 [hep-ph/0601124] [ inSPIRE].

    ADS  Google Scholar 

  4. B. Gjelsten,. Miller, D.J., P. Osland and A. Raklev, Mass determination in cascade decays using shape formulas, AIP Conf. Proc. 903 (2007) 257 [hep-ph/0611259] [ inSPIRE].

    Article  ADS  Google Scholar 

  5. M. Burns, K.T. Matchev and M. Park, Using kinematic boundary lines for particle mass measurements and disambiguation in SUSY-like events with missing energy, JHEP 05 (2009) 094 [arXiv:0903.4371] [inSPIRE].

    Article  ADS  Google Scholar 

  6. C. Lester, M.A. Parker and M.J. White, Three body kinematic endpoints in SUSY models with non-universal Higgs masses, JHEP 10 (2007) 051 [hep-ph/0609298] [ inSPIRE].

    Article  ADS  Google Scholar 

  7. LHC/LC Study Group collaboration, G. Weiglein et al., Physics interplay of the LHC and the ILC, Phys. Rept. 426 (2006) 47 [hep-ph/0410364] [ inSPIRE].

    Article  Google Scholar 

  8. A.J. Barr and C.G. Lester, A review of the mass measurement techniques proposed for the Large Hadron Collider, J. Phys. G 37 (2010) 123001 [arXiv:1004.2732] [ inSPIRE].

    ADS  Google Scholar 

  9. B. Gjelsten,. Miller, D.J. and P. Osland, Measurement of SUSY masses via cascade decays for SPS 1a, JHEP 12 (2004) 003 [hep-ph/0410303] [ inSPIRE].

    Article  ADS  Google Scholar 

  10. B. Gjelsten,. Miller, D.J.and P. Osland, Measurement of the gluino mass via cascade decays for SPS 1a, JHEP 06 (2005) 015 [hep-ph/0501033] [ inSPIRE].

    Article  ADS  Google Scholar 

  11. B. Gjelsten,. Miller, D.J., P. Osland and A. Raklev, Mass determination in cascade decays using shape formulas, AIP Conf. Proc. 903 (2007) 257 [hep-ph/0611259] [ inSPIRE].

    Article  ADS  Google Scholar 

  12. C.G. Lester, M.A. Parker and M.J. White, Determining SUSY model parameters and masses at the LHC using cross-sections, kinematic edges and other observables, JHEP 01 (2006) 080 [hep-ph/0508143] [ inSPIRE].

    Article  ADS  Google Scholar 

  13. F.E. Paige, Determining SUSY particle masses at LHC, hep-ph/9609373 [in SPIRE].

  14. D.J. Miller, P. Osland and A. Raklev, Invariant mass distributions in cascade decays, JHEP 03 (2006) 034 [hep-ph/0510356] [ inSPIRE].

    Article  ADS  Google Scholar 

  15. N. Arkani-Hamed, H.-C. Cheng, J.L. Feng and L.J. Hall, Probing lepton flavor violation at future colliders, Phys. Rev. Lett. 77 (1996) 1937 [hep-ph/9603431] [ inSPIRE].

    Article  ADS  Google Scholar 

  16. N. Arkani-Hamed, J.L. Feng, L.J. Hall and H.-C. Cheng, CP violation from slepton oscillations at the LHC and NLC, Nucl. Phys. B 505 (1997) 3 [hep-ph/9704205] [ inSPIRE].

    Article  ADS  Google Scholar 

  17. J. Hisano, R. Kitano and M.M. Nojiri, Slepton oscillation at Large Hadron Collider, Phys. Rev. D 65 (2002) 116002 [hep-ph/0202129] [ inSPIRE].

    ADS  Google Scholar 

  18. J.L. Feng, C.G. Lester,Y. Nir and Y. Shadmi, The standard model and supersymmetric flavor puzzles at the Large Hadron Collider, Phys. Rev. D 77 (2008) 076002 [arXiv:0712.0674] [ inSPIRE].

    ADS  Google Scholar 

  19. G. Hiller, Y. Hochberg and Y. Nir, Flavor changing processes in supersymmetric models with hybrid gauge-and gravity-mediation, JHEP 03 (2009) 115 [arXiv:0812.0511] [ inSPIRE].

    Article  ADS  Google Scholar 

  20. K. Agashe and M. Graesser, Signals of supersymmetric lepton flavor violation at the CERN LHC, Phys. Rev. D 61 (2000) 075008 [hep-ph/9904422] [ inSPIRE].

    ADS  Google Scholar 

  21. I. Hinchliffe and F. Paige, Lepton flavor violation at the CERN LHC, Phys. Rev. D 63 (2001) 115006 [hep-ph/0010086] [ inSPIRE].

    ADS  Google Scholar 

  22. R. Kitano, A clean slepton mixing signal at the LHC, JHEP 03 (2008) 023 [arXiv:0801.3486] [ inSPIRE].

    Article  ADS  Google Scholar 

  23. J.L. Feng, S.T. French, C.G. Lester, Y. Nirand Y. Shadmi, The shifted peak: resolving nearly degenerate particles at the LHC, Phys. Rev. D 80 (2009) 114004 [arXiv:0906.4215] [ inSPIRE].

    ADS  Google Scholar 

  24. J.L. Fenget al., Measuring slepton masses and mixings at the LHC, JHEP 01 (2010) 047 [arXiv:0910.1618] [ inSPIRE].

    Article  ADS  Google Scholar 

  25. I. Galon and Y. Shadmi, Kinematic edges with flavor splitting and mixing, arXiv:1108.2220 [in SPIRE].

  26. L.-T. Wang and I. Yavin, A review of spin determination at the LHC, Int. J. Mod. Phys. A 23 (2008) 4647 [arXiv:0802.2726] [ inSPIRE].

    ADS  Google Scholar 

  27. A.M. Badalyan, L.P. Kok, M.I. Polikarpov and A.Yu. Simonov, Resonances in coupled channels in nuclear and particle physics, Phys. Rept. 82 (1982) 31.

    Article  ADS  Google Scholar 

  28. S.U. Chung et al., Partial wave analysis in K -matrix formalism, Annalen der Physik 507 (1995) 404.

    Article  ADS  Google Scholar 

  29. M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Addison-Wesley Publishing Company, USA (1996).

    Google Scholar 

  30. S. Weinberg, The quantum theory of fields. Volume I, Cambridge University Press, Cambridge U.K. (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean J. Robinson.

Additional information

ArXiv ePrint: 1108.5381

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grossman, Y., Martone, M. & Robinson, D.J. Kinematic edges with flavor oscillation and non-zero widths. J. High Energ. Phys. 2011, 127 (2011). https://doi.org/10.1007/JHEP10(2011)127

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2011)127

Keywords

Navigation