Skip to main content
Log in

Double parton scattering singularity in one-loop integrals

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present a detailed study of the double parton scattering (DPS) singularity, which is a specific type of Landau singularity that can occur in certain one-loop graphs in theories with massless particles. A simple formula for the DPS singular part of a four-point diagram with arbitrary internal/external particles is derived in terms of the transverse momentum integral of a product of light cone wavefunctions with tree-level matrix elements. This is used to reproduce and explain some results for DPS singularities in box integrals that have been obtained using traditional loop integration techniques. The formula can be straightforwardly generalised to calculate the DPS singularity in loops with an arbitrary number of external particles. We use the generalised version to explain why the specific MHV and NMHV six-photon amplitudes often studied by the NLO multileg community are not divergent at the DPS singular point, and point out that whilst all NMHV amplitudes are always finite, certain MHV amplitudes do contain a DPS divergence. It is shown that our framework for calculating DPS divergences in loop diagrams is entirely consistent with the ‘two-parton GPD’ framework of Diehl and Schafer for calculating proton-proton DPS cross sections, but is inconsistent with the ‘double PDF’ framework of Snigirev.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Eden, P.V. Landshoff, D.I. Olive, and J.C. Polkinghorne, The Analytic S Matrix. Cambridge University Press (1966).

  2. Z. Nagy and D.E. Soper, Numerical integration of one-loop Feynman diagrams for N-photon amplitudes, Phys. Rev. D 74 (2006) 093006 [hep-ph/0610028] [SPIRES].

    ADS  Google Scholar 

  3. R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02 (2008) 002 [arXiv:0712.1851] [SPIRES].

    Article  ADS  Google Scholar 

  4. L.D. Ninh, One-Loop Yukawa Corrections to the Process \( pp \to b\bar{b}H \) in the Standard Model at the LHC: Landau Singularities, arXiv:0810.4078 [SPIRES].

  5. G. Ossola, C.G. Papadopoulos and R. Pittau, Numerical Evaluation of Six-Photon Amplitudes, JHEP 07 (2007) 085 [arXiv:0704.1271] [SPIRES].

    Article  ADS  Google Scholar 

  6. W. Gong, Z. Nagy and D.E. Soper, Direct numerical integration of one-loop Feynman diagrams for N-photon amplitudes, Phys. Rev. D 79 (2009) 033005 [arXiv:0812.3686] [SPIRES].

    ADS  Google Scholar 

  7. A.M. Snigirev, Double parton distributions in the leading logarithm approximation of perturbative QCD, Phys. Rev. D 68 (2003) 114012 [hep-ph/0304172] [SPIRES].

    ADS  Google Scholar 

  8. B. Blok, Y. Dokshitzer, L. Frankfurt and M. Strikman, The four jet production at LHC and Tevatron in QCD, Phys. Rev. D 83 (2011) 071501 [arXiv:1009.2714] [SPIRES].

    ADS  Google Scholar 

  9. M. Diehl and A. Schafer, Theoretical considerations on multiparton interactions in QCD, Phys. Lett. B 698 (2011) 389 [arXiv:1102.3081] [SPIRES].

    ADS  Google Scholar 

  10. G.M. Zinovev, A.M. Snigirev and V.P. Shelest, Equations for many parton distributions in quantum chromodynamics, Theor. Math. Phys. 51 (1982) 523 [SPIRES].

    Article  Google Scholar 

  11. E.W.N. Glover and J.J. van der Bij, Higgs boson pair production via gluon fusion, Nucl. Phys. B 309 (1988) 282 [SPIRES].

    Article  ADS  Google Scholar 

  12. E.W.N. Glover and J.J. van der Bij, Z boson pair production via gluon fusion, Nucl. Phys. B 321 (1989) 561 [SPIRES].

    Article  ADS  Google Scholar 

  13. T. Binoth, M. Ciccolini, N. Kauer and M. Krämer, Gluon-induced W-boson pair production at the LHC, JHEP 12 (2006) 046 [hep-ph/0611170] [SPIRES].

