Skip to main content
Log in

Modified Higgs sectors and NLO associated production

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Many beyond the Standard Model (BSM) scenarios involve Higgs couplings to additional electroweak fields. It is well established that these new fields may modify hγγ and hγZ decays at one-loop. However, one unexplored aspect of such scenarios is that by electroweak symmetry one should also expect modifications to the hZZ coupling at one-loop and, more generally, modifications to Higgs production and decay channels beyond tree-level. In this paper we investigate the full BSM modified electroweak corrections to associated Higgs production at both the LHC and a future lepton collider in two simple SM extensions. From both inclusive and differential NLO associated production cross sections we find BSM-NLO corrections can be as large as \( \mathcal{O} \)(≿ 10%) when compared to the SM expectation, consistent with other precision electroweak measurements, even in scenarios where modifications to the Higgs diphoton rate are not significant. At the LHC such corrections are comparable to the involved QCD uncertainties. At a lepton collider the Higgs associated production cross section can be measured to high accuracy (\( \mathcal{O} \)(1%) independent of uncertainties in total width and other couplings), and such a deviation could be easily observed even if the new states remain beyond kinematic reach. This should be compared to the expected accuracy for a model-independent determination of the hγγ coupling at a lepton collider, which is \( \mathcal{O} \)(15%). This work demonstrates that precision measurements of the Higgs associated production cross section constitute a powerful probe of modified Higgs sectors and will be valuable for indirectly exploring BSM scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. A. Joglekar, P. Schwaller and C.E. Wagner, Dark Matter and Enhanced Higgs to Di-photon Rate from Vector-like Leptons, JHEP 12 (2012) 064 [arXiv:1207.4235] [INSPIRE].

    Article  ADS  Google Scholar 

  4. A. Djouadi, Squark effects on Higgs boson production and decay at the LHC, Phys. Lett. B 435 (1998) 101 [hep-ph/9806315] [INSPIRE].

    ADS  Google Scholar 

  5. F.J. Petriello, Kaluza-Klein effects on Higgs physics in universal extra dimensions, JHEP 05 (2002) 003 [hep-ph/0204067] [INSPIRE].

    Article  ADS  Google Scholar 

  6. T. Han, H.E. Logan, B. McElrath and L.-T. Wang, Loop induced decays of the little Higgs: Hgg, γγ, Phys. Lett. B 563 (2003) 191 [Erratum ibid. B 603 (2004) 257] [hep-ph/0302188] [INSPIRE].

  7. C.-R. Chen, K. Tobe and C.-P. Yuan, Higgs boson production and decay in little Higgs models with T-parity, Phys. Lett. B 640 (2006) 263 [hep-ph/0602211] [INSPIRE].

    ADS  Google Scholar 

  8. H. Elvang, D.Z. Freedman and M. Kiermaier, Recursion Relations, Generating Functions and Unitarity Sums in N = 4 SYM Theory, JHEP 04 (2009) 009 [arXiv:0808.1720] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. G. Cacciapaglia, A. Deandrea and J. Llodra-Perez, Higgsγγ beyond the Standard Model, JHEP 06 (2009) 054 [arXiv:0901.0927] [INSPIRE].

    Article  ADS  Google Scholar 

  10. I. Low, R. Rattazzi and A. Vichi, Theoretical Constraints on the Higgs Effective Couplings, JHEP 04 (2010) 126 [arXiv:0907.5413] [INSPIRE].

    Article  ADS  Google Scholar 

  11. S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, The Custodial Randall-Sundrum Model: From Precision Tests to Higgs Physics, JHEP 09 (2010) 014 [arXiv:1005.4315] [INSPIRE].

    Article  ADS  Google Scholar 

  12. C. Englert, T. Plehn, D. Zerwas and P.M. Zerwas, Exploring the Higgs portal, Phys. Lett. B 703 (2011) 298 [arXiv:1106.3097] [INSPIRE].

    ADS  Google Scholar 

  13. J. Cao, Z. Heng, T. Liu and J.M. Yang, Di-photon Higgs signal at the LHC: A Comparative study for different supersymmetric models, Phys. Lett. B 703 (2011) 462 [arXiv:1103.0631] [INSPIRE].

    ADS  Google Scholar 

  14. A. Alves, E. Ramirez Barreto, A. Dias, C. de S. Pires, F. Queiroz et al., Probing 3-3-1 Models in Diphoton Higgs Boson Decay, Phys. Rev. D 84 (2011) 115004 [arXiv:1109.0238] [INSPIRE].

