Skip to main content
Log in

Heterotic black horizons

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We show that the supersymmetric near horizon geometry of heterotic black holes is either an AdS 3 fibration over a 7-dimensional manifold which admits a G 2 structure compatible with a connection with skew-symmetric torsion, or it is a product \( {\mathbb{R}^{1,1}} \times {\mathcal{S}^8} \), where \( {\mathcal{S}^8} \) is a holonomy Spin(7) manifold, preserving 2 and 1 supersymmetries respectively. Moreover, we demonstrate that the AdS 3 class of heterotic horizons can preserve 4, 6 and 8 supersymmetries provided that the geometry of the base space is further restricted. Similarly \( {\mathbb{R}^{1,1}} \times {\mathcal{S}^8} \) horizons with extended supersymmetry are products of \( {\mathbb{R}^{1,1}} \) with special holonomy manifolds. We have also found that the heterotic horizons with 8 supersymmetries are locally isometric to AdS 3 × S 3 × T 4, AdS 3 × S 3 × K 3 or \( {\mathbb{R}^{1,1}} \times {T^4} \times {K_3} \), where the radii of AdS 3 and S 3 are equal and the dilaton is constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Israel, Event Horizons In Static Vacuum Space-Times, Phys. Rev. 164 (1967) 1776 [SPIRES].

    Article  ADS  Google Scholar 

  2. B. Carter, Axisymmetric Black Hole Has Only Two Degrees of Freedom, Phys. Rev. Lett. 26 (1971) 331 [SPIRES].

    Article  ADS  Google Scholar 

  3. S.W. Hawking, Black holes in general relativity, Commun. Math. Phys. 25 (1972) 152 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. D.C. Robinson, Uniqueness of the Kerr black hole, Phys. Rev. Lett. 34 (1975) 905 [SPIRES].

    Article  ADS  Google Scholar 

  5. W. Israel, Event horizons in static electrovac space-times, Commun. Math. Phys. 8 (1968) 245 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. P.O. Mazur, Proof Of Uniqueness Of The Kerr-Newman Black Hole Solution, J. Phys. A 15 (1982) 3173 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. D. Robinson, Four decades of black hole uniqueness theorems, in The Kerr spacetime: Rotating black holes in General Relativity, D.L. Wiltshire, M. Visser and S.M. Scott eds., Cambridge University Press, Cambridge U.K. (2009), pg. 115–143.

    Google Scholar 

  8. H.S. Reall, Higher dimensional black holes and supersymmetry, Phys. Rev. D 68 (2003) 024024 [hep-th/0211290] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  9. J.C. Breckenridge, R.C. Myers, A.W. Peet and C. Vafa, D-branes and spinning black holes, Phys. Lett. B 391 (1997) 93 [hep-th/9602065] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. H. Elvang, R. Emparan, D. Mateos and H.S. Reall, A supersymmetric black ring, Phys. Rev. Lett. 93 (2004) 211302 [hep-th/0407065] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. G.W. Gibbons, G.T. Horowitz and P.K. Townsend, Higher dimensional resolution of dilatonic black hole singularities, Class. Quant. Grav. 12 (1995) 297 [hep-th/9410073] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. G.W. Gibbons, D. Ida and T. Shiromizu, Uniqueness and non-uniqueness of static black holes in higher dimensions, Phys. Rev. Lett. 89 (2002) 041101 [hep-th/0206049] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Rogatko, Uniqueness theorem of static degenerate and non-degenerate charged black holes in higher dimensions, Phys. Rev. D 67 (2003) 084025 [hep-th/0302091] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. M. Rogatko, Classification of static charged black holes in higher dimensions, Phys. Rev. D 73 (2006) 124027 [hep-th/0606116] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. H.K. Kunduri, J. Lucietti and H.S. Reall, Near-horizon symmetries of extremal black holes, Class. Quant. Grav. 24 (2007) 4169 [arXiv:0705.4214] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. H.K. Kunduri and J. Lucietti, Static near-horizon geometries in five dimensions, Class. Quant. Grav. 26 (2009) 245010 [arXiv:0907.0410] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. P. Figueras and J. Lucietti, On the uniqueness of extremal vacuum black holes, Class. Quant. Grav. 27 (2010) 095001 [arXiv:0906.5565] [SPIRES].

