Skip to main content
Log in

Bounds on the Fermion-Bulk masses in models with universal extra dimensions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In models with extra dimensions, vectorlike Dirac masses for fermion fields are generically allowed. These masses are independent of electroweak symmetry breaking and do not contribute to the known masses for the quarks and leptons. They control the profile of the bulk wave functions, the mass spectra of Kaluza-Klein modes, and interactions that could be tested in experiments. In this article, we study the effects of bulk masses in electroweak precision measurements and in dark matter and collider searches, to set bounds on the bulk mass parameters in models with a flat universal extra dimension, namely, Split-UED. We find the current bound on the universal bulk-mass to be smaller than (0.2-0.3)/R, where R is the radius of the extra dimension. Similar but slightly relaxed bounds are obtained in the non-universal bulk mass case. The LHC is expected to play an important role in constraining the remaining parameter space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev. D 64 (2001) 035002 [hep-ph/0012100] [INSPIRE].

    ADS  Google Scholar 

  2. H.-C. Cheng, K.T. Matchev and M. Schmaltz, Radiative corrections to Kaluza-Klein masses, Phys. Rev. D 66 (2002) 036005 [hep-ph/0204342] [INSPIRE].

    ADS  Google Scholar 

  3. H.-C. Cheng, K.T. Matchev and M. Schmaltz, Bosonic supersymmetry? Getting fooled at the CERN LHC, Phys. Rev. D 66 (2002) 056006 [hep-ph/0205314] [INSPIRE].

    ADS  Google Scholar 

  4. D. Hooper and S. Profumo, Dark matter and collider phenomenology of universal extra dimensions, Phys. Rept. 453 (2007) 29 [hep-ph/0701197] [INSPIRE].

    Article  ADS  Google Scholar 

  5. A. Datta, K. Kong and K.T. Matchev, Minimal universal extra dimensions in CalcHEP/CompHEP, New J. Phys. 12 (2010) 075017 [arXiv:1002.4624] [INSPIRE].

    Article  ADS  Google Scholar 

  6. K. Kong, K. Matchev and G. Servant, Extra dimensions at the LHC, in Particle dark matter, G. Bertone ed., Cambridge University Press, Cambridge U.K. (2010), arXiv:1001.4801 [INSPIRE].

    Google Scholar 

  7. B. Bhattacherjee and K. Ghosh, Search for the minimal universal extra dimension model at the LHC with \( \sqrt {s} = 7TeV \), Phys. Rev. D 83 (2011) 034003 [arXiv:1006.3043] [INSPIRE].

    ADS  Google Scholar 

  8. H. Murayama, M.M. Nojiri and K. Tobioka, Improved discovery of a nearly degenerate model: MUED using MT2 at the LHC, Phys. Rev. D 84 (2011) 094015 [arXiv:1107.3369] [INSPIRE].

    ADS  Google Scholar 

  9. A. Datta, A. Datta and S. Poddar, Enriching the exploration of the mUED model with event shape variables at the CERN LHC, Phys. Lett. B 712 (2012) 219 [arXiv:1111.2912] [INSPIRE].

    Article  ADS  Google Scholar 

  10. S. Arrenberg, L. Baudis, K. Kong, K.T. Matchev and J. Yoo, Kaluza-Klein dark matter: direct detection vis-a-vis LHC, Phys. Rev. D 78 (2008) 056002 [arXiv:0805.4210] [INSPIRE].

    ADS  Google Scholar 

  11. G. Bertone, K. Kong, R.R. de Austri and R. Trotta, Global fits of the minimal universal extra dimensions scenario, Phys. Rev. D 83 (2011) 036008 [arXiv:1010.2023] [INSPIRE].

    ADS  Google Scholar 

  12. A.J. Buras, M. Spranger and A. Weiler, The Impact of universal extra dimensions on the unitarity triangle and rare K and B decays, Nucl. Phys. B 660 (2003) 225 [hep-ph/0212143] [INSPIRE].

    Article  ADS  Google Scholar 

  13. A.J. Buras, A. Poschenrieder, M. Spranger and A. Weiler, The Impact of universal extra dimensions on BX, BXs gluon, BXsμ+μ−, KL → π0e+eand ǫ′/ǫ, Nucl. Phys. B 678 (2004) 455 [hep-ph/0306158] [INSPIRE].