  15. M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].

    Article  ADS  Google Scholar 

  16. A. Arvanitaki and G. Villadoro, A Non Standard Model Higgs at the LHC as a Sign of Naturalness, JHEP 02 (2012) 144 [arXiv:1112.4835] [INSPIRE].

    Article  ADS  Google Scholar 

  17. A. Arhrib, R. Benbrik, M. Chabab, G. Moultaka and L. Rahili, Higgs boson decay into 2 photons in the type II Seesaw Model, JHEP 04 (2012) 136 [arXiv:1112.5453] [INSPIRE].

    Article  ADS  Google Scholar 

  18. F. Goertz, U. Haisch and M. Neubert, Bounds on Warped Extra Dimensions from a Standard Model-like Higgs Boson, Phys. Lett. B 713 (2012) 23 [arXiv:1112.5099] [INSPIRE].

    ADS  Google Scholar 

  19. A. Arhrib, R. Benbrik and N. Gaur, Hγγ in Inert Higgs Doublet Model, Phys. Rev. D 85 (2012) 095021 [arXiv:1201.2644] [INSPIRE].

    ADS  Google Scholar 

  20. L. Wang and X.-F. Han, LHC diphoton Higgs signal and top quark forward-backward asymmetry in quasi-inert Higgs doublet model, JHEP 05 (2012) 088 [arXiv:1203.4477] [INSPIRE].

    Article  ADS  Google Scholar 

  21. B. Batell, S. Gori and L.-T. Wang, Exploring the Higgs Portal with 10/fb at the LHC, JHEP 06 (2012) 172 [arXiv:1112.5180] [INSPIRE].

    Article  ADS  Google Scholar 

  22. S. Kanemura and K. Yagyu, Radiative corrections to electroweak parameters in the Higgs triplet model and implication with the recent Higgs boson searches, Phys. Rev. D 85 (2012) 115009 [arXiv:1201.6287] [INSPIRE].

    ADS  Google Scholar 

  23. V. Barger, M. Ishida and W.-Y. Keung, Total Width of 125 GeV Higgs Boson, Phys. Rev. Lett. 108 (2012) 261801 [arXiv:1203.3456] [INSPIRE].

    Article  ADS  Google Scholar 

  24. P. Draper and D. McKeen, Diphotons from Tetraphotons in the Decay of a 125 GeV Higgs at the LHC, Phys. Rev. D 85 (2012) 115023 [arXiv:1204.1061] [INSPIRE].

    ADS  Google Scholar 

  25. S. Dawson and E. Furlan, A Higgs Conundrum with Vector Fermions, Phys. Rev. D 86 (2012) 015021 [arXiv:1205.4733] [INSPIRE].

    ADS  Google Scholar 

  26. A. Arhrib, R. Benbrik and C.-H. Chen, Hγγ in the Complex Two Higgs Doublet Model, arXiv:1205.5536 [INSPIRE].

  27. M. Carena, S. Gori, N.R. Shah, C.E. Wagner and L.-T. Wang, Light Stau Phenomenology and the Higgs γγ Rate, JHEP 07 (2012) 175 [arXiv:1205.5842] [INSPIRE].

    Article  ADS  Google Scholar 

  28. A. Akeroyd and S. Moretti, Enhancement of H to gamma gamma from doubly charged scalars in the Higgs Triplet Model, Phys. Rev. D 86 (2012) 035015 [arXiv:1206.0535] [INSPIRE].

    ADS  Google Scholar 

  29. M. Carena, I. Low and C.E. Wagner, Implications of a Modified Higgs to Diphoton Decay Width, JHEP 08 (2012) 060 [arXiv:1206.1082] [INSPIRE].

    Article  ADS  Google Scholar 

  30. W.-F. Chang, J.N. Ng and J.M. Wu, Constraints on New Scalars from the LHC 125 GeV Higgs Signal, Phys. Rev. D 86 (2012) 033003 [arXiv:1206.5047] [INSPIRE].

    ADS  Google Scholar 

  31. B. Bellazzini, C. Petersson and R. Torre, Photophilic Higgs from sgoldstino mixing, Phys. Rev. D 86 (2012) 033016 [arXiv:1207.0803] [INSPIRE].

    ADS  Google Scholar 

  32. J. Ke, M.-X. Luo, L.-Y. Shan, K. Wang and L. Wang, Searching SUSY Leptonic Partner at the CERN LHC, Phys. Lett. B 718 (2013) 1334 [arXiv:1207.0990] [INSPIRE].

    ADS  Google Scholar 

  33. I. Low, J. Lykken and G. Shaughnessy, Have We Observed the Higgs (Imposter)?, Phys. Rev. D 86 (2012) 093012 [arXiv:1207.1093] [INSPIRE].