    Article  ADS  Google Scholar 

  18. S. Tomizawa, Y. Yasui and A. Ishibashi, A uniqueness theorem for charged rotating black holes in five-dimensional minimal supergravity, Phys. Rev. D 79 (2009) 124023 [arXiv:0901.4724] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  19. S. Hollands and S. Yazadjiev, A Uniqueness theorem for 5-dimensional Einstein-Maxwell black holes, Class. Quant. Grav. 25 (2008) 095010 [arXiv:0711.1722] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Blackfolds, Phys. Rev. Lett. 102 (2009) 191301 [arXiv:0902.0427] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of Blackfold Dynamics, JHEP 03 (2010) 063 [arXiv:0910.1601] [SPIRES].

    Article  Google Scholar 

  22. U. Gran, P. Lohrmann and G. Papadopoulos, The spinorial geometry of supersymmetric heterotic string backgrounds, JHEP 02 (2006) 063 [hep-th/0510176] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. U. Gran, G. Papadopoulos, D. Roest and P. Sloane, Geometry of all supersymmetric type-I backgrounds, JHEP 08 (2007) 074 [hep-th/0703143] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. G. Papadopoulos, Heterotic supersymmetric backgrounds with compact holonomy revisited, Class. Quant. Grav. 27 (2010) 125008 [arXiv:0909.2870] [SPIRES].

    Article  ADS  Google Scholar 

  25. S. Hollands, A. Ishibashi and R.M. Wald, A Higher Dimensional Stationary Rotating Black Hole Must be Axisymmetric, Commun. Math. Phys. 271 (2007) 699 [gr-qc/0605106] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. S. Hollands and A. Ishibashi, On the “Stationary Implies Axisymmetric” Theorem for Extremal Black Holes in Higher Dimensions, Commun. Math. Phys. 291 (2009) 403 [arXiv:0809.2659] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. H. Friedrich, I. Racz and R.M. Wald, On the Rigidity Theorem for Spacetimes with a Stationary Event Horizon or a Compact Cauchy Horizon, Commun. Math. Phys. 204 (1999) 691 [gr-qc/9811021] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. S. Ivanov, Connection with torsion, parallel spinors and geometry of Spin(7) manifolds, Math. Res. Lett. 11 (2004) 171 [math.DG/0111216] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  29. J.B. Gutowski and H.S. Reall, Supersymmetric AdS 5 black holes, JHEP 02 (2004) 006 [hep-th/0401042] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. M. Berger, Sur les groupes d’holonomie des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France 83 (1955) 279.

    MATH  MathSciNet  Google Scholar 

  31. D. Joyce, Compact Manifolds with Special Holonomy, Oxford University Press (2000).

  32. G.W. Gibbons, Vacua and solitons in extended supergravity, Lectures given at 4th Silarg Symposium, Caracas, Caracas Venezuela, December 5–11 1982, Published in Caracas Sympos.1982:163 (QC6:L45:1982).

  33. G.W. Gibbons, Thoughts on tachyon cosmology, Class. Quant. Grav. 20 (2003) S321 [hep-th/0301117] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. S. Ivanov and G. Papadopoulos, A no-go theorem for string warped compactifications, Phys. Lett. B 497 (2001) 309 [hep-th/0008232] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  35. T. Friedrich and S. Ivanov, Killing spinor equations in dimension 7 and geometry of integrable G 2 -manifolds, J. Geom. Phys. 48 (2003) 1 [math.DG/0112201] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. R. Bryant, Metrics with exceptional holonomy, Ann. Math. 126 (1987) 525.