    Article  ADS  Google Scholar 

  14. U. Haisch and A. Weiler, Bound on minimal universal extra dimensions from \( \overline B \to {X_{s\gamma }} \), Phys. Rev. D 76 (2007) 034014 [hep-ph/0703064] [INSPIRE].

    ADS  Google Scholar 

  15. P. Colangelo, F. De Fazio, R. Ferrandes and T. Pham, Exclusive BK∗ℓ+ℓ−, \( {\text{B}} \to {{\text{K}}^{*}}\nu \overline \nu \) and BK∗γ transitions in a scenario with a single universal extra dimension, Phys. Rev. D 73 (2006) 115006 [hep-ph/0604029] [INSPIRE].

    ADS  Google Scholar 

  16. P. Colangelo, F. De Fazio, R. Ferrandes and T. Pham, Spin effects in rare BXsτ+τ− and BK∗τ+τ− decays in a single universal extra dimension scenario, Phys. Rev. D 74 (2006) 115006 [hep-ph/0610044] [INSPIRE].

    ADS  Google Scholar 

  17. T. Aliev and M. Savci, _b → _ℓ+ℓ− decay in universal extra dimensions, Eur. Phys. J. C 50 (2007) 91 [hep-ph/0606225] [INSPIRE].

    Article  ADS  Google Scholar 

  18. T. Appelquist and H.-U. Yee, Universal extra dimensions and the Higgs boson mass, Phys. Rev. D 67 (2003) 055002 [hep-ph/0211023] [INSPIRE].

    ADS  Google Scholar 

  19. I. Gogoladze and C. Macesanu, Precision electroweak constraints on universal extra dimensions revisited, Phys. Rev. D 74 (2006) 093012 [hep-ph/0605207] [INSPIRE].

    ADS  Google Scholar 

  20. M. Baak et al., Updated status of the global electroweak fit and constraints on new physics, arXiv:1107.0975 [INSPIRE].

  21. G. Servant and T.M. Tait, Is the lightest Kaluza-Klein particle a viable dark matter candidate?, Nucl. Phys. B 650 (2003) 391 [hep-ph/0206071] [INSPIRE].

    Article  ADS  Google Scholar 

  22. H.-C. Cheng, J.L. Feng and K.T. Matchev, Kaluza-Klein dark matter, Phys. Rev. Lett. 89 (2002) 211301 [hep-ph/0207125] [INSPIRE].

    Article  ADS  Google Scholar 

  23. K. Kong and K.T. Matchev, Precise calculation of the relic density of Kaluza-Klein dark matter in universal extra dimensions, JHEP 01 (2006) 038 [hep-ph/0509119] [INSPIRE].

    Article  ADS  Google Scholar 

  24. G. Bélanger, M. Kakizaki and A. Pukhov, Dark matter in UED: the role of the second KK level, JCAP 02 (2011) 009 [arXiv:1012.2577] [INSPIRE].

    Article  Google Scholar 

  25. M. Kakizaki, S. Matsumoto and M. Senami, Relic abundance of dark matter in the minimal universal extra dimension model, Phys. Rev. D 74 (2006) 023504 [hep-ph/0605280] [INSPIRE].

    ADS  Google Scholar 

  26. M. Kakizaki, S. Matsumoto, Y. Sato and M. Senami, Relic abundance of LKP dark matter in UED model including effects of second KK resonances, Nucl. Phys. B 735 (2006) 84 [hep-ph/0508283] [INSPIRE].

    Article  ADS  Google Scholar 

  27. M. Kakizaki, S. Matsumoto, Y. Sato and M. Senami, Significant effects of second KK particles on LKP dark matter physics, Phys. Rev. D 71 (2005) 123522 [hep-ph/0502059] [INSPIRE].

    ADS  Google Scholar 

  28. G. Dvali, G. Gabadadze, M. Kolanovic and F. Nitti, The power of brane induced gravity, Phys. Rev. D 64 (2001) 084004 [hep-ph/0102216] [INSPIRE].

    ADS  Google Scholar 

  29. M.S. Carena, T.M. Tait and C. Wagner, Branes and orbifolds are opaque, Acta Phys. Polon. B 33 (2002) 2355 [hep-ph/0207056] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. F. del Aguila, M. Pérez-Victoria and J. Santiago, Bulk fields with general brane kinetic terms, JHEP 02 (2003) 051 [hep-th/0302023] [INSPIRE].

    Article  Google Scholar 

  31. F. del Aguila, M. Pérez-Victoria and J. Santiago, Effective description of brane terms in extra dimensions, JHEP 10 (2006) 056 [hep-ph/0601222] [INSPIRE].