    ADS  Google Scholar 

  34. N. Bonne and G. Moreau, Reproducing the Higgs boson data with vector-like quarks, Phys. Lett. B 717 (2012) 409 [arXiv:1206.3360] [INSPIRE].

    ADS  Google Scholar 

  35. C.-W. Chiang and K. Yagyu, Higgs boson decays to γγ and Zγ in models with Higgs extensions, Phys. Rev. D 87 (2013) 033003 [arXiv:1207.1065] [INSPIRE].

    ADS  Google Scholar 

  36. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, Phys. Lett. B 718 (2012) 469 [arXiv:1207.1347] [INSPIRE].

    ADS  Google Scholar 

  37. M.R. Buckley and D. Hooper, Are There Hints of Light Stops in Recent Higgs Search Results?, Phys. Rev. D 86 (2012) 075008 [arXiv:1207.1445] [INSPIRE].

    ADS  Google Scholar 

  38. D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs After the Discovery: A Status Report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].

    Article  ADS  Google Scholar 

  39. H. An, T. Liu and L.-T. Wang, 125 GeV Higgs Boson, Enhanced Di-photon Rate and Gauged U(1) P Q-Extended MSSM, Phys. Rev. D 86 (2012) 075030 [arXiv:1207.2473] [INSPIRE].

    ADS  Google Scholar 

  40. A. Alves, A. Dias, E. Ramirez Barreto, C. de S. Pires, F.S. Queiroz et al., Explaining the Higgs Decays at the LHC with an Extended Electroweak Model, Eur. Phys. J. C 73 (2013) 2288 [arXiv:1207.3699] [INSPIRE].

  41. T. Abe, N. Chen and H.-J. He, LHC Higgs Signatures from Extended Electroweak Gauge Symmetry, JHEP 01 (2013) 082 [arXiv:1207.4103] [INSPIRE].

    Article  ADS  Google Scholar 

  42. D. Bertolini and M. McCullough, The Social Higgs, JHEP 12 (2012) 118 [arXiv:1207.4209] [INSPIRE].

    Article  ADS  Google Scholar 

  43. A. Joglekar, P. Schwaller and C.E. Wagner, Dark Matter and Enhanced Higgs to Di-photon Rate from Vector-like Leptons, JHEP 12 (2012) 064 [arXiv:1207.4235] [INSPIRE].

    Article  ADS  Google Scholar 

  44. N. Arkani-Hamed, K. Blum, R.T. D’Agnolo and J. Fan, 2:1 for Naturalness at the LHC?, JHEP 01 (2013) 149 [arXiv:1207.4482] [INSPIRE].

    Article  ADS  Google Scholar 

  45. N. Haba, K. Kaneta, Y. Mimura and R. Takahashi, Enhancement of Higgs to diphoton decay width in non-perturbative Higgs model, Phys. Lett. B 718 (2013) 1441 [arXiv:1207.5102] [INSPIRE].

    ADS  Google Scholar 

  46. L.G. Almeida, E. Bertuzzo, P.A. Machado and R.Z. Funchal, Does Hγγ Taste like vanilla New Physics?, JHEP 11 (2012) 085 [arXiv:1207.5254] [INSPIRE].

    Article  ADS  Google Scholar 

  47. D.S. Alves, P.J. Fox and N.J. Weiner, Higgs Signals in a Type I 2HDM or with a Sister Higgs, arXiv:1207.5499 [INSPIRE].

  48. B. Batell, D. McKeen and M. Pospelov, Singlet Neighbors of the Higgs Boson, JHEP 10 (2012) 104 [arXiv:1207.6252] [INSPIRE].

    Article  ADS  Google Scholar 

  49. G.F. Giudice, P. Paradisi, A. Strumia and A. Strumia, Correlation between the Higgs Decay Rate to Two Photons and the Muon g - 2, JHEP 10 (2012) 186 [arXiv:1207.6393] [INSPIRE].

    Article  ADS  Google Scholar 

  50. A. Delgado, G. Nardini and M. Quirós, Large diphoton Higgs rates from supersymmetric triplets, Phys. Rev. D 86 (2012) 115010 [arXiv:1207.6596] [INSPIRE].

    ADS  Google Scholar 

  51. J. Kearney, A. Pierce and N. Weiner, Vectorlike Fermions and Higgs Couplings, Phys. Rev. D 86 (2012) 113005 [arXiv:1207.7062] [INSPIRE].