    Article  ADS  Google Scholar 

  14. C. Bernicot, The six-photon amplitude, arXiv:0804.1315 [SPIRES].

  15. NLO Multileg Working Group collaboration, Z. Bern et al., The NLO multileg working group: Summary report, arXiv:0803.0494 [SPIRES].

  16. G. Duplancic and B. Nizic, Dimensionally regulated one-loop box scalar integrals with massless internal lines, Eur. Phys. J. C 20 (2001) 357 [hep-ph/0006249] [SPIRES].

    Article  ADS  Google Scholar 

  17. R. Mertig and M. Böhm and A. Denner, FeynCalc - Computer-algebraic calculation of Feynman amplitudes, Computer Physics Communications 64 (1991) 345.

    Article  MathSciNet  ADS  Google Scholar 

  18. G. Passarino and M.J.G. Veltman, One Loop Corrections for e + e Annihilation Into μ + μ in the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [SPIRES].

    Article  ADS  Google Scholar 

  19. Maple 14, Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario.

  20. H.H. Liu, Double parton scattering of hadron hadron interaction and its gluonic contribution, hep-ph/9704395 [SPIRES].

  21. J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [SPIRES].

  22. R.E. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys. 1 (1960) 429 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. M. Veltman, Diagrammatica : the path to Feynman rules. Cambridge University Press (1994).

  24. M.E. Peskin and D.V. Schroeder, An Introduction to quantum field theory. Addison-Wesley Publishing Co. (1995).

  25. A. Harindranath, R. Kundu and W.-M. Zhang, Deep inelastic structure functions in light-front QCD: Radiative corrections, Phys. Rev. D 59 (1999) 094013 [hep-ph/9806221] [SPIRES].

    ADS  Google Scholar 

  26. Y. Tosa, Masses in scalar dynamics, Nuovo Cim. A 55 (1980) 485 [SPIRES].

    Article  ADS  Google Scholar 

  27. K. Konishi, A. Ukawa and G. Veneziano, Jet Calculus: A Simple Algorithm for Resolving QCD Jets, Nucl. Phys. B 157 (1979) 45 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. G. Mahlon, Use of recursion relations to compute one loop helicity amplitudes, hep-ph/9412350 [SPIRES].

  29. T. Binoth, G. Heinrich, T. Gehrmann and P. Mastrolia, Six-Photon Amplitudes, Phys. Lett. B 649 (2007) 422 [hep-ph/0703311] [SPIRES].

    ADS  Google Scholar 

  30. C. Bernicot and J.P. Guillet, Six-Photon Amplitudes in Scalar QED, JHEP 01 (2008) 059 [arXiv:0711.4713] [SPIRES].

    Article  ADS  Google Scholar 

  31. K.J. Ozeren and W.J. Stirling, MHV techniques for QED processes, JHEP 11 (2005) 016 [hep-th/0509063] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. J.R. Gaunt and W.J. Stirling, Double Parton Distributions Incorporating Perturbative QCD Evolution and Momentum and Quark Number Sum Rules, JHEP 03 (2010) 005 [arXiv:0910.4347] [SPIRES].

    Article  ADS  Google Scholar 

  33. M. Strikman and D. Treleani, Measuring double parton distributions in nucleons at proton nucleus colliders, Phys. Rev. Lett. 88 (2002) 031801 [hep-ph/0111468] [SPIRES].

    Article  ADS  Google Scholar 

  34. E. Cattaruzza, A. Del Fabbro and D. Treleani, Heavy-quark production in proton-nucleus collision at the CERN LHC, Phys. Rev. D 70 (2004) 034022 [hep-ph/0404177] [SPIRES].

    ADS  Google Scholar 

  35. D. Binosi and L. Theußl, JaxoDraw: A graphical user interface for drawing Feynman diagrams, Computer Physics Communications 161 (2004) 76.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan R. Gaunt.

Additional information

ArXiv ePrint: 1103.1888

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaunt, J.R., Stirling, W.J. Double parton scattering singularity in one-loop integrals. J. High Energ. Phys. 2011, 48 (2011). https://doi.org/10.1007/JHEP06(2011)048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2011)048

Keywords

Navigation