    Article  Google Scholar 

  32. T. Flacke, A. Menon and D.J. Phalen, Non-minimal universal extra dimensions, Phys. Rev. D 79 (2009) 056009 [arXiv:0811.1598] [INSPIRE].

    ADS  Google Scholar 

  33. S.C. Park and J. Shu, Split universal extra dimensions and dark matter, Phys. Rev. D 79 (2009) 091702 [arXiv:0901.0720] [INSPIRE].

    ADS  Google Scholar 

  34. A. Datta, K. Kong and K.T. Matchev, Discrimination of supersymmetry and universal extra dimensions at hadron colliders, Phys. Rev. D 72 (2005) 096006 [Erratum ibid. D 72 (2005) 119901] [hep-ph/0509246] [INSPIRE].

    ADS  Google Scholar 

  35. K. Kong, S.C. Park and T.G. Rizzo, Collider phenomenology with split-UED, JHEP 04 (2010) 081 [arXiv:1002.0602] [INSPIRE].

    Article  ADS  Google Scholar 

  36. D. Kim, Y. Oh and S.C. Park, Win new physics models at the LHC, arXiv:1109.1870 [INSPIRE].

  37. L. Edelhauser, W. Porod and R.K. Singh, Spin discrimination in three-body decays, JHEP 08 (2010) 053 [arXiv:1005.3720] [INSPIRE].

    Article  ADS  Google Scholar 

  38. T. Flacke and C. Pasold, Constraints on split-UED from Electroweak Precision Tests, arXiv:1111.7250 [INSPIRE].

  39. C. Csáki, J. Heinonen, J. Hubisz, S.C. Park and J. Shu, 5D UED: flat and flavorless, JHEP 01 (2011) 089 [arXiv:1007.0025] [INSPIRE].

    Article  ADS  Google Scholar 

  40. G. Cacciapaglia, C. Csáki, C. Grojean, M. Reece and J. Terning, Top and bottom: a brane of their own, Phys. Rev. D 72 (2005) 095018 [hep-ph/0505001] [INSPIRE].

    ADS  Google Scholar 

  41. K. Agashe, A. Falkowski, I. Low and G. Servant, KK parity in warped extra dimension, JHEP 04 (2008) 027 [arXiv:0712.2455] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. H. Georgi, A.K. Grant and G. Hailu, Chiral fermions, orbifolds, scalars and fat branes, Phys. Rev. D 63 (2001) 064027 [hep-ph/0007350] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  43. C.-R. Chen, M.M. Nojiri, S.C. Park, J. Shu and M. Takeuchi, Dark matter and collider phenomenology of split-UED, JHEP 09 (2009) 078 [arXiv:0903.1971] [INSPIRE].

    Article  ADS  Google Scholar 

  44. K. Kong, S.C. Park and T.G. Rizzo, A vector-like fourth generation with a discrete symmetry from split-UED, JHEP 07 (2010) 059 [arXiv:1004.4635] [INSPIRE].

    Article  ADS  Google Scholar 

  45. H. Dohi and K. -Y. Oda, Universal extra dimensions on real projective plane, Phys. Lett. B 692 (2010) 114 [arXiv:1004.3722] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. H. Dohi and K.-y. Oda, Universal extra dimensions on real projective plane, Phys. Lett. B 692 (2010) 114 [arXiv:1004.3722] [INSPIRE].

    Article  ADS  Google Scholar 

  47. T. Appelquist, B.A. Dobrescu, E. Ponton and H.-U. Yee, Proton stability in six-dimensions, Phys. Rev. Lett. 87 (2001) 181802 [hep-ph/0107056] [INSPIRE].

    Article  ADS  Google Scholar 

  48. G. Burdman, B.A. Dobrescu and E. Ponton, Six-dimensional gauge theory on the chiral square, JHEP 02 (2006) 033 [hep-ph/0506334] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. G. Burdman, B.A. Dobrescu and E. Ponton, Resonances from two universal extra dimensions, Phys. Rev. D 74 (2006) 075008 [hep-ph/0601186] [INSPIRE].

    ADS  Google Scholar 

  50. M.E. Peskin and T. Takeuchi, A New constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].

    Article  ADS  Google Scholar 

  51. M.S. Carena, E. Ponton, T.M. Tait and C. Wagner, Opaque branes in warped backgrounds, Phys. Rev. D 67 (2003) 096006 [hep-ph/0212307] [INSPIRE].