    ADS  Google Scholar 

  52. M. Hashimoto and V. Miransky, Enhanced diphoton Higgs decay rate and isospin symmetric Higgs boson, Phys. Rev. D 86 (2012) 095018 [arXiv:1208.1305] [INSPIRE].

    ADS  Google Scholar 

  53. K. Schmidt-Hoberg and F. Staub, Enhanced hγγ rate in MSSM singlet extensions, JHEP 10 (2012) 195 [arXiv:1208.1683] [INSPIRE].

    Article  ADS  Google Scholar 

  54. M. Reece, Vacuum Instabilities with a Wrong-Sign Higgs-Gluon-Gluon Amplitude, New J. Phys. 15 (2013) 043003 [arXiv:1208.1765] [INSPIRE].

    Article  ADS  Google Scholar 

  55. H. Davoudiasl, H.-S. Lee and W.J. Marciano, Dark Side of Higgs Diphoton Decays and Muon g-2, Phys. Rev. D 86 (2012) 095009 [arXiv:1208.2973] [INSPIRE].

    ADS  Google Scholar 

  56. Y. Cai, W. Chao and S. Yang, Scalar Septuplet Dark Matter and Enhanced hγγ Decay Rate, JHEP 12 (2012) 043 [arXiv:1208.3949] [INSPIRE].

    Article  ADS  Google Scholar 

  57. K.J. Bae, T.H. Jung and H.D. Kim, 125 GeV Higgs as a pseudo-Goldstone boson in supersymmetry with vector-like matters, Phys. Rev. D 87 (2013) 015014 [arXiv:1208.3748] [INSPIRE].

    ADS  Google Scholar 

  58. G. Moreau, Constraining extra-fermion(s) from the Higgs boson data, Phys. Rev. D 87 (2013) 015027 [arXiv:1210.3977] [INSPIRE].

    ADS  Google Scholar 

  59. M. Voloshin, CP Violation in Higgs Diphoton Decay in Models with Vectorlike Heavy Fermions, Phys. Rev. D 86 (2012) 093016 [arXiv:1208.4303] [INSPIRE].

    ADS  Google Scholar 

  60. T. Kitahara, Vacuum Stability Constraints on the Enhancement of the Hγγ rate in the MSSM, JHEP 11 (2012) 021 [arXiv:1208.4792] [INSPIRE].

    Article  ADS  Google Scholar 

  61. A. Kobakhidze, Standard Model with a distorted Higgs sector and the enhanced Higgs diphoton decay rate, arXiv:1208.5180 [INSPIRE].

  62. A. Urbano, Higgs decay into photons through a spin-2 loop, Phys. Rev. D 87 (2013) 053003 [arXiv:1208.5782] [INSPIRE].

    ADS  Google Scholar 

  63. E.J. Chun, H.M. Lee and P. Sharma, Vacuum Stability, Perturbativity, EWPD and Higgs-to-diphoton rate in Type II Seesaw Models, JHEP 11 (2012) 106 [arXiv:1209.1303] [INSPIRE].

    Article  ADS  Google Scholar 

  64. H.M. Lee, M. Park and W.-I. Park, Axion-mediated dark matter and Higgs diphoton signal, JHEP 12 (2012) 037 [arXiv:1209.1955] [INSPIRE].

    Article  ADS  Google Scholar 

  65. B. Batell, S. Gori and L.-T. Wang, Higgs Couplings and Precision Electroweak Data, JHEP 01 (2013) 139 [arXiv:1209.6382] [INSPIRE].

    Article  ADS  Google Scholar 

  66. W. Altmannshofer, S. Gori and G.D. Kribs, A Minimal Flavor Violating 2HDM at the LHC, Phys. Rev. D 86 (2012) 115009 [arXiv:1210.2465] [INSPIRE].

    ADS  Google Scholar 

  67. L. Wang and X.-F. Han, 130 GeV gamma-ray line and enhancement of hγγ in the Higgs triplet model plus a scalar dark matter, Phys. Rev. D 87 (2013) 015015 [arXiv:1209.0376] [INSPIRE].

    ADS  Google Scholar 

  68. M. Chala, hγγ excess and Dark Matter from Composite Higgs Models, JHEP 01 (2013) 122 [arXiv:1210.6208] [INSPIRE].

    Article  ADS  Google Scholar 

  69. I. Picek and B. Radovcic, Enhancement of hγγ by seesaw-motivated exotic scalars, Phys. Lett. B 719 (2013) 404 [arXiv:1210.6449] [INSPIRE].