    Article  Google Scholar 

  37. B.S. Acharya, J.M. Figueroa-O’Farrill, B.J. Spence and S. Stanciu, Planes, branes and automorphisms. II: Branes in motion, JHEP 07 (1998) 005 [hep-th/9805176] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. J.M. Figueroa-O’Farrill, T. Kawano and S. Yamaguchi, Parallelisable heterotic backgrounds, JHEP 10 (2003) 012 [hep-th/0308141] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. S.J. Gates Jr., C.M. Hull and M. Roček, Twisted Multiplets and New Supersymmetric Nonlinear σ-models, Nucl. Phys. B 248 (1984) 157 [SPIRES].

    Article  ADS  Google Scholar 

  40. P.S. Howe and G. Sierra, Two-dimensional supersymmetric nonlinear σ-modelS with torsion, Phys. Lett. B 148 (1984) 451 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  41. A. Strominger, Superstrings with Torsion, Nucl. Phys. B 274 (1986) 253 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  42. P.S. Howe and G. Papadopoulos, Ultraviolet behavior of two-dimensional supersymmetric nonlinear σ-models, Nucl. Phys. B 289 (1987) 264 [SPIRES].

    Article  ADS  Google Scholar 

  43. P.S. Howe and G. Papadopoulos, Further remarks on the geometry of two-dimensional nonlinear σ-models, Class. Quant. Grav. 5 (1988) 1647 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. G. Lopes Cardoso et al., Non-Kähler string backgrounds and their five torsion classes, Nucl. Phys. B 652 (2003) 5 [hep-th/0211118] [SPIRES].

    Article  ADS  Google Scholar 

  45. J.P. Gauntlett, D. Martelli, S. Pakis and D. Waldram, G-structures and wrapped NS5-branes, Commun. Math. Phys. 247 (2004) 421 [hep-th/0205050] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  46. A. Fino, M. Parton and S. Salamon, Families of strong KT structures in six dimensions, math.DG/0209259.

  47. J. Li and S.-T. Yau, The existence of supersymmetric string theory with torsion, hep-th/0411136 [SPIRES].

  48. J.-X. Fu and S.-T. Yau, Existence of supersymmetric Hermitian metrics with torsion on non-Kähler manifolds, hep-th/0509028 [SPIRES].

  49. M. Fernandez, S. Ivanov, L. Ugarte and R. Villacampa, Non-Kähler Heterotic String Compactifications with non-zero fluxes and constant dilaton, Commun. Math. Phys. 288 (2009) 677 [arXiv:0804.1648] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  50. G. Papadopoulos, New half supersymmetric solutions of the heterotic string, Class. Quant. Grav. 26 (2009) 135001 [arXiv:0809.1156] [SPIRES].

    Article  ADS  Google Scholar 

  51. J. Gillard, G. Papadopoulos and D. Tsimpis, Anomaly, fluxes and (2,0) heterotic-string compactifications, JHEP 06 (2003) 035 [hep-th/0304126] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  52. C.M. Hull and P.K. Townsend, The two loop β-function for σ-models with torsion, Phys. Lett. B 191 (1987) 115 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  53. E.A. Bergshoeff and M. de Roo, The quartic effective action of the heterotic string and supersymmetry, Nucl. Phys. B 328 (1989) 439 [SPIRES].

    Article  ADS  Google Scholar 

  54. P.S. Howe and G. Papadopoulos, Anomalies in two-dimensional supersymmetric nonlinear σ-models, Class. Quant. Grav. 4 (1987) 1749 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  55. A. Dabholkar, G.W. Gibbons, J.A. Harvey and F. Ruiz Ruiz, Superstrings and solitons, Nucl. Phys. B 340 (1990) 33 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  56. C.G. Callan Jr., J.A. Harvey and A. Strominger, Supersymmetric string solitons, hep-th/9112030 [SPIRES].

  57. G. Papadopoulos and A. Teschendorff, Grassmannians, calibrations and five-brane intersections, Class. Quant. Grav. 17 (2000) 2641 [hep-th/9811034] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  58. M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2+1) black hole, Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gutowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutowski, J., Papadopoulos, G. Heterotic black horizons. J. High Energ. Phys. 2010, 11 (2010). https://doi.org/10.1007/JHEP07(2010)011

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2010)011

Keywords

Navigation