    ADS  Google Scholar 

  52. T.G. Rizzo and J.D. Wells, Electroweak precision measurements and collider probes of the standard model with large extra dimensions, Phys. Rev. D 61 (2000) 016007 [hep-ph/9906234] [INSPIRE].

    ADS  Google Scholar 

  53. H. Davoudiasl, J. Hewett and T. Rizzo, Bulk gauge fields in the Randall-Sundrum model, Phys. Lett. B 473 (2000) 43 [hep-ph/9911262] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. C. Csáki, J. Erlich and J. Terning, The effective lagrangian in the Randall-Sundrum model and electroweak physics, Phys. Rev. D 66 (2002) 064021 [hep-ph/0203034] [INSPIRE].

    ADS  Google Scholar 

  55. G. Servant and T.M. Tait, Elastic scattering and direct detection of Kaluza-Klein dark matter, New J. Phys. 4 (2002) 99 [hep-ph/0209262] [INSPIRE].

    Article  ADS  Google Scholar 

  56. XENON100 collaboration, E. Aprile et al., Dark matter results from 100 live days of XENON100 data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE].

    Article  ADS  Google Scholar 

  57. G.-C. Cho, K. Hagiwara and S. Matsumoto, Constraints on four Fermi contact interactions from low-energy electroweak experiments, Eur. Phys. J. C 5 (1998) 155 [hep-ph/9707334] [INSPIRE].

    ADS  Google Scholar 

  58. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021, and (2011) partial update for the (2012) edition [INSPIRE].

    Article  ADS  Google Scholar 

  59. T. Appelquist and B.A. Dobrescu, Universal extra dimensions and the muon magnetic moment, Phys. Lett. B 516 (2001) 85 [hep-ph/0106140] [INSPIRE].

    Article  ADS  Google Scholar 

  60. F. Jegerlehner and A. Nyffeler, The muon g-2, Phys. Rept. 477 (2009) 1 [arXiv:0902.3360] [INSPIRE].

    Article  ADS  Google Scholar 

  61. ATLAS collaboration, G. Aad et al., Search for new physics in the dijet mass distribution using 1 fb−1 of pp collision data at \( \sqrt {s} = 7TeV \) collected by the ATLAS detector, Phys. Lett. B 708 (2012) 37 [arXiv:1108.6311] [INSPIRE].

    Article  ADS  Google Scholar 

  62. CMS collaboration, S. Chatrchyan et al., Search for resonances in the dijet mass spectrum from 7 TeV pp collisions at CMS, Phys. Lett. B 704 (2011) 123 [arXiv:1107.4771] [INSPIRE].

    Article  ADS  Google Scholar 

  63. ATLAS collaboration, G. Aad et al., Search for dilepton resonances in pp collisions at \( \sqrt {s} = 7TeV \) with the ATLAS detector, Phys. Rev. Lett. 107 (2011) 272002 [arXiv:1108.1582] [INSPIRE].

    Article  ADS  Google Scholar 

  64. CMS collaboration, S. Chatrchyan et al., Search for resonances in the dilepton mass distribution in pp collisions at \( \sqrt {{(s)}} = {7}TeV \), JHEP 05 (2011) 093 [arXiv:1103.0981] [INSPIRE].

    ADS  Google Scholar 

  65. ATLAS collaboration, G. Aad et al., Search for a heavy gauge boson decaying to a charged lepton and a neutrino in 1 fb−1 of pp collisions at \( \sqrt {s} = 7TeV \) using the ATLAS detector, Phys. Lett. B 705 (2011) 28 [arXiv:1108.1316] [INSPIRE].

    Article  ADS  Google Scholar 

  66. CMS collaboration, Search for Win the leptonic channels in pp collisions at \( \sqrt {s} = 7TeV \), PAS-EXO-11-024 (2011).

  67. A. Pukhov, CalcHEP 2.3: MSSM, structure functions, event generation, batchs and generation of matrix elements for other packages, hep-ph/0412191 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Yu Huang.

Additional information

ArXiv ePrint: 1204.0522

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, GY., Kong, K. & Park, S.C. Bounds on the Fermion-Bulk masses in models with universal extra dimensions. J. High Energ. Phys. 2012, 99 (2012). https://doi.org/10.1007/JHEP06(2012)099

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2012)099

Keywords

Navigation