    ADS  Google Scholar 

  70. K. Choi, S.H. Im, K.S. Jeong and M. Yamaguchi, Higgs mixing and diphoton rate enhancement in NMSSM models, JHEP 02 (2013) 090 [arXiv:1211.0875] [INSPIRE].

    Article  ADS  Google Scholar 

  71. B. Batell, S. Jung and H.M. Lee, Singlet Assisted Vacuum Stability and the Higgs to Diphoton Rate, JHEP 01 (2013) 135 [arXiv:1211.2449] [INSPIRE].

    Article  ADS  Google Scholar 

  72. K. Schmidt-Hoberg, F. Staub and M.W. Winkler, Enhanced diphoton rates at Fermi and the LHC, JHEP 01 (2013) 124 [arXiv:1211.2835] [INSPIRE].

    Article  ADS  Google Scholar 

  73. H. Davoudiasl, I. Lewis and E. Ponton, Electroweak Phase Transition, Higgs Diphoton Rate and New Heavy Fermions, arXiv:1211.3449 [INSPIRE].

  74. K. Dissauer, M.T. Frandsen, T. Hapola and F. Sannino, Perturbative extension of the standard model with a 125 GeV Higgs and Magnetic Dark Matter, Phys. Rev. D 87 (2013) 035005 [arXiv:1211.5144] [INSPIRE].

    ADS  Google Scholar 

  75. M. Carena, S. Gori, I. Low, N. Shah and C. Wagner, Vacuum Stability and Higgs Diphoton Decays in the MSSM, JHEP 02 (2013) 114 [arXiv:1211.6136] [INSPIRE].

    Article  ADS  Google Scholar 

  76. M. Berg, I. Buchberger, D. Ghilencea and C. Petersson, Higgs diphoton rate enhancement from supersymmetric physics beyond the MSSM, arXiv:1212.5009 [INSPIRE].

  77. E. Iltan, Higgs to diphoton decay rate and the antisymmetric tensor unparticle mediation, arXiv:1212.5695 [INSPIRE].

  78. C. Han, N. Liu, L. Wu, J.M. Yang and Y. Zhang, Two-Higgs-doublet model with a color-triplet scalar: a joint explanation for top quark forward-backward asymmetry and Higgs decay to diphoton, arXiv:1212.6728 [INSPIRE].

  79. W. Chao, J.-H. Zhang and Y. Zhang, Vacuum Stability and Higgs Diphoton Decay Rate in the Zee-Babu Model, JHEP 06 (2013) 039 [arXiv:1212.6272] [INSPIRE].

    Article  ADS  Google Scholar 

  80. S. Funatsu, H. Hatanaka, Y. Hosotani, Y. Orikasa and T. Shimotani, Novel universality and Higgs decay Hγγ, gg in the SO(5) × U(1) gauge-Higgs unification, Phys. Lett. B 722 (2013) 94 [arXiv:1301.1744] [INSPIRE].

    ADS  Google Scholar 

  81. Z. Kang, Y. Liu and G.-Z. Ning, Highlights of Supersymmetric Hypercharge ±1 Triplets, arXiv:1301.2204 [INSPIRE].

  82. J. Fan and M. Reece, Probing Charged Matter Through Higgs Diphoton Decay, Gamma Ray Lines and EDMs, JHEP 06 (2013) 004 [arXiv:1301.2597] [INSPIRE].

    Article  ADS  Google Scholar 

  83. J. Cao, L. Wu, P. Wu and J.M. Yang, The Z+photon and diphoton decays of the Higgs boson as a joint probe of low energy SUSY models at LHC, arXiv:1301.4641 [INSPIRE].

  84. C.-S. Chen, C.-Q. Geng, D. Huang and L.-H. Tsai, New Scalar Contributions to h, Phys. Rev. D87, 075019 (2013) [arXiv:1301.4694] [INSPIRE].

  85. A. Carmona and F. Goertz, Custodial Leptons and Higgs Decays, arXiv:1301.5856 [INSPIRE].

  86. W.-Z. Feng and P. Nath, Higgs diphoton rate and mass enhancement with vector-like leptons and the scale of supersymmetry, Phys. Rev. D 87 (2013) 075018 [arXiv:1303.0289] [INSPIRE].

    ADS  Google Scholar 

  87. ATLAS collaboration, Latest ATLAS studies on Higgs to diboson states, ATL-PHYS-SLIDE-2013-113.

  88. CMS collaboration, Study of Standard Model Scalar Production in Bosonic Decay Channels in CMS, CMS-CR-2013-068 (2013).

  89. M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs Couplings at a Linear Collider, Europhys. Lett. 101 (2013) 51001 [arXiv:1301.1322] [INSPIRE].

    Article  ADS  Google Scholar 

  90. W. Kilian, M. Krämer and P. Zerwas, Anomalous couplings in the Higgsstrahlung process, Phys. Lett. B 381 (1996) 243 [hep-ph/9603409] [INSPIRE].

    ADS  Google Scholar 

  91. A. Belyaev, R. Foadi, M.T. Frandsen, M. Jarvinen, F. Sannino et al., Technicolor Walks at the LHC, Phys. Rev. D 79 (2009) 035006 [arXiv:0809.0793] [INSPIRE].

    ADS  Google Scholar 

  92. J. Ellis, V. Sanz and T. You, Associated Production Evidence against Higgs Impostors and Anomalous Couplings, arXiv:1303.0208 [INSPIRE].

  93. ATLAS collaboration, Updated ATLAS results on the signal strength of the Higgs-like boson for decays into WW and heavy fermion final states, ATLAS-CONF-2012-162 (2012).

  94. CMS collaboration, Combination of Standard Model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-12-045 (1494149).

  95. TEVNPH (Tevatron New Phenomina and Higgs Working Group), CDF, D0 collaboration, Combined CDF and D0 Search for Standard Model Higgs Boson Production with up to 10.0 f b −1 of Data, arXiv:1203.3774 [INSPIRE].

  96. Y.L. Dokshitzer, V.A. Khoze and T. Sjöstrand, Rapidity gaps in Higgs production, Phys. Lett. B 274 (1992) 116 [INSPIRE].

    ADS  Google Scholar 

  97. V.D. Barger, R. Phillips and D. Zeppenfeld, Mini - jet veto: A Tool for the heavy Higgs search at the LHC, Phys. Lett. B 346 (1995) 106 [hep-ph/9412276] [INSPIRE].

    ADS  Google Scholar 

  98. J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].

    Article  ADS  Google Scholar 

  99. D.E. Soper and M. Spannowsky, Combining subjet algorithms to enhance ZH detection at the LHC, JHEP 08 (2010) 029 [arXiv:1005.0417] [INSPIRE].

    Article  ADS  Google Scholar 

  100. CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson decaying to bottom quarks in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 284 [arXiv:1202.4195] [INSPIRE].

    ADS  Google Scholar 

  101. ATLAS collaboration,Search for the Standard Model Higgs boson produced in association with a vector boson and decaying to a b-quark pair with the ATLAS detector, Phys. Lett. B 718 (2012)369 [arXiv:1207.0210] [INSPIRE].

    ADS  Google Scholar 

  102. ATLAS collaboration, ATLAS Sensitivity Prospects for 1 Higgs Boson Production at the LHC Running at 7, 8 or 9 TeV, ATL-PHYS-PUB-2010-015 (2010).

  103. CMS collaboration, Search for SM Higgs in WH to WWW to 3l 3ν, CMS-PAS-HIG-12-039.

  104. CMS collaboration, Evidence for a particle decaying to W+W- in the fully leptonic final state in a standard model Higgs boson search in pp collisions at the LHC, CMS-PAS-HIG-12-042.

  105. K. Hagiwara, R. Peccei, D. Zeppenfeld and K. Hikasa, Probing the Weak Boson Sector in e + e W + W−, Nucl. Phys. B 282 (1987) 253 [INSPIRE].

    Article  ADS  Google Scholar 

  106. W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

    Article  ADS  Google Scholar 

  107. J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A Phenomenological Profile of the Higgs Boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].

    ADS  Google Scholar 

  108. B.A. Kniehl and M. Spira, Low-energy theorems in Higgs physics, Z. Phys. C 69 (1995) 77 [hep-ph/9505225] [INSPIRE].

    Google Scholar 

  109. M.A. Shifman, A. Vainshtein, M. Voloshin and V.I. Zakharov, Low-Energy Theorems for Higgs Boson Couplings to Photons, Sov. J. Nucl. Phys. 30 (1979) 711 [INSPIRE].

    Google Scholar 

  110. A.V. Manohar and M.B. Wise, Modifications to the properties of the Higgs boson, Phys. Lett. B 636 (2006) 107 [hep-ph/0601212] [INSPIRE].

    ADS  Google Scholar 

  111. A. Pierce, J. Thaler and L.-T. Wang, Disentangling Dimension Six Operators through Di-Higgs Boson Production, JHEP 05 (2007) 070 [hep-ph/0609049] [INSPIRE].

    Article  ADS  Google Scholar 

  112. G. Passarino, NLO Inspired Effective Lagrangians for Higgs Physics, Nucl. Phys. B 868 (2013) 416 [arXiv:1209.5538] [INSPIRE].

    Article  ADS  Google Scholar 

  113. U. Baur, T. Plehn and D.L. Rainwater, Measuring the Higgs boson self coupling at the LHC and finite top mass matrix elements, Phys. Rev. Lett. 89 (2002) 151801 [hep-ph/0206024] [INSPIRE].

    Article  ADS  Google Scholar 

  114. M.J. Dolan, C. Englert and M. Spannowsky, Higgs self-coupling measurements at the LHC, JHEP 10 (2012) 112 [arXiv:1206.5001] [INSPIRE].

    Article  ADS  Google Scholar 

  115. M.E. Peskin and T. Takeuchi, A New constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].

    Article  ADS  Google Scholar 

  116. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  117. ATLAS collaboration, Search for New Phenomena in the Dijet Mass Distribution updated using 13.0 f b −1 of pp Collisions at \( \sqrt{s}=8 \) TeV collected by the ATLAS Detector, ATLAS-CONF-2012-148 (2012).

  118. R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].

    Article  ADS  Google Scholar 

  119. W. Kilian, M. Krämer and P. Zerwas, Higgsstrahlung and W W fusion in e + e collisions, Phys. Lett. B 373 (1996) 135 [hep-ph/9512355] [INSPIRE].

    ADS  Google Scholar 

  120. J. Fleischer and F. Jegerlehner, Radiative corrections to Higgs production by e + e ZH In the Weinberg-Salam model, Nucl. Phys. B 216 (1983) 469 [INSPIRE].

    Article  ADS  Google Scholar 

  121. F. Jegerlehner, Electroweak radiative corrections in the Higgs sector, BI-TP-83-22 (1983).

  122. J. Fleischer and F. Jegerlehner, O(α) corrections to Higgs production processes at LEP energies, BI-TP-87-04 (1987).

  123. A. Denner, J. Kublbeck, R. Mertig and M. Böhm, Electroweak radiative corrections to e + e HZ, Z. Phys. C 56 (1992) 261 [INSPIRE].

    ADS  Google Scholar 

  124. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  125. T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

    Article  ADS  Google Scholar 

  126. A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [arXiv:0709.1075] [INSPIRE].

    Article  ADS  Google Scholar 

  127. K.-i. Aoki, Z. Hioki, R. Kawabe, M. Konuma and T. Muta, Electroweak radiative corrections to high-energy neutrino e scatterings, Prog. Theor. Phys. 65 (1981) 1001 [INSPIRE].

    Article  ADS  Google Scholar 

  128. K.-i. Aoki, Z. Hioki, R. Kawabe, M. Konuma and T. Muta, One loop corrections to neutrino e scattering in Weinberg-Salam theory: neutral current processes, Prog. Theor. Phys. 64 (1980) 707 [INSPIRE].

    Article  ADS  Google Scholar 

  129. K. Aoki, Z. Hioki, M. Konuma, R. Kawabe and T. Muta, Electroweak Theory. Framework of On-Shell Renormalization and Study of Higher Order Effects, Prog. Theor. Phys. Suppl. 73 (1982)1 [INSPIRE].

    Article  ADS  Google Scholar 

  130. T. Lee and M. Nauenberg, Degenerate Systems and Mass Singularities, Phys.Rev. 133 (1964) B1549.

    Article  MathSciNet  ADS  Google Scholar 

  131. T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys. 3 (1962) 650 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  132. G. Bonneau and F. Martin, Hard photon emission in e + e reactions, Nucl. Phys. B 27 (1971)381 [INSPIRE].

    Article  ADS  Google Scholar 

  133. ATLAS collaboration, Search for invisible decays of a Higgs boson produced in association with a Z boson in ATLAS, ATLAS-CONF-2013-011 (2013).

  134. C.F. Duerig, Determination of the Higgs Decay Width at ILC, PhD thesis, University of Bonn, 2012.

  135. V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  136. J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].

    ADS  Google Scholar 

  137. C. Burgess, M. Pospelov and T. ter Veldhuis, The Minimal model of nonbaryonic dark matter: A Singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].

    Article  ADS  Google Scholar 

  138. H. Davoudiasl, R. Kitano, T. Li and H. Murayama, The New minimal standard model, Phys. Lett. B 609 (2005) 117 [hep-ph/0405097] [INSPIRE].

    ADS  Google Scholar 

  139. B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188 [INSPIRE].

  140. R. Schabinger and J.D. Wells, A Minimal spontaneously broken hidden sector and its impact on Higgs boson physics at the large hadron collider, Phys. Rev. D 72 (2005) 093007 [hep-ph/0509209] [INSPIRE].

    ADS  Google Scholar 

  141. T. Binoth and J. van der Bij, Influence of strongly coupled, hidden scalars on Higgs signals, Z. Phys. C 75 (1997) 17 [hep-ph/9608245] [INSPIRE].

    Google Scholar 

  142. C. Englert, T. Plehn, D. Zerwas and P.M. Zerwas, Exploring the Higgs portal, Phys. Lett. B 703 (2011) 298 [arXiv:1106.3097] [INSPIRE].

    ADS  Google Scholar 

  143. M. Ciccolini, S. Dittmaier and M. Krämer, Electroweak radiative corrections to associated WH and ZH production at hadron colliders, Phys. Rev. D 68 (2003) 073003 [hep-ph/0306234] [INSPIRE].

    ADS  Google Scholar 

  144. J. Ohnemus and W.J. Stirling, Order α s corrections to the differential cross-section for the W H intermediate mass Higgs signal, Phys. Rev. D 47 (1993) 2722 [INSPIRE].

    ADS  Google Scholar 

  145. H. Baer, B. Bailey and J. Owens, O (α s ) Monte Carlo approach to W + Higgs associated production at hadron supercolliders, Phys. Rev. D 47 (1993) 2730 [INSPIRE].

    ADS  Google Scholar 

  146. T. Han and S. Willenbrock, QCD correction to the ppW H and Z H total cross-sections, Phys. Lett. B 273 (1991) 167 [INSPIRE].

    ADS  Google Scholar 

  147. O. Brein, A. Djouadi and R. Harlander, NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders, Phys. Lett. B 579 (2004) 149 [hep-ph/0307206] [INSPIRE].

    ADS  Google Scholar 

  148. R. Hamberg, W. van Neerven and T. Matsuura, A Complete calculation of the order \( \alpha_s^2 \) correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [Erratum ibid. B 644 (2002) 403] [INSPIRE].

  149. S. Dawson, T. Han, W. Lai, A. Leibovich and I. Lewis, Resummation Effects in Vector-Boson and Higgs Associated Production, Phys. Rev. D 86 (2012) 074007 [arXiv:1207.4207] [INSPIRE].

    ADS  Google Scholar 

  150. LHC Higgs Cross Section Working group, Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, arXiv:1101.0593 [INSPIRE].

  151. A. Denner, S. Dittmaier, S. Kallweit and A. Muck, Electroweak corrections to Higgs-strahlung off W/Z bosons at the Tevatron and the LHC with HAWK, JHEP 03 (2012) 075 [arXiv:1112.5142] [INSPIRE].

    Article  ADS  Google Scholar 

  152. J. Pumplin, D. Stump, J. Huston, H. Lai, P.M. Nadolsky et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

    Article  ADS  Google Scholar 

  153. K. Arnold, M. Bahr, G. Bozzi, F. Campanario, C. Englert et al., VBFNLO: A Parton level Monte Carlo for processes with electroweak bosons, Comput. Phys. Commun. 180 (2009) 1661 [arXiv:0811.4559] [INSPIRE].

    Article  ADS  Google Scholar 

  154. J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].

    Article  ADS  Google Scholar 

  155. U. Baur, S. Keller and D. Wackeroth, Electroweak radiative corrections to W boson production in hadronic collisions, Phys. Rev. D 59 (1999) 013002 [hep-ph/9807417] [INSPIRE].

  156. A. Martin, R. Roberts, W. Stirling and R. Thorne, Parton distributions incorporating QED contributions, Eur. Phys. J. C 39 (2005) 155 [hep-ph/0411040] [INSPIRE].

  157. J. Kripfganz and H. Perlt, Electroweak radiative corrections and quark mass singularities, Z. Phys. C 41 (1988) 319.

    Google Scholar 

  158. H. Spiesberger, QED radiative corrections for parton distributions, Phys. Rev. D 52 (1995) 4936 [hep-ph/9412286] [INSPIRE].

    Google Scholar 

  159. ATLAS collaboration, Coupling properties of the new Higgs-like boson observed with the ATLAS detector at the LHC, ATLAS-CONF-2012-127 (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew McCullough.

Additional information

ArXiv ePrint: 1303.1526

Rights and permissions

Reprints and permissions

About this article

Cite this article

Englert, C., McCullough, M. Modified Higgs sectors and NLO associated production. J. High Energ. Phys. 2013, 168 (2013). https://doi.org/10.1007/JHEP07(2013)168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)168

Keywords

Navigation